Deubiquitinases as novel therapeutic targets for diseases

Yali Xian , Jing Ye , Yu Tang , Nan Zhang , Cheng Peng , Wei Huang , Gu He

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70036

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70036 DOI: 10.1002/mco2.70036
REVIEW

Deubiquitinases as novel therapeutic targets for diseases

Author information +
History +
PDF

Abstract

Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.

Keywords

deubiquitinating enzymes (dubs) / deubiquitination / human diseases / signaling pathway regulation / targeted therapy

Cite this article

Download citation ▾
Yali Xian, Jing Ye, Yu Tang, Nan Zhang, Cheng Peng, Wei Huang, Gu He. Deubiquitinases as novel therapeutic targets for diseases. MedComm, 2024, 5(12): e70036 DOI:10.1002/mco2.70036

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee JM, Hammarén HM, Savitski MM, Baek SH. Control of protein stability by post-translational modifications. Nat Commun. 2023; 14(1): 201.

[2]

Mennerich D, Kubaichuk K, Kietzmann T. DUBs, hypoxia, and cancer. Trends Cancer. 2019; 5(10): 632-653.

[3]

Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020; 19(1): 146.

[4]

Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discovery. 2018; 17(1): 57-78.

[5]

Dewson G, Eichhorn PJA, Komander D. Deubiquitinases in cancer. Nat Rev Cancer. 2023; 23(12): 842-862.

[6]

Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol Cell. 2022; 82(1): 15-29.

[7]

Cheng J, Guo J, North BJ, et al. Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer. 2019; 1872(2): 188312.

[8]

Fang YZ, Jiang L, He Q, Cao J, Yang B. Deubiquitination complex platform: a plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes. Acta Pharm Sin B. 2023; 13(7): 2955-2962.

[9]

Mevissen TE, Hospenthal MK, Geurink PP, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 2013; 154(1): 169-184.

[10]

Wang Q, Liang S, Qian J, et al. OTUD1 promotes isoprenaline-and myocardial infarction-induced heart failure by targeting PDE5A in cardiomyocytes. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(3): 167018.

[11]

Jia F, Li H, Jiao Q, et al. Deubiquitylase OTUD3 prevents Parkinson’s disease through stabilizing iron regulatory protein 2. Cell Death Dis. 2022; 13(4): 418.

[12]

Hertens P, van Loo G. A20: a jack of all trades. Trends Cell Biol. 2024; 34(5): 360-362.

[13]

Liu L, Pang J, Qin D, et al. Deubiquitinase OTUD5 as a novel protector against 4-HNE-triggered ferroptosis in myocardial ischemia/reperfusion injury. Adv Sci (Weinh). 2023; 10(28): e2301852.

[14]

Zhou N, Qi H, Liu J, et al. Deubiquitinase OTUD3 regulates metabolism homeostasis in response to nutritional stresses. Cell Metab. 2022; 34(7): 1023-1041.

[15]

Hu M, Li P, Li M, et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 2002; 111(7): 1041-1054.

[16]

Makarova KS, Aravind L, Koonin EV. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci. 1999; 8(8): 1714-1719.

[17]

Komander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009; 10(8): 550-563.

[18]

Luo J, Ruan X, Huang Z, et al. Structural basis for the dual catalytic activity of the Legionella pneumophila ovarian tumor (OTU) domain deubiquitinase LotA. J Biol Chem. 2022; 298(10): 102414.

[19]

García-Santisteban I, Peters GJ, Giovannetti E, Rodríguez JA. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol Cancer. 2013; 12: 91.

[20]

Rougé L, Bainbridge TW, Kwok M, et al. Molecular understanding of USP7 substrate recognition and C-terminal activation. Structure (London, England : 1993). 2016; 24(8): 1335-1345.

[21]

Molland K, Zhou Q, Mesecar AD. A 2.2 Å resolution structure of the USP7 catalytic domain in a new space group elaborates upon structural rearrangements resulting from ubiquitin binding. Acta Crystallogr F Struct Biol Commun. 2014; 70: 283-287. Pt 3.

[22]

Faesen AC, Dirac AM, Shanmugham A, Ovaa H, Perrakis A, Sixma TK. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol Cell. 2011; 44(1): 147-159.

[23]

Shi Y, Chen X, Elsasser S, et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science. 2016; 351(6275): aad9421.

[24]

Gao H, Yin J, Ji C, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res. 2023; 42(1): 225.

[25]

Makarova KS, Aravind L, Koonin EV. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci. 2000; 25(2): 50-52.

[26]

Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem. 2009; 78: 363-397.

[27]

Craighead JM. Dunnigan’s commentary. The role of chrysotile in the pathogenesis of mesothelioma. Am J Ind Med. 1988; 14(2): 241-243. Response to Dr.

[28]

Suresh HG, Pascoe N, Andrews B. The structure and function of deubiquitinases: lessons from budding yeast. Open Biol. 2020; 10(10): 200279.

[29]

Wiener R, Zhang X, Wang T, Wolberger C. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature. 2012; 483(7391): 618-622.

[30]

Juang YC, Landry MC, Sanches M, et al. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol Cell. 2012; 45(3): 384-397.

[31]

Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci. 2023; 10: 1261273.

[32]

Wertz IE, O’Rourke KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004; 430(7000): 694-699.

[33]

Pan X, Wu S, Wei W, Chen Z, Wu Y, Gong K. Structural and functional basis of JAMM deubiquitinating enzymes in disease. Biomolecules. 2022; 12(7): 910.

[34]

Zeng C, Zhao C, Ge F, et al. Machado-Joseph deubiquitinases: from cellular functions to potential therapy targets. Front Pharmacol. 2020; 11: 1311.

[35]

Xu Z, Zhang N, Shi L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am J Cancer Res. 2024; 14(6): 2666-2694.

[36]

Louie BH, Kurzrock R. BAP1: not just a BRCA1-associated protein. Cancer Treat Rev. 2020; 90: 102091.

[37]

Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 2017; 86: 159-192.

[38]

Ren J, Yu P, Liu S, et al. Deubiquitylating enzymes in cancer and immunity. Adv Sci (Weinh). 2023; 10(36): e2303807.

[39]

Ilter M, Schulze-Niemand E, Naumann M, Stein M. Structural dynamics of Lys11-selective deubiquitinylase cezanne-1 during the catalytic cycle. J Chem Inf Model. 2023; 63(7): 2084-2094.

[40]

Mevissen TET, Kulathu Y, Mulder MPC, et al. Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature. 2016; 538(7625): 402-405.

[41]

Fiil BK, Gyrd-Hansen M. The Met1-linked ubiquitin machinery in inflammation and infection. Cell Death Differ. 2021; 28(2): 557-569.

[42]

Licchesi JD, Mieszczanek J, Mevissen TE, et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID’s specificity for atypical ubiquitin chains. Nat Struct Mol Biol. 2011; 19(1): 62-71.

[43]

Elliott PR, Leske D, Wagstaff J, et al. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Cell Rep. 2021; 37(1): 109777.

[44]

Guan T, Li M, Song Y, et al. Phosphorylation of USP29 by CDK1 governs TWIST1 stability and oncogenic functions. Adv Sci (Weinh). 2023; 10(11): e2205873.

[45]

Huang OW, Ma X, Yin J, et al. Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat Struct Mol Biol. 2012; 19(2): 171-175.

[46]

Wu L, Zhou Z, Yu Y, et al. Phosphorylation-dependent deubiquitinase OTUD3 regulates YY1 stability and promotes colorectal cancer progression. Cell Death Dis. 2024; 15(2): 137.

[47]

Zhao Y, Mudge MC, Soll JM, et al. OTUD4 is a phospho-activated K63 deubiquitinase that regulates MyD88-dependent signaling. Mol Cell. 2018; 69(3): 505-516.

[48]

Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014; 510(7505): 370-375.

[49]

Park J, Shin SC, Jin KS, et al. USP35 dimer prevents its degradation by E3 ligase CHIP through auto-deubiquitinating activity. Cell Mol Life Sci. 2023; 80(4): 112.

[50]

Chen H, Chen X, Yang L, et al. TRIM54 alleviates inflammation and apoptosis by stabilizing YOD1 in rat tendon-derived stem cells. J Biol Chem. 2024; 300(1): 105510.

[51]

Zhang Z, Fang X, Wu X, et al. Acetylation-dependent deubiquitinase OTUD3 controls MAVS activation in innate antiviral immunity. Mol Cell. 2020; 79(2): 304-319.

[52]

Kulathu Y, Garcia FJ, Mevissen TE, et al. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun. 2013; 4: 1569.

[53]

Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science. 2016; 351(6274): 725-728.

[54]

Totsukawa G, Kaneko Y, Uchiyama K, Toh H, Tamura K, Kondo H. VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase-mediated membrane fusion. EMBO J. 2011; 30(17): 3581-3593.

[55]

Zhang W, Qian W, Gu J, et al. Mutant p53 driven-LINC00857, a protein scaffold between FOXM1 and deubiquitinase OTUB1, promotes the metastasis of pancreatic cancer. Cancer Lett. 2023; 552: 215976.

[56]

Elliott PR, Nielsen SV, Marco-Casanova P, et al. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell. 2014; 54(3): 335-348.

[57]

Wiener R, DiBello AT, Lombardi PM, et al. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol. 2013; 20(9): 1033-1039.

[58]

Song H, Zhao C, Yu Z, et al. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun. 2020; 11(1): 6042.

[59]

Li H, Lim KS, Kim H, et al. Allosteric activation of ubiquitin-specific proteases by β-propeller proteins UAF1 and WDR20. Mol Cell. 2016; 63(2): 249-260.

[60]

Ng VH, Spencer Z, Neitzel LR, et al. The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling. Nat Commun. 2023; 14(1): 6173.

[61]

Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst. 2009; 5(12): 1797-1808.

[62]

Liu F, Zhao Y, Pei Y, Lian F, Lin H. Role of the NF-kB signalling pathway in heterotopic ossification: biological and therapeutic significance. Cell Commun Signal. 2024; 22(1): 159.

[63]

Morgan D, Garg M, Tergaonkar V, Tan SY, Sethi G. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2020; 1874(2): 188449.

[64]

Balaji S, Ahmed M, Lorence E, Yan F, Nomie K, Wang M. NF-κB signaling and its relevance to the treatment of mantle cell lymphoma. J Hematol Oncol. 2018; 11(1): 83.

[65]

Metzig M, Nickles D, Falschlehner C, et al. An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer. 2011; 129(3): 607-618.

[66]

Mialki RK, Zhao J, Wei J, Mallampalli DF, Zhao Y. Overexpression of USP14 protease reduces I-κB protein levels and increases cytokine release in lung epithelial cells. J Biol Chem. 2013; 288(22): 15437-15441.

[67]

Liu N, Kong T, Chen X, et al. Ubiquitin-specific protease 14 regulates LPS-induced inflammation by increasing ERK1/2 phosphorylation and NF-κB activation. Mol Cell Biochem. 2017; 431(1-2): 87-96.

[68]

Yu JS, Huang T, Zhang Y, et al. Substrate-specific recognition of IKKs mediated by USP16 facilitates autoimmune inflammation. Sci Adv. 2021; 7(3): eabc4009.

[69]

Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol Cell. 2014; 54(3): 349-361.

[70]

Xiao N, Li H, Luo J, et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J. 2012; 441(3): 979-986.

[71]

Schimmack G, Schorpp K, Kutzner K, et al. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB. eLife. 2017; 6: e22416.

[72]

Xie Z, Wu Y, Shen Y, et al. USP7 inhibits osteoclastogenesis via dual effects of attenuating TRAF6/TAK1 axis and stimulating STING signaling. Aging Dis. 2023; 14(6): 2267-2283.

[73]

Sato Y, Goto E, Shibata Y, et al. Structures of CYLD USP with Met1-or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol. 2015; 22(3): 222-229.

[74]

Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006; 22(2): 245-257.

[75]

Lork M, Verhelst K, Beyaert RCYLD. A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ. 2017; 24(7): 1172-1183.

[76]

Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature. 2003; 424(6950): 793-796.

[77]

Wang Z, Zhang Y, Shen Y, et al. Unlocking hepatocellular carcinoma aggression: sTAMBPL1-mediated TRAF2 deubiquitination activates WNT/PI3K/NF-kb signaling pathway. Biol Direct. 2024; 19(1): 18.

[78]

Spel L, Nieuwenhuis J, Haarsma R, et al. Nedd4-binding protein 1 and TNFAIP3-interacting protein 1 control MHC-1 display in neuroblastoma. Cancer Res. 2018; 78(23): 6621-6631.

[79]

Hu H, Brittain GC, Chang JH, et al. OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature. 2013; 494(7437): 371-374.

[80]

Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016; 48(1): 67-73.

[81]

Heyninck K, De Valck D, Vanden Berghe W, et al. The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP-or TRAF2-mediated transactivation signal and directly binds to a novel NF-kappaB-inhibiting protein ABIN. J Cell Biol. 1999; 145(7): 1471-1482.

[82]

Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancera. 2022; 1877(3): 188736.

[83]

Li W, Cui K, Prochownik EV, Li Y. The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell Death Dis. 2018; 9(5): 482.

[84]

Zhang H, Han Y, Xiao W, et al. USP4 promotes the proliferation, migration, and invasion of esophageal squamous cell carcinoma by targeting TAK1. Cell Death Dis. 2023; 14(11): 730.

[85]

Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancera. 2017; 1868(2): 456-483.

[86]

Lei S, He Z, Chen T, et al. Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway. J Exp Clin Cancer Res. 2019; 38(1): 470.

[87]

Chen Y, Qiang Y, Fan J, et al. Aggresome formation promotes ASK1/JNK signaling activation and stemness maintenance in ovarian cancer. Nat Commun. 2024; 15(1): 1321.

[88]

Lou B, Ma G, Yu X, et al. Deubiquitinase OTUD5 promotes hepatitis B virus replication by removing K48-linked ubiquitination of HBV core/precore and upregulates HNF4α expressions by inhibiting the ERK1/2/mitogen-activated protein kinase pathway. Cell Mol Life Sci. 2023; 80(11): 336.

[89]

Xuan NT, Trung DM, Minh NN, et al. Regulation of p38MAPK-mediated dendritic cell functions by the deubiquitylase otubain 1. Hla. 2019; 93(6): 462-470.

[90]

Sun H, Ou B, Zhao S, et al. USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway. EBioMedicine. 2019; 48: 236-247.

[91]

Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol. 2022; 85: 69-94.

[92]

Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019; 59: 125-132.

[93]

Sun H, Meng Y, Yao L, et al. Ubiquitin-specific protease 22 controls melanoma metastasis and vulnerability to ferroptosis through targeting SIRT1/PTEN/PI3K signaling. MedComm. 2024; 5(8): e684.

[94]

Zhang J, Zhang P, Wei Y, et al. Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol. 2013; 15(12): 1486-1494.

[95]

Sacco JJ, Yau TY, Darling S, et al. The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells. Oncogene. 2014; 33(33): 4265-4272.

[96]

Yang WL, Jin G, Li CF, et al. Cycles of ubiquitination and deubiquitination critically regulate growth factor-mediated activation of Akt signaling. Sci Signal. 2013; 6(257): ra3.

[97]

Fan G, Wang F, Chen Y, et al. The deubiquitinase OTUD1 noncanonically suppresses Akt activation through its N-terminal intrinsically disordered region. Cell Rep. 2023; 42(1): 111916.

[98]

Zhang J, Zha Y, Jiao Y, Li Y, Zhang S. Protective role of cezanne in doxorubicin-induced cardiotoxicity by inhibiting autophagy, apoptosis and oxidative stress. Toxicology. 2023; 485: 153426.

[99]

Goldbraikh D, Neufeld D, Eid-Mutlak Y, et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep. 2020; 21(4): e48791.

[100]

Cho JH, Kim K, Kim SA, et al. Deubiquitinase OTUD5 is a positive regulator of mTORC1 and mTORC2 signaling pathways. Cell Death Differ. 2021; 28(3): 900-914.

[101]

Hertel A, Alves LM, Dutz H, et al. USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction. Cell Rep. 2022; 41(10): 111653.

[102]

Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020; 13(1): 165.

[103]

Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017; 169(6): 985-999.

[104]

Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022; 91: 571-598.

[105]

Ma X, Qi W, Pan H, Yang F, Deng J. Overexpression of USP5 contributes to tumorigenesis in non-small cell lung cancer via the stabilization of β-catenin protein. Am J Cancer Res. 2018; 8(11): 2284-2295.

[106]

Yang B, Zhang S, Wang Z, et al. Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth. Oncotarget. 2016; 7(48): 79515-79525.

[107]

MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009; 17(1): 9-26.

[108]

Chou CK, Chang YT, Korinek M, et al. The regulations of deubiquitinase USP15 and its pathophysiological mechanisms in diseases. Int J Mol Sci. 2017; 18(3): 483.

[109]

Wang W, Li M, Ponnusamy S, et al. ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers. Nat Commun. 2020; 11(1): 3965.

[110]

Lee Y, Piao HL, Kim J. OTUD7B activates Wnt signaling pathway through the interaction with LEF1. Biomolecules. 2023; 13(6).

[111]

Nakamura BN, Glazier A, Kattah MG, et al. A20 regulates canonical wnt-signaling through an interaction with RIPK4. PLoS One. 2018; 13(5): e0195893.

[112]

Li FL, Guan KL. The two sides of Hippo pathway in cancer. Semin Cancer Biol. 2022; 85: 33-42.

[113]

Yan C, Yang H, Su P, et al. OTUB1 suppresses Hippo signaling via modulating YAP protein in gastric cancer. Oncogene. 2022; 41(48): 5186-5198.

[114]

Zhang Z, Du J, Wang S, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol Cell. 2019; 73(1): 7-21.

[115]

Liu D, Li Q, Zang Y, et al. USP1 modulates hepatocellular carcinoma progression via the Hippo/TAZ axis. Cell Death Dis. 2023; 14(4): 264.

[116]

Tian Z, Xu C, He W, et al. The deubiquitinating enzyme USP19 facilitates hepatocellular carcinoma progression through stabilizing YAP. Cancer Lett. 2023; 577: 216439.

[117]

Kim Y, Kim W, Song Y, et al. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Nat Acad Sci USA. 2017; 114(18): 4691-4696.

[118]

Zhu C, Ji X, Zhang H, et al. Deubiquitylase USP9X suppresses tumorigenesis by stabilizing large tumor suppressor kinase 2 (LATS2) in the Hippo pathway. J Biol Chem. 2018; 293(4): 1178-1191.

[119]

Li L, Liu T, Li Y, et al. The deubiquitinase USP9X promotes tumor cell survival and confers chemoresistance through YAP1 stabilization. Oncogene. 2018; 37(18): 2422-2431.

[120]

Wang D, Zhang Y, Xu X, et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021; 12(1): 2674.

[121]

Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022; 21(1): 104.

[122]

Shi X, Yang J, Deng S, et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol. 2022; 15(1): 135.

[123]

Liu S, González-Prieto R, Zhang M, et al. Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis. Clin Cancer Res. 2020; 26(6): 1460-1473.

[124]

Eichhorn PJ, Rodón L, Gonzàlez-Juncà A, et al. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med. 2012; 18(3): 429-435.

[125]

Huang Z, Shen S, Wang M, et al. Mouse endothelial OTUD1 promotes angiotensin II-induced vascular remodeling by deubiquitinating SMAD3. EMBO Rep. 2023; 24(3): e56135.

[126]

Zhang Z, Fan Y, Xie F, et al. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun. 2017; 8(1): 2116.

[127]

Kit Leng Lui S, Iyengar PV, Jaynes P, et al. USP26 regulates TGF-β signaling by deubiquitinating and stabilizing SMAD7. EMBO Rep. 2017; 18(5): 797-808.

[128]

Wu Y, Yu X, Yi X, et al. Aberrant phosphorylation of SMAD4 Thr277-mediated USP9x-SMAD4 interaction by free fatty acids promotes breast cancer metastasis. Cancer Res. 2017; 77(6): 1383-1394.

[129]

Dupont S, Mamidi A, Cordenonsi M, et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell. 2009; 136(1): 123-135.

[130]

Bian S, Ni W, Zhou L, et al. Ubiquitin-specific protease 1 facilitates hepatocellular carcinoma progression by modulating mitochondrial fission and metabolic reprogramming via cyclin-dependent kinase 5 stabilization. Cell Death Differ. 2024; 31(9): 1202-1218.

[131]

Raimondi M, Cesselli D, Di Loreto C, La Marra F, Schneider C, Demarchi F. USP1 (ubiquitin specific peptidase 1) targets ULK1 and regulates its cellular compartmentalization and autophagy. Autophagy. 2019; 15(4): 613-630.

[132]

Ma L, Lin K, Chang G, et al. Aberrant activation of β-catenin signaling drives glioma tumorigenesis via USP1-mediated stabilization of EZH2. Cancer Res. 2019; 79(1): 72-85.

[133]

Guervilly JH, Renaud E, Takata M, Rosselli F. USP1 deubiquitinase maintains phosphorylated CHK1 by limiting its DDB1-dependent degradation. Hum Mol Genet. 2011; 20(11): 2171-2181.

[134]

Nijman SM, Huang TT, Dirac AM, et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005; 17(3): 331-339.

[135]

Huang TT, Nijman SM, Mirchandani KD, et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 2006; 8(4): 339-347.

[136]

Zhao Y, Wang X, Wang Q, et al. USP2a supports metastasis by tuning TGF-β signaling. Cell Rep. 2018; 22(9): 2442-2454.

[137]

Kuang Z, Liu X, Zhang N, et al. USP2 promotes tumor immune evasion via deubiquitination and stabilization of PD-L1. Cell Death Differ. 2023; 30(10): 2249-2264.

[138]

Benassi B, Flavin R, Marchionni L, et al. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov. 2012; 2(3): 236-247.

[139]

Li T, Yan B, Ma Y, et al. Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis. 2018; 9(2): 148.

[140]

Qiu C, Liu Y, Mei Y, et al. Correction for: ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-β signaling-induced epithelial-mesenchymal transition. Aging. 2019; 11(10): 3408-3409.

[141]

Yun SI, Kim HH, Yoon JH, et al. Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer. Mol Oncol. 2015; 9(9): 1834-1851.

[142]

Wang S, Juan J, Zhang Z, et al. Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis. 2017; 8(9): e3058.

[143]

Xue S, Wu W, Wang Z, et al. USP5 promotes metastasis in non-small cell lung cancer by inducing epithelial-mesenchymal transition via Wnt/β-Catenin pathway. Front Pharmacol. 2020; 11: 668.

[144]

Xu X, Huang A, Cui X, et al. Ubiquitin specific peptidase 5 regulates colorectal cancer cell growth by stabilizing Tu translation elongation factor. Theranostics. 2019; 9(14): 4208-4220.

[145]

Yan B, Guo J, Wang Z, et al. The ubiquitin-specific protease 5 mediated deubiquitination of LSH links metabolic regulation of ferroptosis to hepatocellular carcinoma progression. MedComm. 2023; 4(4): e337.

[146]

Li J, Wang Y, Luo Y, et al. USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity. Nat Commun. 2022; 13(1): 7799.

[147]

Pan J, Qiao Y, Chen C, et al. USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1. Cell Death Dis. 2021; 12(11): 1051.

[148]

Huang W, Liu X, Zhang Y, et al. USP5 promotes breast cancer cell proliferation and metastasis by stabilizing HIF2α. J Cell Physiol. 2022; 237(4): 2211-2219.

[149]

He Y, Jiang S, Zhong Y, et al. USP7 promotes non-small-cell lung cancer cell glycolysis and survival by stabilizing and activating c-Abl. Clin Transl Med. 2023; 13(12): e1509.

[150]

Cai JB, Shi GM, Dong ZR, et al. Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology (Baltimore, Md). 2015; 61(5): 1603-1614.

[151]

Shao ZY, Yang WD, Qiu H, et al. The role of USP7-YY1 interaction in promoting colorectal cancer growth and metastasis. Cell Death Dis. 2024; 15(5): 347.

[152]

Qi SM, Cheng G, Cheng XD, et al. Targeting USP7-mediated deubiquitination of MDM2/MDMX-p53 pathway for cancer therapy: are we there yet?. Front Cell Dev Biol. 2020; 8: 233.

[153]

Wang Z, Kang W, Li O, et al. Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing. Acta Pharm Sin B. 2021; 11(3): 694-707.

[154]

Dai X, Lu L, Deng S, et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer. Theranostics. 2020; 10(20): 9332-9347.

[155]

Haq S, Sarodaya N, Karapurkar JK, et al. CYLD destabilizes NoxO1 protein by promoting ubiquitination and regulates prostate cancer progression. Cancer Lett. 2022; 525: 146-157.

[156]

Tauriello DV, Haegebarth A, Kuper I, et al. Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell. 2010; 37(5): 607-619.

[157]

Fernández-Majada V, Welz PS, Ermolaeva MA, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016; 7: 12508.

[158]

Miliani de Marval P, Lutfeali S, Jin JY, Leshin B, Selim MA, Zhang JY. CYLD inhibits tumorigenesis and metastasis by blocking JNK/AP1 signaling at multiple levels. Cancer Prev Res (Phila). 2011; 4(6): 851-859.

[159]

Sun Q, Zhang J, Li X, et al. The ubiquitin-specific protease 8 antagonizes melatonin-induced endocytic degradation of MT(1) receptor to promote lung adenocarcinoma growth. J Adv Res. 2022; 41: 1-12.

[160]

Tang J, Long G, Hu K, et al. Targeting USP8 inhibits O-GlcNAcylation of SLC7A11 to promote ferroptosis of hepatocellular carcinoma via stabilization of OGT. Adv Sci (Weinh). 2023; 10(33): e2302953.

[161]

Peng H, Yang F, Hu Q, et al. The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Autophagy. 2020; 16(4): 698-708.

[162]

Potu H, Peterson LF, Kandarpa M, et al. Usp9x regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma. Nat Commun. 2017; 8: 14449.

[163]

Schwickart M, Huang X, Lill JR, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 2010; 463(7277): 103-107.

[164]

Engel K, Rudelius M, Slawska J, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016; 8(8): 851-862.

[165]

Khan OM, Carvalho J, Spencer-Dene B, et al. The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J Clin Invest. 2018; 128(4): 1326-1337.

[166]

McGarry E, Gaboriau D, Rainey MD, Restuccia U, Bachi A, Santocanale C. The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-Phase. Cancer Res. 2016; 76(8): 2384-2393.

[167]

Wang X, Xia S, Li H, et al. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 2020; 27(6): 1747-1764.

[168]

Dwane L, O’Connor AE, Das S, et al. A functional genomic screen identifies the deubiquitinase USP11 as a novel transcriptional regulator of ERα in breast cancer. Cancer Res. 2020; 80(22): 5076-5088.

[169]

Qiao L, Hu W, Li L, Chen X, Liu L, Wang J. USP11 promotes glycolysis by regulating HIF-1α stability in hepatocellular carcinoma. J Cell Mol Med. 2024; 28(2): e18017.

[170]

Ting X, Xia L, Yang J, et al. USP11 acts as a histone deubiquitinase functioning in chromatin reorganization during DNA repair. Nucleic Acids Res. 2019; 47(18): 9721-9740.

[171]

Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005; 123(7): 1213-1226.

[172]

Shah P, Qiang L, Yang S, Soltani K, He YY. Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget. 2017; 8(57): 96522-96535.

[173]

Li H, Roy M, Liang L, et al. Deubiquitylase USP12 induces pro-survival autophagy and bortezomib resistance in multiple myeloma by stabilizing HMGB1. Oncogene. 2022; 41(9): 1298-1308.

[174]

Burska UL, Harle VJ, Coffey K, et al. Deubiquitinating enzyme Usp12 is a novel co-activator of the androgen receptor. J Biol Chem. 2013; 288(45): 32641-32650.

[175]

McClurg UL, Chit N, Azizyan M, et al. Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene. 2018; 37(34): 4679-4691.

[176]

Fang X, Zhou W, Wu Q, et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med. 2017; 214(1): 245-267.

[177]

Zhang S, Zhang M, Jing Y, et al. Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 2018; 9(1): 215.

[178]

Li Y, Luo K, Yin Y, et al. USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response. Nat Commun. 2017; 8: 15752.

[179]

Han C, Yang L, Choi HH, et al. Amplification of USP13 drives ovarian cancer metabolism. Nat Commun. 2016; 7: 13525.

[180]

Jung H, Kim BG, Han WH, et al. Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis. 2013; 2(8): e64.

[181]

Zhang B, Li M, Huang P, Guan XY, Zhu YH. Overexpression of ubiquitin specific peptidase 14 predicts unfavorable prognosis in esophageal squamous cell carcinoma. Thorac Cancer. 2017; 8(4): 344-349.

[182]

Song C, Ma R, Yang X, Pang S. The deubiquitinating enzyme USP14 regulates leukemic chemotherapy drugs-induced cell apoptosis by suppressing ubiquitination of aurora kinase B. Cell Physiol Biochem. 2017; 42(3): 965-973.

[183]

Liao Y, Xia X, Liu N, et al. Growth arrest and apoptosis induction in androgen receptor-positive human breast cancer cells by inhibition of USP14-mediated androgen receptor deubiquitination. Oncogene. 2018; 37(14): 1896-1910.

[184]

Zhang X, Geng L, Tang Y, et al. Ubiquitin-specific protease 14 targets PFKL-mediated glycolysis to promote the proliferation and migration of oral squamous cell carcinoma. J Transl Med. 2024; 22(1): 193.

[185]

Zhou L, Jiang H, Du J, et al. USP15 inhibits multiple myeloma cell apoptosis through activating a feedback loop with the transcription factor NF-κBp65. Exp Mol Med. 2018; 50(11): 1-12.

[186]

Zou Q, Jin J, Hu H, et al. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat Immunol. 2014; 15(6): 562-570.

[187]

Peng Y, Liao Q, Tan W, et al. The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors. Nat Commun. 2019; 10(1): 1224.

[188]

Fielding AB, Concannon M, Darling S, et al. The deubiquitylase USP15 regulates topoisomerase II alpha to maintain genome integrity. Oncogene. 2018; 37(17): 2326-2342.

[189]

Villeneuve NF, Tian W, Wu T, et al. USP15 negatively regulates Nrf2 through deubiquitination of Keap1. Mol Cell. 2013; 51(1): 68-79.

[190]

Liu WT, Huang KY, Lu MC, et al. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene. 2017; 36(19): 2715-2723.

[191]

Fukushima T, Yoshihara H, Furuta H, et al. USP15 attenuates IGF-I signaling by antagonizing Nedd4-induced IRS-2 ubiquitination. Biochem Biophys Res Commun. 2017; 484(3): 522-528.

[192]

Pereg Y, Liu BY, O’Rourke KM, et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol. 2010; 12(4): 400-406.

[193]

Hernández-Pérez S, Cabrera E, Salido E, et al. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene. 2017; 36(33): 4802-4809.

[194]

Lin Y, Wang Y, Shi Q, et al. Stabilization of the transcription factors slug and twist by the deubiquitinase dub3 is a key requirement for tumor metastasis. Oncotarget. 2017; 8(43): 75127-75140.

[195]

Wu Y, Wang Y, Lin Y, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017; 8: 14228.

[196]

Mehić M, de Sa VK, Hebestreit S, Heldin CH, Heldin P. The deubiquitinating enzymes USP4 and USP17 target hyaluronan synthase 2 and differentially affect its function. Oncogenesis. 2017; 6(6): e348.

[197]

Song C, Liu W, Li J. USP17 is upregulated in osteosarcoma and promotes cell proliferation, metastasis, and epithelial-mesenchymal transition through stabilizing SMAD4. Tumour Biol. 2017; 39(7): 1010428317717138.

[198]

Jin X, Yan Y, Wang D, et al. DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol Cell. 2018; 71(4): 592-605.

[199]

Song C, Peng J, Wei Y, et al. USP18 promotes tumor metastasis in esophageal squamous cell carcinomas via deubiquitinating ZEB1. Exp Cell Res. 2021; 409(1): 112884.

[200]

Guo Y, Dolinko AV, Chinyengetere F, et al. Blockade of the ubiquitin protease UBP43 destabilizes transcription factor PML/RARα and inhibits the growth of acute promyelocytic leukemia. Cancer Res. 2010; 70(23): 9875-9885.

[201]

Cai J, Liu T, Jiang X, Guo C, Liu A, Xiao X. Downregulation of USP18 inhibits growth and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma cells by suppressing BCL2L1. Exp Cell Res. 2017; 358(2): 315-322.

[202]

Mustachio LM, Lu Y, Tafe LJ, et al. Deubiquitinase USP18 loss mislocalizes and destabilizes KRAS in lung cancer. Mol Cancer Res. 2017; 15(7): 905-914.

[203]

Wu C, Luo K, Zhao F, et al. USP20 positively regulates tumorigenesis and chemoresistance through β-catenin stabilization. Cell Death Differ. 2018; 25(10): 1855-1869.

[204]

Li W, Shen M, Jiang YZ, et al. Deubiquitinase USP20 promotes breast cancer metastasis by stabilizing SNAI2. Genes Dev. 2020; 34(19-20): 1310-1315.

[205]

Wang C, Yang C, Ji J, et al. Deubiquitinating enzyme USP20 is a positive regulator of Claspin and suppresses the malignant characteristics of gastric cancer cells. Int J Oncol. 2017; 50(4): 1136-1146.

[206]

Lin Z, Tan C, Qiu Q, et al. Ubiquitin-specific protease 22 is a deubiquitinase of CCNB1. Cell Discov. 2015; 1: 15028.

[207]

Gennaro VJ, Stanek TJ, Peck AR, et al. Control of CCND1 ubiquitylation by the catalytic SAGA subunit USP22 is essential for cell cycle progression through G1 in cancer cells. Proc Nat Acad Sci USA. 2018; 115(40): E9298-e9307.

[208]

Kim D, Hong A, Park HI, et al. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol. 2017; 232(12): 3664-3676.

[209]

Atanassov BS, Dent SY. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep. 2011; 12(9): 924-930.

[210]

Li C, Irrazabal T, So CC, et al. The H2B deubiquitinase Usp22 promotes antibody class switch recombination by facilitating non-homologous end joining. Nat Commun. 2018; 9(1): 1006.

[211]

Zhang H, Han B, Lu H, et al. USP22 promotes resistance to EGFR-TKIs by preventing ubiquitination-mediated EGFR degradation in EGFR-mutant lung adenocarcinoma. Cancer Lett. 2018; 433: 186-198.

[212]

Zhou A, Lin K, Zhang S, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016; 18(9): 954-966.

[213]

Wang Y, Sun Q, Mu N, et al. The deubiquitinase USP22 regulates PD-L1 degradation in human cancer cells. Cell Commun Signal. 2020; 18(1): 112.

[214]

Ning Z, Guo X, Liu X, et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat Commun. 2022; 13(1): 2187.

[215]

Melo-Cardenas J, Xu Y, Wei J, et al. USP22 deficiency leads to myeloid leukemia upon oncogenic Kras activation through a PU.1-dependent mechanism. Blood. 2018; 132(4): 423-434.

[216]

Nelson JK, Thin MZ, Evan T, et al. USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat Commun. 2022; 13(1): 2070.

[217]

Dirac AM, Bernards R. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res. 2010; 8(6): 844-854.

[218]

Li L, Zhou H, Zhu R, Liu Z. USP26 promotes esophageal squamous cell carcinoma metastasis through stabilizing Snail. Cancer Lett. 2019; 448: 52-60.

[219]

Dong L, Yu L, Bai C, et al. USP27-mediated Cyclin E stabilization drives cell cycle progression and hepatocellular tumorigenesis. Oncogene. 2018; 37(20): 2702-2713.

[220]

Diefenbacher ME, Popov N, Blake SM, et al. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest. 2014; 124(8): 3407-3418.

[221]

Diefenbacher ME, Chakraborty A, Blake SM, et al. Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer Res. 2015; 75(7): 1181-1186.

[222]

Haq S, Das S, Kim DH, et al. The stability and oncogenic function of LIN28A are regulated by USP28. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(3): 599-610.

[223]

Wu Y, Wang Y, Yang XH, et al. The deubiquitinase USP28 stabilizes LSD1 and confers stem-cell-like traits to breast cancer cells. Cell Rep. 2013; 5(1): 224-236.

[224]

Fong CS, Mazo G, Das T, et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife. 2016; 5: e16270.

[225]

Wu Y, Zhang Y, Wang D, et al. USP29 enhances chemotherapy-induced stemness in non-small cell lung cancer via stabilizing Snail1 in response to oxidative stress. Cell Death Dis. 2020; 11(9): 796.

[226]

Martín Y, Cabrera E, Amoedo H, Hernández-Pérez S, Domínguez-Kelly R, Freire R. USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene. 2015; 34(8): 1058-1063.

[227]

Liu J, Chung HJ, Vogt M, et al. JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J. 2011; 30(5): 846-858.

[228]

Gu L, Zhu Y, Lin X, et al. Amplification of glyceronephosphate O-acyltransferase and recruitment of USP30 stabilize DRP1 to promote hepatocarcinogenesis. Cancer Res. 2018; 78(20): 5808-5819.

[229]

Liang JR, Martinez A, Lane JD, Mayor U, Clague MJ. Urbé S. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep. 2015; 16(5): 618-627.

[230]

Wang L, Wang J, Ma X, et al. USP35 promotes HCC development by stabilizing ABHD17C and activating the PI3K/AKT signaling pathway. Cell Death Discov. 2023; 9(1): 421.

[231]

Tang Z, Jiang W, Mao M, Zhao J, Chen J, Cheng N. Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin Transl Med. 2021; 11(4): e390.

[232]

Liu C, Wang L, Chen W, et al. USP35 activated by miR let-7a inhibits cell proliferation and NF-κB activation through stabilization of ABIN-2. Oncotarget. 2015; 6(29): 27891-22906.

[233]

Sun XX, He X, Yin L, Komada M, Sears RC, Dai MS. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Nat Acad Sci USA. 2015; 112(12): 3734-3739.

[234]

Fraile JM, Campos-Iglesias D, Rodríguez F, et al. Loss of the deubiquitinase USP36 destabilizes the RNA helicase DHX33 and causes preimplantation lethality in mice. J Biol Chem. 2018; 293(6): 2183-2194.

[235]

Taillebourg E, Gregoire I, Viargues P, et al. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy. 2012; 8(5): 767-779.

[236]

Zhuang T, Zhang S, Liu D, et al. USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα. Exp Clin Cancer Res. 2024; 43(1): 249.

[237]

Pan J, Deng Q, Jiang C, et al. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene. 2015; 34(30): 3957-3967.

[238]

Yang WC, Shih HM. The deubiquitinating enzyme USP37 regulates the oncogenic fusion protein PLZF/RARA stability. Oncogene. 2013; 32(43): 5167-5175.

[239]

Qin T, Li B, Feng X, et al. Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity. Exp Clin Cancer Res. 2018; 37(1): 287.

[240]

Wu L, Zhao N, Zhou Z, et al. PLAGL2 promotes the proliferation and migration of gastric cancer cells via USP37-mediated deubiquitination of Snail1. Theranostics. 2021; 11(2): 700-714.

[241]

Kim JO, Kim SR, Lim KH, et al. Deubiquitinating enzyme USP37 regulating oncogenic function of 14-3-3γ. Oncotarget. 2015; 6(34): 36551-36576.

[242]

Das CM, Taylor P, Gireud M, et al. The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene. 2016; 35(47): 6153-6154.

[243]

Zhang T, Su F, Wang B, et al. Ubiquitin specific peptidase 38 epigenetically regulates KLF transcription factor 5 to augment malignant progression of lung adenocarcinoma. Oncogene. 2024; 43(16): 1190-1202.

[244]

Liu W, Zhang Q, Fang Y, Wang Y. The deubiquitinase USP38 affects cellular functions through interacting with LSD1. Biol Res. 2018; 51(1): 53.

[245]

Li X, Yuan J, Song C, et al. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Differ. 2021; 28(8): 2315-2332.

[246]

Wang W, Lei Y, Zhang G, et al. USP39 stabilizes β-catenin by deubiquitination and suppressing E3 ligase TRIM26 pre-mRNA maturation to promote HCC progression. Cell Death Dis. 2023; 14(1): 63.

[247]

Li S, Wang D, Zhao J, Weathington NM, Shang D, Zhao Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions. FASEB J. 2018; 32(1): 230-242.

[248]

Zhou A, Lin K, Zhang S, et al. Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep. 2017; 18(8): 1318-1330.

[249]

Baietti MF, Simicek M, Abbasi Asbagh L, et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol Med. 2016; 8(3): 288-303.

[250]

Zhou H, Liu Y, Zhu R, et al. OTUB1 promotes esophageal squamous cell carcinoma metastasis through modulating Snail stability. Oncogene. 2018; 37(25): 3356-3368.

[251]

Ye D, Wang S, Wang X, Lin Y, Huang Y, Chi P. Overexpression of OTU domain-containing ubiquitin aldehyde-binding protein 1 exacerbates colorectal cancer malignancy by inhibiting protein degradation of β-Catenin via ubiquitin-proteasome pathway. Bioengineered. 2022; 13(4): 9106-9116.

[252]

Iglesias-Gato D, Chuan YC, Jiang N, et al. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol Cancer. 2015; 14(1): 8.

[253]

Wang J, Liu Y, Wu D, et al. OTUB1 targets CHK1 for deubiquitination and stabilization to facilitate lung cancer progression and radioresistance. Int J Radiat Oncol Biol Phys. 2024; 119(4): 1222-1233.

[254]

Xu Y, Xu M, Tong J, et al. Targeting the Otub1/c-Maf axis for the treatment of multiple myeloma. Blood. 2021; 137(11): 1478-1490.

[255]

Liu T, Jiang L, Tavana O, Gu W. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 2019; 79(8): 1913-1924.

[256]

Zhao Y, Ruan J, Li Z, et al. OTUB1 inhibits breast cancer by non-canonically stabilizing CCN6. Clin Transl Med. 2023; 13(8): e1385.

[257]

Lee SG, Woo SM, Seo SU, et al. Non-canonical deubiquitination of OTUB1 induces IFNγ-mediated cell cycle arrest via regulation of p27 stability. Oncogene. 2024; 43(24): 1852-1860.

[258]

Seo SU, Woo SM, Kim S, et al. Inhibition of cathepsin K sensitizes oxaliplatin-induced apoptotic cell death by Bax upregulation through OTUB1-mediated p53 stabilization in vitro and in vivo. Oncogene. 2022; 41(4): 550-559.

[259]

Li J, Cheng D, Zhu M, et al. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics. 2019; 9(1): 179-195.

[260]

Hu G, Yang J, Zhang H, Huang Z, Yang H. OTUB2 promotes proliferation and migration of hepatocellular carcinoma cells by PJA1 deubiquitylation. Cell Mol Bioeng. 2022; 15(3): 281-292.

[261]

Gu ZL, Huang J, Zhen LL. Knockdown of otubain 2 inhibits liver cancer cell growth by suppressing NF-κB signaling. Kaohsiung J Med Sci. 2020; 36(6): 399-404.

[262]

Liu L, Cheng H, Ji M, et al. OTUB2 regulates YAP1/TAZ to promotes the progression of esophageal squamous cell carcinoma. Biol Proced Online. 2022; 24(1): 10.

[263]

Wan Q, Chen Q, Cai D, Zhao Y, Wu X. OTUB2 promotes homologous recombination repair through stimulating Rad51 expression in endometrial cancer. Cell Transplant. 2020; 29: 963689720931433.

[264]

Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022; 41(1): 46-56.

[265]

Chang W, Luo Q, Wu X, et al. OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis. Cell Rep. 2022; 41(4): 111561.

[266]

Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H, Nakada S. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell. 2014; 53(4): 617-630.

[267]

Nan Y, Wu X, Luo Q, et al. OTUB2 silencing promotes ovarian cancer via mitochondrial metabolic reprogramming and can be synthetically targeted by CA9 inhibition. Proc Nat Acad Sci USA. 2024; 121(19): e2315348121.

[268]

Lin H, Han Y, Sang Y, et al. OTUD1 enhances gastric cancer aggressiveness by deubiquitinating EBV-encoded protein BALF1 to stabilize the apoptosis inhibitor Bcl-2. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(5): 167132.

[269]

Oikawa D, Gi M, Kosako H, et al. OTUD1 deubiquitinase regulates NF-κB-and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways. Cell Death Dis. 2022; 13(8): 694.

[270]

Grattarola M, Cucci MA, Roetto A, Dianzani C, Barrera G, Pizzimenti S. Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radical Biol Med. 2021; 174: 202-210.

[271]

Li JJ, Wang JH, Tian T, et al. The liver microenvironment orchestrates FGL1-mediated immune escape and progression of metastatic colorectal cancer. Nat Commun. 2023; 14(1): 6690.

[272]

Ma X, Wang L, Shi G, Sun S. The deubiquitinase OTUD1 inhibits non-small cell lung cancer progression by deubiquitinating and stabilizing KLF4. Thoracic Cancer. 2022; 13(5): 761-770.

[273]

Zhang Q, Li J, Chen Z, et al. VE-822 upregulates the deubiquitinase OTUD1 to stabilize FHL1 to inhibit the progression of lung adenocarcinoma. Cell Oncol (Dordr). 2023; 46(4): 1001-1014.

[274]

Luo Q, Wu X, Zhao P, et al. OTUD1 activates caspase-independent and caspase-dependent apoptosis by promoting AIF nuclear translocation and MCL1 degradation. Adv Sci (Weinh). 2021; 8(8): 2002874.

[275]

Wu L, Lin Y, Feng J, et al. The deubiquitinating enzyme OTUD1 antagonizes BH3-mimetic inhibitor induced cell death through regulating the stability of the MCL1 protein. Cancer Cell Int. 2019; 19: 222.

[276]

Liu W, Yan B, Yu H, et al. OTUD1 stabilizes PTEN to inhibit the PI3K/AKT and TNF-alpha/NF-kappaB signaling pathways and sensitize ccRCC to TKIs. Int J Biol Sci. 2022; 18(4): 1401-1414.

[277]

Zhou T, Wu Y, Qian D, et al. OTUD1 chemosensitizes triple-negative breast cancer to doxorubicin by modulating P16 expression. Pathol Res Pract. 2023; 247: 154571.

[278]

Liu H, Zhong L, Lu Y, et al. Deubiquitylase OTUD1 confers Erlotinib sensitivity in non-small cell lung cancer through inhibition of nuclear translocation of YAP1. Cell Death Discov. 2022; 8(1): 403.

[279]

Song J, Liu T, Yin Y, et al. The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity. EMBO Rep. 2021; 22(2): e51162.

[280]

Woo SM, Seo SU, Min KJ, Kwon TK. Melatonin induces apoptotic cell death through Bim stabilization by Sp1-mediated OTUD1 upregulation. J Pineal Res. 2022; 72(1): e12781.

[281]

Han Z, Jia Q, Zhang J, et al. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis. J Exp Clin Cancer Res. 2023; 42(1): 228.

[282]

Park SS, Baek KH. Synergistic effect of YOD1 and USP21 on the Hippo signaling pathway. Cancer Cell Int. 2023; 23(1): 209.

[283]

Pu J, Xu Z, Nian J, et al. M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway. Cell Death Discov. 2021; 7(1): 182.

[284]

Wu Y, Duan Y, Han W, et al. Deubiquitinase YOD1 suppresses tumor progression by stabilizing E3 ligase TRIM33 in head and neck squamous cell carcinoma. Cell Death Dis. 2023; 14(8): 517.

[285]

Ci M, Zhao G, Li C, et al. OTUD4 promotes the progression of glioblastoma by deubiquitinating CDK1 and activating MAPK signaling pathway. Cell Death Dis. 2024; 15(3): 179.

[286]

Gao Y, Tang J, Ma X, et al. OTUD4 regulates metastasis and chemoresistance in melanoma by stabilizing Snail1. J Cell Physiol. 2023; 238(11): 2546-2555.

[287]

Cui X, Shang X, Xie J, et al. Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett. 2023; 575: 216404.

[288]

Li Z, Tian Y, Zong H, et al. Deubiquitinating enzyme OTUD4 stabilizes RBM47 to induce ATF3 transcription: a novel mechanism underlying the restrained malignant properties of ccRCC cells. Apoptosis. 2024; 29(7-8): 1051-1069.

[289]

Di M, Miao J, Pan Q, et al. OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis. J Exp Clin Cancer Res. 2022; 41(1): 328.

[290]

Marchese E, Demehri S. Posttranslational protein modifications as gatekeepers of cancer immunogenicity. J Clin Invest. 2024; 134(10): e180914.

[291]

Wu Z, Qiu M, Guo Y, et al. OTU deubiquitinase 4 is silenced and radiosensitizes non-small cell lung cancer cells via inhibiting DNA repair. Cancer Cell Int. 2019; 19: 99.

[292]

Zhang Y, Fan Y, Jing X, et al. OTUD5-mediated deubiquitination of YAP in macrophage promotes M2 phenotype polarization and favors triple-negative breast cancer progression. Cancer Lett. 2021; 504: 104-115.

[293]

Yang Y, Jia S, Zhu N, et al. OTUD5 promotes the growth of hepatocellular carcinoma by deubiquitinating and stabilizing SLC38A1. Biol Direct. 2024; 19(1): 31.

[294]

Hou T, Dan W, Liu T, et al. Deubiquitinase OTUD5 modulates mTORC1 signaling to promote bladder cancer progression. Cell Death Dis. 2022; 13(9): 778.

[295]

Li X, Lu B, Zhang L, Yang J, Cheng Y, Yan D. Mechanism of OTUD5 in non-small cell lung cancer cell proliferation, invasion, and migration. Bosn J Basic Med Sci. 2022; 22(6): 901-911.

[296]

Li F, Sun Q, Liu K, et al. OTUD5 cooperates with TRIM25 in transcriptional regulation and tumor progression via deubiquitination activity. Nat Commun. 2020; 11(1): 4184.

[297]

de Vivo A, Sanchez A, Yegres J, Kim J, Emly S, Kee Y. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res. 2019; 47(2): 729-746.

[298]

Guo Y, Jiang F, Kong L, et al. OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cell Mol Immunol. 2021; 18(8): 1945-1955.

[299]

Tang J, Wu Z, Tian Z, Chen W, Wu G. OTUD7B stabilizes estrogen receptor α and promotes breast cancer cell proliferation. Cell Death Dis. 2021; 12(6): 534.

[300]

Lin DD, Shen Y, Qiao S, et al. Upregulation of OTUD7B (Cezanne) promotes tumor progression via AKT/VEGF pathway in lung squamous carcinoma and adenocarcinoma. Front Oncol. 2019; 9: 862.

[301]

Chen S, Cai K, Zheng D, et al. RHBDL2 promotes the proliferation, migration, and invasion of pancreatic cancer by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway. Cell Death Dis. 2022; 13(11): 945.

[302]

Bonacci T, Suzuki A, Grant GD, et al. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J. 2018; 37(16): e98701.

[303]

Wang Y, Li J, Zheng H, et al. Cezanne promoted autophagy through PIK3C3 stabilization and PIK3C2A transcription in lung adenocarcinoma. Cell Death Discov. 2023; 9(1): 302.

[304]

Sun C, Bai J, Sun J, et al. OTU deubiquitinase 7B facilitates the hyperthermia-induced inhibition of lung cancer progression through enhancing Smac-mediated mitochondrial dysfunction. Environ Toxicol. 2024; 39(4): 1989-2005.

[305]

Lee E, Ouzounova M, Piranlioglu R, et al. The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene. 2019; 38(4): 469-482.

[306]

Lee JH, Jung SM, Yang KM, et al. A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1. Nat Cell Biol. 2017; 19(10): 1260-1273.

[307]

Ma J, Wang H, Guo S, et al. A20 promotes melanoma progression via the activation of Akt pathway. Cell Death Dis. 2020; 11(9): 794.

[308]

Feng Y, Zhang Y, Cai Y, et al. A20 targets PFKL and glycolysis to inhibit the progression of hepatocellular carcinoma. Cell Death Dis. 2020; 11(2): 89.

[309]

Luo M, Wang X, Wu S, et al. A20 promotes colorectal cancer immune evasion by upregulating STC1 expression to block “eat-me” signal. Signal Transduct Target Ther. 2023; 8(1): 312.

[310]

Chen H, Hu L, Luo Z, et al. A20 suppresses hepatocellular carcinoma proliferation and metastasis through inhibition of Twist1 expression. Mol Cancer. 2015; 14: 186.

[311]

Zhou X, An D, Liu X, Jiang M, Yuan C, Hu J. TNFα induces tolerant production of CXC chemokines in colorectal cancer HCT116 cells via A20 inhibition of ERK signaling. Int Immunopharmacol. 2018; 54: 296-302.

[312]

Wang X, Xiao Y, Dong Y, et al. A20 interacts with mTORC2 to inhibit the mTORC2/Akt/Rac1 signaling axis in hepatocellular carcinoma cells. Cancer Gene Ther. 2023; 30(3): 424-436.

[313]

Damgaard RB, Jolin HE, Allison MED, et al. OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer. Cell Death Differ. 2020; 27(5): 1457-1474.

[314]

Verboom L, Martens A, Priem D, et al. OTULIN prevents liver inflammation and hepatocellular carcinoma by inhibiting FADD-and RIPK1 kinase-mediated hepatocyte apoptosis. Cell Rep. 2020; 30(7): 2237-2247.

[315]

Yan Q, Shi S, Ge Y, Wan S, Li M, Li M. UCHL1 alleviates apoptosis in chondrocytes via upregulation of HIF-1α-mediated mitophagy. Int J Mol Med. 2023; 52(4): 99.

[316]

Brinkmann K, Zigrino P, Witt A, et al. Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Rep. 2013; 3(3): 881-891.

[317]

Li L, Tao Q, Jin H, et al. The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res. 2010; 16(11): 2949-2958.

[318]

Liao C, Beveridge R, Hudson JJR, et al. UCHL3 regulates topoisomerase-induced chromosomal break repair by controlling TDP1 proteostasis. Cell Rep. 2018; 23(11): 3352-3365.

[319]

Ouyang L, Yan B, Liu Y, et al. The deubiquitylase UCHL3 maintains cancer stem-like properties by stabilizing the aryl hydrocarbon receptor. Signal Transduct Target Ther. 2020; 5(1): 78.

[320]

Qin J, Zhou Z, Chen W, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015; 6: 8471.

[321]

Peng J, Ma J, Li W, et al. Stabilization of MCRS1 by BAP1 prevents chromosome instability in renal cell carcinoma. Cancer Lett. 2015; 369(1): 167-174.

[322]

Sahtoe DD, van Dijk WJ, Ekkebus R, Ovaa H, Sixma TK. BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat Commun. 2016; 7: 10292.

[323]

Zarrizi R, Menard JA, Belting M, Massoumi R. Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res. 2014; 74(22): 6499-6508.

[324]

Xie Z, Lin H, Huang Y, et al. BAP1-mediated MAFF deubiquitylation regulates tumor growth and is associated with adverse outcomes in colorectal cancer. Eur J Cancer. 2024; 210: 114278.

[325]

Wang B, Ma A, Zhang L, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015; 6: 8704.

[326]

Seo D, Jung SM, Park JS, et al. The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway. EBioMedicine. 2019; 49: 55-71.

[327]

Kakarougkas A, Ismail A, Katsuki Y, Freire R, Shibata A, Jeggo PA. Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res. 2013; 41(22): 10298-10311.

[328]

Harbeck N, Gnant M. Breast cancer. Lancet (London, England). 2017; 389(10074): 1134-1150.

[329]

Liu T, Yu J, Deng M, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017; 8: 13923.

[330]

Tang J, Luo Y, Long G, Zhou L. MINDY1 promotes breast cancer cell proliferation by stabilizing estrogen receptor α. Cell Death Dis. 2021; 12(10): 937.

[331]

Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet (London, England). 2017; 389(10066): 299-311.

[332]

Zhang P, Li C, Li H, et al. Ubiquitin ligase CHIP regulates OTUD3 stability and suppresses tumour metastasis in lung cancer. Cell Death Differ. 2020; 27(11): 3177-3195.

[333]

Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet (London, England). 2022; 400(10360): 1345-1362.

[334]

Wang JH, Zhong XP, Zhang YF, et al. Cezanne predicts progression and adjuvant TACE response in hepatocellular carcinoma. Cell Death Dis. 2017; 8(9): e3043.

[335]

Xu Z, Pei L, Wang L, Zhang F, Hu X, Gui Y. Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma. Oncogene. 2014; 33(22): 2836-2845.

[336]

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet (London, England). 2019; 394(10207): 1467-1480.

[337]

Zhang Q, Zhang ZY, Du H, et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019; 26(11): 2300-2313.

[338]

Liao C, Wang Q, An J, et al. Partial EMT in squamous cell carcinoma: a snapshot. Int J Biol Sci. 2021; 17(12): 3036-3047.

[339]

Wang WP, Shi D, Yun D, et al. Role of deubiquitinase JOSD2 in the pathogenesis of esophageal squamous cell carcinoma. World J Gastroenterol. 2024; 30(6): 565-578.

[340]

Li Y, Li R, Qin H, He H, Li S. OTUB1’s role in promoting OSCC development by stabilizing RACK1 involves cell proliferation, migration, invasion, and tumor-associated macrophage M1 polarization. Cell Signalling. 2023; 110: 110835.

[341]

Jin S, Tsunematsu T, Horiguchi T, et al. Involvement of the OTUB1-YAP1 axis in driving malignant behaviors of head and neck squamous cell carcinoma. Cancer Med. 2023; 12(24): 22156-22169.

[342]

Yu J, Yuan S, Song J, Yu S. USP39 interacts with SIRT7 to promote cervical squamous cell carcinoma by modulating autophagy and oxidative stress via FOXM1. J Transl Med. 2023; 21(1): 807.

[343]

Peng Y, Liu J, Wang Z, et al. Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death Differ. 2022; 29(9): 1730-1743.

[344]

Wang YQ, Zhang QY, Weng WW, et al. Upregulation of the non-coding RNA OTUB1-isoform 2 contributes to gastric cancer cell proliferation and invasion and predicts poor gastric cancer prognosis. Int J Biol Sci. 2016; 12(5): 545-557.

[345]

Trivigno D, Essmann F, Huber SM, Rudner J. Deubiquitinase USP9x confers radioresistance through stabilization of Mcl-1. Neoplasia (New York, NY). 2012; 14(10): 893-904.

[346]

Pu Q, Lv YR, Dong K, Geng WW, Gao HD. Tumor suppressor OTUD3 induces growth inhibition and apoptosis by directly deubiquitinating and stabilizing p53 in invasive breast carcinoma cells. BMC Cancer. 2020; 20(1): 583.

[347]

Tian S, Jin S, Wu Y, et al. High-throughput screening of functional deubiquitinating enzymes in autophagy. Autophagy. 2021; 17(6): 1367-1378.

[348]

Basu AK. DNA damage, mutagenesis and cancer. Int J Mol Sci. 2018; 19(4): 970.

[349]

Castella M, Jacquemont C, Thompson EL, et al. FANCI regulates recruitment of the FA core complex at sites of DNA damage independently of FANCD2. PLos Genet. 2015; 11(10): e1005563.

[350]

Williams SA, Maecker HL, French DM, et al. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 2011; 146(6): 918-930.

[351]

Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021; 296: 100466.

[352]

Yang C, Zang W, Tang Z, et al. A20/TNFAIP3 regulates the DNA damage response and mediates tumor cell resistance to DNA-damaging therapy. Cancer Res. 2018; 78(4): 1069-1082.

[353]

Zhong X, He X, Wang Y, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022; 15(1): 160.

[354]

Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ. 2022; 29(9): 1864-1873.

[355]

Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol. 2021; 12: 731798.

[356]

Breitenecker K, Homolya M, Luca AC, et al. Down-regulation of A20 promotes immune escape of lung adenocarcinomas. Sci Transl Med. 2021; 13(601): eabc3911.

[357]

Guo W, Ma J, Guo S, et al. A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. J Immunother Cancer. 2020; 8(2): e001866.

[358]

Li J, Yuan S, Norgard RJ, et al. Tumor cell-intrinsic USP22 suppresses antitumor immunity in pancreatic cancer. Cancer Immunol Res. 2020; 8(3): 282-291.

[359]

Shi D, Wu X, Jian Y, et al. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun. 2022; 13(1): 5644.

[360]

Hong B, Li H, Lu Y, et al. USP18 is crucial for IFN-γ-mediated inhibition of B16 melanoma tumorigenesis and antitumor immunity. Mol Cancer. 2014; 13: 132.

[361]

Zhou X, Yu J, Cheng X, et al. The deubiquitinase Otub1 controls the activation of CD8(+) T cells and NK cells by regulating IL-15-mediated priming. Nat Immunol. 2019; 20(7): 879-889.

[362]

Zhao G, Song D, Wu J, et al. Identification of OTUD6B as a new biomarker for prognosis and immunotherapy by pan-cancer analysis. Front Immunol. 2022; 13: 955091.

[363]

Amer-Sarsour F, Kordonsky A, Berdichevsky Y, Prag G, Ashkenazi A. Deubiquitylating enzymes in neuronal health and disease. Cell Death Dis. 2021; 12(1): 120.

[364]

Hwang JT, Lee A, Kho C. Ubiquitin and ubiquitin-like proteins in cancer, neurodegenerative disorders, and heart diseases. Int J Mol Sci. 2022; 23(9): 5053.

[365]

Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017; 9(7): a028035.

[366]

Wu S, Lin T, Xu Y. Polymorphic USP8 allele promotes Parkinson’s disease by inducing the accumulation of α-synuclein through deubiquitination. Cell Mol Life Sci. 2023; 80(12): 363.

[367]

Aron R, Pellegrini P, Green EW, et al. Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington’s disease. Nat Commun. 2018; 9(1): 3191.

[368]

Vaden JH, Watson JA, Howard AD, Chen PC, Wilson JA, Wilson SM. Distinct effects of ubiquitin overexpression on NMJ structure and motor performance in mice expressing catalytically inactive USP14. Front Mol Neurosci. 2015; 8: 11.

[369]

Kiprowska MJ, Stepanova A, Todaro DR, et al. Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons: relevance to Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(6): 1157-1170.

[370]

Jin YN, Chen PC, Watson JA, et al. Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS One. 2012; 7(10): e47884.

[371]

Lee JH, Shin SK, Jiang Y, et al. Facilitated Tau degradation by USP14 aptamers via enhanced proteasome activity. Sci Rep. 2015; 5: 10757.

[372]

Jarome TJ, Kwapis JL, Hallengren JJ, Wilson SM, Helmstetter FJ. The ubiquitin-specific protease 14 (USP14) is a critical regulator of long-term memory formation. Learn Mem (Cold Spring Harbor, NY). 2013; 21(1): 9-13.

[373]

Min JW, L, Freeling JL, Martin DS, Wang H. USP14 inhibitor attenuates cerebral ischemia/reperfusion-induced neuronal injury in mice. J Neurochem. 2017; 140(5): 826-833.

[374]

Fang TZ, Sun Y, Pearce AC, et al. Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson’s disease mouse model. Nat Commun. 2023; 14(1): 7295.

[375]

Leotti VB, de Vries JJ, Oliveira CM, et al. CAG repeat size influences the progression rate of spinocerebellar ataxia type 3. Ann Neurol. 2021; 89(1): 66-73.

[376]

Nobre RJ, Lobo DD, Henriques C, et al. miRNA-mediated knockdown of ATXN3 alleviates molecular disease hallmarks in a mouse model for spinocerebellar ataxia type 3. Nucleic Acid Ther. 2022; 32(3): 194-205.

[377]

Martier R, Sogorb-Gonzalez M, Stricker-Shaver J, et al. Development of an AAV-based microRNA gene therapy to treat Machado-Joseph disease. Mol Ther Methods Clin Dev. 2019; 15: 343-358.

[378]

He L, Wang S, Peng L, et al. CRISPR/Cas9 mediated gene correction ameliorates abnormal phenotypes in spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cells. Transl Psychiatry. 2021; 11(1): 479.

[379]

Cartier AE, Djakovic SN, Salehi A, Wilson SM, Masliah E, Patrick GN. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. J Neurosci. 2009; 29(24): 7857-7868.

[380]

Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev. 2023; 86: 101856.

[381]

Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell. 2002; 111(2): 209-218.

[382]

Guo YY, Lu Y, Zheng Y, et al. Ubiquitin C-terminal hydrolase L1 (UCH-L1) promotes hippocampus-dependent memory via its deubiquitinating effect on TrkB. J Neurosci. 2017; 37(25): 5978-5995.

[383]

Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med. 2024; 26: e3.

[384]

Xing J, Li P, Hong J, et al. Overexpression of ubiquitin-specific protease 2 (USP2) in the heart suppressed pressure overload-induced cardiac remodeling. Mediators Inflamm. 2020; 2020: 4121750.

[385]

Klaeske K, Dix M, Adams V, et al. Differential regulation of myocardial E3 ligases and deubiquitinases in ischemic heart failure. Life (Basel, Switzerland). 2021; 11(12): 1430.

[386]

He B, Zhao YC, Gao LC, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy. Hypertension (Dallas, Tex : 1979). 2016; 67(6): 1237-1248.

[387]

Jiang YN, Yang SX, Guan X, et al. Loss of USP22 alleviates cardiac hypertrophy induced by pressure overload through HiF1-α-TAK1 signaling pathway. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(8): 166813.

[388]

Liu N, Chai R, Liu B, et al. Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation. Biochem Biophys Res Commun. 2016; 478(3): 1236-1241.

[389]

Ye B, Zhou H, Chen Y, et al. USP25 ameliorates pathological cardiac hypertrophy by stabilizing SERCA2a in cardiomyocytes. Circ Res. 2023; 132(4): 465-480.

[390]

Zhang DH, Zhang JL, Huang Z, et al. Deubiquitinase ubiquitin-specific protease 10 deficiency regulates Sirt6 signaling and exacerbates cardiac hypertrophy. J Am Heart Assoc. 2020; 9(22): e017751.

[391]

Hu Y, Ma Z, Chen Z, Chen B. USP47 promotes apoptosis in rat myocardial cells after ischemia/reperfusion injury via NF-κB activation. Biotechnol Appl Biochem. 2021; 68(4): 841-848.

[392]

Zhang W, Zhang Y, Zhang H, Zhao Q, Liu Z, Xu Y. USP49 inhibits ischemia-reperfusion-induced cell viability suppression and apoptosis in human AC16 cardiomyocytes through DUSP1-JNK1/2 signaling. J Cell Physiol. 2019; 234(5): 6529-6538.

[393]

Tang LJ, Zhou YJ, Xiong XM, et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radical Biol Med. 2021; 162: 339-352.

[394]

Zhang Y, Hailati J, Ma X, Midilibieke H, Liu Z. Ubiquitin-specific protease 11 aggravates ischemia-reperfusion-induced cardiomyocyte pyroptosis and injury by promoting TRAF3 deubiquitination. Balkan Med J. 2023; 40(3): 205-214.

[395]

Wu Z, Li W, Wang S, Zheng Z. Role of deubiquitinase USP47 in cardiac function alleviation and anti-inflammatory immunity after myocardial infarction by regulating NLRP3 inflammasome-mediated pyroptotic signal pathways. Int Immunopharmacol. 2024; 136: 112346.

[396]

Sun Y, Lu F, Yu X, et al. Exogenous H(2)S promoted USP8 sulfhydration to regulate mitophagy in the hearts of db/db Mice. Aging Dis. 2020; 11(2): 269-285.

[397]

Lu L, Ma J, Liu Y, et al. FSTL1-USP10-Notch1 signaling axis protects against cardiac dysfunction through inhibition of myocardial fibrosis in diabetic mice. Front Cell Dev Biol. 2021; 9: 757068.

[398]

Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology. 2021; 29(6): 1683-1699.

[399]

Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol. 2021; 12: 686155.

[400]

Matmati M, Jacques P, Maelfait J, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet. 2011; 43(9): 908-912.

[401]

Zhang LM, Zhou JJ, Luo CL. CYLD suppression enhances the pro-inflammatory effects and hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes by enhancing NF-κB activation. Arthritis Res Ther. 2018; 20(1): 219.

[402]

Yang J, Xu P, Han L, et al. Cutting edge: ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORγt. J Immunol. 2015; 194(9): 4094-4097.

[403]

Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med. 2020; 172(11): Itc81-itc96.

[404]

Yu Y, Su Z, Wang Z, Xu H. USP7 is associated with greater disease activity in systemic lupus erythematosus via stabilization of the IFNα receptor. Mol Med Rep. 2017; 16(2): 2274-2280.

[405]

Musone SL, Taylor KE, Lu TT, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet. 2008; 40(9): 1062-1064.

[406]

De A, Dainichi T, Rathinam CV, Ghosh S. The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep. 2014; 15(7): 775-783.

[407]

Odqvist L, Jevnikar Z, Riise R, et al. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis. 2019; 78(10): 1363-1370.

[408]

Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000; 289(5488): 2350-2354.

[409]

Boehncke WH, Schön MP. Psoriasis. Lancet (London, England). 2015; 386(9997): 983-994.

[410]

Fan YH, Yu Y, Mao RF, et al. USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation. Cell Death Differ. 2011; 18(10): 1547-1560.

[411]

Marcus R. What is multiple sclerosis?. JAMA. 2022; 328(20): 2078.

[412]

Ten Bosch GJA, Bolk J, Laman JD. Multiple sclerosis is linked to MAPK(ERK) overactivity in microglia. J Mol Med. 2021; 99(8): 1033-1042.

[413]

Hu H, Wang H, Xiao Y, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016; 213(3): 399-414.

[414]

Liu X, Li H, Zhong B, et al. USP18 inhibits NF-κB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. J Exp Med. 2013; 210(8): 1575-1590.

[415]

Tacer KF, Potts PR. Cellular and disease functions of the Prader-Willi syndrome gene MAGEL2. Biochem J. 2017; 474(13): 2177-2190.

[416]

Hao YH, Fountain MD, Fon Tacer K, et al. USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. Mol Cell. 2015; 59(6): 956-969.

[417]

Homan CC, Kumar R, Nguyen LS, et al. Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am J Hum Genet. 2014; 94(3): 470-478.

[418]

Reijnders MR, Zachariadis V, Latour B, et al. De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations. Am J Hum Genet. 2016; 98(2): 373-381.

[419]

Johnson BV, Kumar R, Oishi S, et al. Partial loss of USP9X function leads to a male neurodevelopmental and behavioral disorder converging on transforming growth factor β signaling. Biol Psychiatry. 2020; 87(2): 100-112.

[420]

Yoon S, Parnell E, Penzes P. TGF-β-induced phosphorylation of Usp9X stabilizes Ankyrin-G and regulates dendritic spine development and maintenance. Cell Rep. 2020; 31(8): 107685.

[421]

Lowther C, Costain G, Stavropoulos DJ, et al. Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature. Genet Med. 2015; 17(2): 149-157.

[422]

Ben-Shachar S, Lanpher B, German JR, et al. Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. J Med Genet. 2009; 46(6): 382-388.

[423]

Uddin M, Unda BK, Kwan V, et al. OTUD7A regulates neurodevelopmental phenotypes in the 15q13.3 microdeletion syndrome. Am J Hum Genet. 2018; 102(2): 278-295.

[424]

Yin J, Chen W, Chao ES, et al. Otud7a knockout mice recapitulate many neurological features of 15q13.3 microdeletion syndrome. Am J Hum Genet. 2018; 102(2): 296-308.

[425]

Garret P, Ebstein F, Delplancq G, et al. Report of the first patient with a homozygous OTUD7A variant responsible for epileptic encephalopathy and related proteasome dysfunction. Clin Genet. 2020; 97(4): 567-575.

[426]

Santiago-Sim T, Burrage LC, Ebstein F, et al. Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features. Am J Hum Genet. 2017; 100(4): 676-688.

[427]

Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ. 2021; 28(2): 538-556.

[428]

Beck DB, Basar MA, Asmar AJ, et al. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. Sci Adv. 2021; 7(4): eabe2116.

[429]

Li H, Liu BJ, Xu J, et al. Design, synthesis, and biological evaluation of pyrido[2, 3-d]pyrimidin-7(8H)-one derivatives as potent USP1 inhibitors. Eur J Med Chem. 2024; 275: 116568.

[430]

Sun Y, Sha B, Huang W, et al. ML323, a USP1 inhibitor triggers cell cycle arrest, apoptosis and autophagy in esophageal squamous cell carcinoma cells. Apoptosis. 2022; 27(7-8): 545-560.

[431]

Chen J, Dexheimer TS, Ai Y, et al. Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 2011; 18(11): 1390-1400.

[432]

Cheng YJ, Zhuang Z, Miao YL, et al. Identification of YCH2823 as a novel USP7 inhibitor for cancer therapy. Biochem Pharmacol. 2024; 222: 116071.

[433]

Zhuang Z, Miao YL, Song SS, et al. Discovery of pyrrolo[2, 3-d]pyrimidin-4-one derivative YCH3124 as a potent USP7 inhibitor for cancer therapy. Eur J Med Chem. 2024; 277: 116752.

[434]

Xu X, Wang M, Xu H, et al. Design, synthesis and biological evaluation of 2-aminopyridine derivatives as USP7 inhibitors. Bioorg Chem. 2022; 129: 106128.

[435]

Murgai A, Sosič I, Gobec M, et al. Targeting the deubiquitinase USP7 for degradation with PROTACs. Chem Commun (Camb). 2022; 58(63): 8858-8861.

[436]

Lu Y, Gao J, Wang P, et al. Discovery of potent small molecule ubiquitin-specific protease 10 inhibitors with anti-hepatocellular carcinoma activity through regulating YAP expression. Eur J Med Chem. 2024; 272: 116468.

[437]

Burkhart RA, Peng Y, Norris ZA, et al. Mitoxantrone targets human ubiquitin-specific peptidase 11 (USP11) and is a potent inhibitor of pancreatic cancer cell survival. Mol Cancer Res. 2013; 11(8): 901-911.

[438]

Kona SV, Kalivendi SV. The USP10/13 inhibitor, spautin-1, attenuates the progression of glioblastoma by independently regulating RAF-ERK mediated glycolysis and SKP2. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(7): 167291.

[439]

Göricke F, Vu V, Smith L, et al. Discovery and characterization of BAY-805, a potent and selective inhibitor of ubiquitin-specific protease USP21. J Med Chem. 2023; 66(5): 3431-3447.

[440]

Tak J, Nguyen TK, Lee K, Kim SG, Ahn HC. Utilizing machine learning to identify nifuroxazide as an inhibitor of ubiquitin-specific protease 21 in a drug repositioning strategy. Biomed Pharmacother. 2024; 174: 116459.

[441]

Roy A, Sharma S, Paul I, Ray S. Molecular hybridization assisted multi-technique approach for designing USP21 inhibitors to halt catalytic triad-mediated nucleophilic attack and suppress pancreatic ductal adenocarcinoma progression: a molecular dynamics study. Comput Biol Med. 2024; 182: 109096.

[442]

Lu W, Chu P, Tang A, Si L, Fang D. The secoiridoid glycoside Gentiopicroside is a USP22 inhibitor with potent antitumor immunotherapeutic activity. Biomed Pharmacother. 2024; 177: 116974.

[443]

Peng J, Jiang K, Sun X, et al. Identification of a class of potent USP25/28 inhibitors with broad-spectrum anti-cancer activity. Signal Transduct Target Ther. 2022; 7(1): 393.

[444]

Zhou D, Xu Z, Huang Y, et al. Structure-based discovery of potent USP28 inhibitors derived from Vismodegib. Eur J Med Chem. 2023; 254: 115369.

[445]

Shin SC, Park J, Kim KH, et al. Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol. 2023; 6(1): 970.

[446]

Böhm K, Schulze-Niemand E, Kähne T, et al. Synthesis and structure-activity relationships of USP48 deubiquitinylase inhibitors. Arch Pharm. 2023; 356(7): e2200661.

[447]

Tan L, Shan H, Han C, et al. Discovery of potent OTUB1/USP8 dual inhibitors targeting proteostasis in non-small-cell lung cancer. J Med Chem. 2022; 65(20): 13645-13659.

[448]

Ren W, Xu Z, Chang Y, et al. Pharmaceutical targeting of OTUB2 sensitizes tumors to cytotoxic T cells via degradation of PD-L1. Nat Commun. 2024; 15(1): 9.

[449]

Zhang Y, Du T, Liu N, et al. Discovery of an OTUD3 inhibitor for the treatment of non-small cell lung cancer. Cell Death Dis. 2023; 14(6): 378.

[450]

Du T, Gu Q, Zhang Y, et al. Rolapitant treats lung cancer by targeting deubiquitinase OTUD3. CCS. 2024; 22(1): 195.

[451]

Su S, Chen J, Jiang Y, et al. SPOP and OTUD7A control EWS-FLI1 protein stability to govern ewing sarcoma growth. Adv Sci (Weinh). 2021; 8(14): e2004846.

[452]

Chen J, Bolhuis DL, Laggner C, et al. AtomNet-aided OTUD7B inhibitor discovery and validation. Cancers. 2023; 15(2): 517.

[453]

Shi T, Bao J, Wang NX, Zheng J, Wu D. Identification of small molecule TRABID deubiquitinase inhibitors by computation-based virtual screen. BMC Chem Biol. 2012; 12: 4.

[454]

Zhang P, Xiao Z, Wang S, et al. ZRANB1 is an EZH2 deubiquitinase and a potential therapeutic target in breast cancer. Cell Rep. 2018; 23(3): 823-837.

[455]

Chan WC, Liu X, Magin RS, et al. Accelerating inhibitor discovery for deubiquitinating enzymes. Nat Commun. 2023; 14(1): 686.

[456]

Grethe C, Schmidt M, Kipka GM, et al. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun. 2022; 13(1): 5950.

[457]

Wang X, D’Arcy P, Caulfield TR, et al. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des. 2015; 86(5): 1036-1048.

[458]

Wang X, Mazurkiewicz M, Hillert EK, et al. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep. 2016; 6: 26979.

[459]

Paulus A, Akhtar S, Caulfield TR, et al. Coinhibition of the deubiquitinating enzymes, USP14 and UCHL5, with VLX1570 is lethal to ibrutinib-or bortezomib-resistant Waldenstrom macroglobulinemia tumor cells. Blood Cancer J. 2016; 6(11): e492.

[460]

Rowinsky EK, Paner A, Berdeja JG, et al. Phase 1 study of the protein deubiquitinase inhibitor VLX1570 in patients with relapsed and/or refractory multiple myeloma. Invest New Drugs. 2020; 38(5): 1448-1453.

[461]

Wang L, Birch NW, Zhao Z, et al. Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia. Nat Cancer. 2021; 2(5): 515-526.

[462]

Li J, Yakushi T, Parlati F, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017; 13(5): 486-493.

[463]

Schlierf A, Altmann E, Quancard J, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016; 7: 13166.

[464]

Chen S, Liu Y, Zhou H. Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int J Mol Sci. 2021; 22(9): 4546.

[465]

Cruz L, Soares P, Correia M. Ubiquitin-specific proteases: players in cancer cellular processes. Pharmaceuticals (Basel, Switzerland). 2021; 14(9): 848.

[466]

Zhou L, Qin B, Yassine DM, et al. Structure and function of the highly homologous deubiquitinases ubiquitin specific peptidase 25 and 28: insights into their pathophysiological and therapeutic roles. Biochem Pharmacol. 2023; 213: 115624.

[467]

Patzke JV, Sauer F, Nair RK, et al. Structural basis for the bi-specificity of USP25 and USP28 inhibitors. EMBO Rep. 2024; 25(7): 2950-2973.

[468]

Henning NJ, Boike L, Spradlin JN, et al. Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat Chem Biol. 2022; 18(4): 412-421.

[469]

Advani AS, Cooper B, Visconte V, et al. A phase I/II trial of MEC (mitoxantrone, etoposide, cytarabine) in combination with ixazomib for relapsed refractory acute myeloid leukemia. Clin Cancer Res. 2019; 25(14): 4231-4237.

[470]

Zhu Q, Fu Y, Li L, Liu CH, Zhang L. The functions and regulation of Otubains in protein homeostasis and diseases. Ageing Res Rev. 2021; 67: 101303.

[471]

Fiil BK, Gyrd-Hansen M. OTULIN deficiency causes auto-inflammatory syndrome. Cell Res. 2016; 26(11): 1176-1177.

[472]

Shi Y, Wang X, Wang J, Wang X, Zhou H, Zhang L. The dual roles of A20 in cancer. Cancer Lett. 2021; 511: 26-35.

[473]

Li Y, Yang JY, Xie X, et al. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res. 2019; 29(6): 474-485.

[474]

Li M, Li L, Asemota S, et al. Reciprocal interplay between OTULIN-LUBAC determines genotoxic and inflammatory NF-κB signal responses. Proc Nat Acad Sci USA. 2022; 119(33): e2123097119.

[475]

Liu X, Zhang X, Peng Z, et al. Deubiquitylase OTUD6B governs pVHL stability in an enzyme-independent manner and suppresses hepatocellular carcinoma metastasis. Adv Sci (Weinh). 2020; 7(8): 1902040.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/