Nonviral targeted mRNA delivery: principles, progresses, and challenges

Xi He , Guohong Li , Letao Huang , Haixing Shi , Sha Zhong , Siyu Zhao , Xiangyu Jiao , Jinxiu Xin , Xiaoling Yin , Shengbin Liu , Zhongshan He , Mengran Guo , Chunli Yang , Zhaohui Jin , Jun Guo , Xiangrong Song

MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70035

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70035 DOI: 10.1002/mco2.70035
REVIEW

Nonviral targeted mRNA delivery: principles, progresses, and challenges

Author information +
History +
PDF

Abstract

Messenger RNA (mRNA) therapeutics have garnered considerable attention due to their remarkable efficacy in the treatment of various diseases. The COVID-19 mRNA vaccine and RSV mRNA vaccine have been approved on the market. Due to the inherent nuclease-instability and negative charge of mRNA, delivery systems are developed to protect the mRNA from degradation and facilitate its crossing cell membrane to express functional proteins or peptides in the cytoplasm. However, the deficiency in transfection efficiency and targeted biological distribution are still the major challenges for the mRNA delivery systems. In this review, we first described the physiological barriers in the process of mRNA delivery and then discussed the design approach and recent advances in mRNA delivery systems with an emphasis on their tissue/cell-targeted abilities. Finally, we pointed out the existing challenges and future directions with deep insights into the design of efficient mRNA delivery systems. We believe that a high-precision targeted delivery system can greatly improve the therapeutic effects and bio-safety of mRNA therapeutics and accelerate their clinical transformations. This review may provide a new direction for the design of mRNA delivery systems and serve as a useful guide for researchers who are looking for a suitable mRNA delivery system.

Keywords

delivery obstacles / mRNA therapeutics / nonviral delivery / targeted delivery systems

Cite this article

Download citation ▾
Xi He, Guohong Li, Letao Huang, Haixing Shi, Sha Zhong, Siyu Zhao, Xiangyu Jiao, Jinxiu Xin, Xiaoling Yin, Shengbin Liu, Zhongshan He, Mengran Guo, Chunli Yang, Zhaohui Jin, Jun Guo, Xiangrong Song. Nonviral targeted mRNA delivery: principles, progresses, and challenges. MedComm, 2025, 6(1): e70035 DOI:10.1002/mco2.70035

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cobb M. Who discovered messenger RNA? Curr Biol. 2015; 25(13): R526-32.

[2]

Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014; 13(10): 759-780.

[3]

Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990; 247(4949): 1465-1468.

[4]

Zhang H, Zhang L, Lin A, et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature. 2023; 621: 396-403.

[5]

Hecker JG. Non-viral, lipid-mediated DNA and mRNA gene therapy of the central nervous system (CNS): chemical-based transfection. Methods Mol Biol. 2016; 1382: 307-324.

[6]

Xiao Y, Tang Z, Huang X, et al. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem Soc Rev. 2022; 51(10): 3828-3845.

[7]

Hui MP, Belasco JG. Multifaceted impact of a nucleoside monophosphate kinase on 5’-end-dependent mRNA degradation in bacteria. Nucleic Acids Res. 2021; 49(19): 11038-11049.

[8]

Yoshinaga N, Cho E, Koji K, et al. Bundling mRNA strands to prepare nano-assemblies with enhanced stability towards RNase for in vivo delivery. Angew Chem Int Ed Engl. 2019; 58(33): 11360-11363.

[9]

Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019; 9(1): 5-23.

[10]

Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020; 383(27): 2603-2615.

[11]

Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021; 384(5): 403-416.

[12]

Zelepukin IV, Shevchenko KG, Deyev SM. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat Commun. 2024; 15(1): 4366.

[13]

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021; 6(12): 1078-1094.

[14]

Cullis PR, Chonn A, Semple SC. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev. 1998; 32(1-2): 3-17.

[15]

Sorrentino S. Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci. 1998; 54(8): 785-794.

[16]

Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012; 20(3): 513-524.

[17]

Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016; 15(11): 1212-1221.

[18]

Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009; 8(7): 543-557.

[19]

Tang Y, Wang X, Li J, et al. Overcoming the reticuloendothelial system barrier to drug delivery with a “don’t-eat-us” strategy. ACS Nano. 2019; 13(11): 13015-13026.

[20]

Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013; 31(7): 653-658.

[21]

Suh J, An Y, Tang BC, Dempsey C, Huang F, Hanes J. Real-time gene delivery vector tracking in the endo-lysosomal pathway of live cells. Microsc Res Techn. 2012; 75(5): 691-697.

[22]

Nguyen J, Szoka FC. Nucleic acid delivery: the missing pieces of the puzzle?. Acc Chem Res. 2012; 45(7): 1153-1162.

[23]

Lu JJ, Langer R, Chen J. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol Pharm. 2009; 6(3): 763-771.

[24]

Jiang Z, Xu Y, Du G, Sun X. Emerging advances in delivery systems for mRNA cancer vaccines. J Control Release. 2024; 370: 287-301.

[25]

Vermeulen LMP, De Smedt SC, Remaut K, Braeckmans K. The proton sponge hypothesis: fable or fact?. Eur J Pharm Biopharm. 2018; 129: 184-190.

[26]

Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011; 151(3): 220-228.

[27]

Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995; 92(16): 7297-7301. A.

[28]

Schlich M, Palomba R, Costabile G, et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021; 6(2): e10213.

[29]

Ewert K, Evans HM, Ahmad A, et al. Lipoplex structures and their distinct cellular pathways. Adv Genet. 2005; 53: 119-155.

[30]

Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science. 1998; 281(5373): 78-81.

[31]

Ilangumaran Ponmalar I, Sarangi NK, Basu JK, Ayappa KG. Pore forming protein induced biomembrane reorganization and dynamics: a focused review. Front Mol Biosci. 2021; 8: 737561.

[32]

Thiery J, Keefe D, Boulant S, et al. Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol. 2011; 12(8): 770-777.

[33]

Soe TH, Watanabe K, Ohtsuki T. Photoinduced endosomal escape mechanism: a view from photochemical internalization mediated by CPP-photosensitizer conjugates. Molecules. 2020; 26(1): 36.

[34]

Ward WL, Plakos K, DeRose VJ. Nucleic acid catalysis: metals, nucleobases, and other cofactors. Chem Rev. 2014; 114(8): 4318-4342.

[35]

Meng C, Chen Z, Li G, Welte T, Shen H. Nanoplatforms for mRNA therapeutics. Adv Ther. 2020;4(1):2000099.

[36]

Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006; 114(1): 100-119.

[37]

Zhou W, Saran R, Liu J. Metal sensing by DNA. Chem Rev. 2017; 117(12): 8272-8325.

[38]

Sigel H. Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chem Soc Rev. 1993; 22(4).

[39]

Sigel RK, Sigel H. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc Chem Res. 2010; 43(7): 974-984.

[40]

Li M, Wang C, Di Z, et al. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew Chem Int Ed Engl. 2019; 58(5): 1350-1354.

[41]

Li Y, Breaker RR. Kinetics of RNA degradation by specific base catalysis of transesterification involving the ‘2’-hydroxyl group. J Am Chem Soc. 1999; 121(23): 5364-5372.

[42]

Zou Z, He L, Deng X, et al. Zn(2+)-coordination-driven RNA assembly with retained integrity and biological functions. Angew Chem Int Ed Engl. 2021; 60(42): 22970-22976.

[43]

Pan D, Sun J, Jin H, et al. Supramolecular assemblies of novel aminonucleoside phospholipids and their bonding to nucleic acids. Chem Commun (Camb). 2015; 51(3): 469-472.

[44]

Ma Y, Zhu Y, Wang C, et al. Annealing novel nucleobase-lipids with oligonucleotides or plasmid DNA based on H-bonding or pi-pi interaction: assemblies and transfections. Biomaterials. 2018; 178: 147-157.

[45]

Li L, Long J, Sang Y, et al. Rational preparation and application of a mRNA delivery system with cytidinyl/cationic lipid. J Control Release. 2021; 340: 114-124.

[46]

Yu X, Yu J, Dai H, et al. Novel formulation of c-di-GMP with cytidinyl/cationic lipid reverses T cell exhaustion and activates stronger anti-tumor immunity. Theranostics. 2022; 12(15): 6723-6739.

[47]

Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat Biotechnol. 2022; 40(11): 1586-1600.

[48]

Glassman PM, Hood ED, Ferguson LT, et al. Red blood cells: the metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev. 2021; 178: 113992.

[49]

Segel M, Lash B, Song J, et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science. 2021; 373(6557): 882-889.

[50]

Gurumurthy CB, Quadros RM, Ohtsuka M. Prototype mouse models for researching SEND-based mRNA delivery and gene therapy. Nat Protoc. 2022; 17(10): 2129-2138.

[51]

Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018; 29(3): 285-298.

[52]

Russell DW, Grompe M. Adeno-associated virus finds its disease. Nat Genet. 2015; 47(10): 1104-1105.

[53]

Dong B, Nakai H, Xiao W. Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther. 2010; 18(1): 87-92.

[54]

Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003; 4(5): 346-358.

[55]

Gomez-Aguado I, Rodriguez-Castejon J, Vicente-Pascual M, Rodriguez-Gascon A, Solinis MA, Del Pozo-Rodriguez A. Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials (Basel). 2020; 10(2): 364.

[56]

Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. 1989; 86(16): 6077-6081.

[57]

Zohra FT, Chowdhury EH, Tada S, Hoshiba T, Akaike T. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Commun. 2007; 358(1): 373-378.

[58]

Kauffman KJ, Dorkin JR, Yang JH, et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015; 15(11): 7300-7306.

[59]

Del Pozo-Rodriguez A, Solinis MA, Rodriguez-Gascon A. Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm. 2016; 109: 184-193.

[60]

Bogers WM, Oostermeijer H, Mooij P, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis. 2015; 211(6): 947-955.

[61]

Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release. 2016; 240: 227-234.

[62]

Dass CR. Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection. J Mol Med (Berl). 2004; 82(9): 579-591.

[63]

Lechanteur A, Sanna V, Duchemin A, Evrard B, Mottet D, Piel G. Cationic liposomes carrying siRNA: impact of lipid composition on physicochemical properties, cytotoxicity and endosomal escape. Nanomaterials (Basel). 2018; 8(5): 270.

[64]

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles horizontal line from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021; 15(11): 16982-17015.

[65]

Bottega R, Epand RM. Inhibition of protein kinase C by cationic amphiphiles. Biochemistry. 1992; 31(37): 9025-9030.

[66]

Chen K, Fan N, Huang H, et al. mRNA vaccines against SARS-CoV-2 variants delivered by lipid nanoparticles based on novel ionizable lipids. Adv Funct Mater. 2022; 32(39): 2204692.

[67]

Habrant D, Peuziat P, Colombani T, et al. Design of ionizable lipids to overcome the limiting step of endosomal escape: application in the intracellular delivery of mRNA, DNA, and siRNA. J Med Chem. 2016; 59(7): 3046-3062.

[68]

Zong Y, Lin Y, Wei T, Cheng Q. Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy. Adv Mater. 2023; 35(51): e2303261.

[69]

Tilstra G, Couture-Senecal J, Lau YMA, et al. Iterative design of ionizable lipids for intramuscular mRNA delivery. J Am Chem Soc. 2023; 145(4): 2294-2304.

[70]

Oyama R, Ishigame H, Tanaka H, et al. An ionizable lipid material with a vitamin E Scaffold as an mRNA vaccine platform for efficient cytotoxic T cell responses. ACS Nano. 2023; 17(19): 18758-18774. 2023/10/10.

[71]

Tang Q, Liu J, Jiang Y, Zhang M, Mao L, Wang M. Cell-Selective messenger RNA delivery and CRISPR/Cas9 genome editing by modulating the interface of phenylboronic acid-derived lipid nanoparticles and cellular surface sialic acid. ACS Appl Mater Interfaces. 2019; 11(50): 46585-46590.

[72]

Bae SH, Yoo S, Lee J, et al. A lipid nanoparticle platform incorporating trehalose glycolipid for exceptional mRNA vaccine safety. Bioact Mater. 2024; 38: 486-498.

[73]

Huang P, Deng H, Zhou Y, Chen X. The roles of polymers in mRNA delivery. Matter. 2022; 5(6): 1670-1699.

[74]

Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005; 7(5): 657-663.

[75]

Kunath K, von Harpe A, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003; 89(1): 113-125.

[76]

Ren J, Cao Y, Li L, et al. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Rel. 2021; 338: 537-547.

[77]

Mastorakos P, da Silva AL, Chisholm J, et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci USA. 2015; 112(28): 8720-8725.

[78]

Kaczmarek JC, Patel AK, Kauffman KJ, et al. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew Chem Int Ed Engl. 2016; 55(44): 13808-13812.

[79]

Kim HL, Saravanakumar G, Lee S, et al. Poly(β-amino ester) polymer library with monomer variation for mRNA delivery. Biomaterials. 2025; 314: 122896.

[80]

Islam MA, Xu Y, Tao W, et al. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat Biomed Eng. 2018; 2(11): 850-864.

[81]

Zhang D, Atochina-Vasserman EN, Maurya DS, et al. One-component multifunctional sequence-defined ionizable amphiphilic janus dendrimer delivery systems for mRNA. J Am Chem Soc. 2021; 143(31): 12315-12327.

[82]

Zhang D, Atochina-Vasserman EN, Maurya DS, et al. Targeted delivery of mRNA with one-component ionizable amphiphilic janus dendrimers. J Am Chem Soc. 2021; 143(43): 17975-17982.

[83]

Lu J, Atochina-Vasserman EN, Maurya DS, et al. Targeted and equally distributed delivery of mRNA to organs with pentaerythritol-based one-component ionizable amphiphilic janus dendrimers. J Am Chem Soc. 2023; 145(34): 18760-18766.

[84]

Sahoo D, Atochina-Vasserman EN, Maurya DS, et al. The constitutional isomerism of one-component ionizable amphiphilic janus dendrimers orchestrates the total and targeted activities of mRNA delivery. J Am Chem Soc. 2024; 146(6): 3627-3634.

[85]

Zhang D, Atochina-Vasserman EN, Lu J, et al. The unexpected importance of the primary structure of the hydrophobic part of one-component ionizable amphiphilic janus dendrimers in targeted mRNA delivery activity. J Am Chem Soc. 2022; 144(11): 4746-4753.

[86]

Mahiny AJ, Dewerth A, Mays LE, et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol. 2015; 33(6): 584-586.

[87]

Soliman OY, Alameh MG, De Cresenzo G, Buschmann MD, Lavertu M. Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: influence of composition and structure. J Pharm Sci. 2020; 109(4): 1581-1593.

[88]

Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv. 2019; 16(11): 1149-1167.

[89]

McCarthy HO, McCaffrey J, McCrudden CM, et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release. 2014; 189: 141-149.

[90]

Qiu Y, Man RCH, Liao Q, Kung KLK, Chow MYT, Lam JKW. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019; 314: 102-115.

[91]

Jarzebska NT, Mellett M, Frei J, Kundig TM, Pascolo S. Protamine-based strategies for RNA transfection. Pharmaceutics. 2021; 13(6): 877.

[92]

Kallen KJ, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive((R)) vaccines. Hum Vaccin Immunother. 2013; 9(10): 2263-2276.

[93]

Papachristofilou A, Hipp MM, Klinkhardt U, et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer. 2019; 7(1): 38.

[94]

Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017; 390(10101): 1511-1520.

[95]

Sebastian M, Schroder A, Scheel B, et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol Immunother. 2019; 68(5): 799-812.

[96]

Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022; 185(2): 250-265.

[97]

Unti MJ, Jaffrey SR. Highly efficient cellular expression of circular mRNA enables prolonged protein expression. Cell Chem Biol. 2024; 31(1): 163-176.

[98]

Rosigkeit S, Meng M, Grunwitz C, et al. Monitoring translation activity of mRNA-loaded nanoparticles in mice. Mol Pharm. 2018; 15(9): 3909-3919.

[99]

Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010; 18(7): 1357-1364.

[100]

Miao L, Lin J, Huang Y, et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat Commun. 2020; 11(1): 2424.

[101]

Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci USA. 2021; 118(52): e2109256118.

[102]

Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020; 15(4): 313-320.

[103]

Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012; 7(12): 779-786.

[104]

Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012; 6(7): 5845-5857.

[105]

Qiu M, Tang Y, Chen J, et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA. 2022; 119(8): e2116271119.

[106]

Montalbetti CAGN, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005; 61(46): 10827-10852.

[107]

Qin J, Xue L, Gong N, et al. RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Adv. 2022; 12(39): 25397-25404.

[108]

Fenton OS, Kevin J, Kauffman KJ, et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv Mater. 2017; 29: 1606944.

[109]

Jarzebinska A, Pasewald T, Lambrecht J, et al. A single methylene group in oligoalkylamine-based cationic polymers and lipids promotes enhanced mRNA delivery. Angew Chem Int Ed Engl. 2016; 55(33): 9591-9595.

[110]

Fenton DS, Kauffman KJ, McClellan RL, et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv Mater. 2016; 28: 2939-2943.

[111]

Whitehead KA, Dorkin JR, Vegas AJ, et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun. 2014; 5: 4277.

[112]

Epand RM, Epand RF, Ahmed N, Chen R. Promotion of hexagonal phase formation and lipid mixing by fatty acids with varying degrees of unsaturation. Chem Phys Lipids. 1991; 57(1): 75-80.

[113]

Heyes J, Palmer L, Bremner K, MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. 2005; 107(2): 276-287.

[114]

Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo**. Angew Chem. 2012; 124(34): 8657-8661.

[115]

Liu S, Cheng Q, Wei T, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater. 2021; 20(5): 701-710.

[116]

Moazzam M, Zhang M, Hussain A, Yu X, Huang J, Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther. 2024; 32(2): 284-312.

[117]

Ho W, Zhang XQ, Xu X. Biomaterials in siRNA delivery: a comprehensive review. Adv Healthc Mater. 2016; 5(21): 2715-2731.

[118]

Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006; 441(7089): 111-114.

[119]

Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012; 109(36): 14604-14609.

[120]

Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010; 28(2): 172-176.

[121]

Maier MA, Jayaraman M, Matsuda S, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013; 21(8): 1570-1578.

[122]

Qiu M, Li Y, Bloomer H, Xu Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc Chem Res. 2021; 54(21): 4001-4011.

[123]

Zhao X, Chen J, Qiu M, Li Y, Glass Z, Xu Q. Imidazole-based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew Chem Int Ed Engl. 2020; 59(45): 20083-20089.

[124]

Cai W, Luo T, Chen X, Mao L, Wang M. A combinatorial library of biodegradable lipid nanoparticles preferentially deliver mRNA into tumor cells to block mutant RAS signaling. Adv Funct Mater. 2022; 32(41).

[125]

Li Y, Li R, Chakraborty A, et al. Combinatorial library of cyclic benzylidene acetal-containing pH-responsive lipidoid nanoparticles for intracellular mRNA delivery. Bioconjug Chem. 2020; 31(7): 1835-1843.

[126]

Li Y, Ye Z, Yang H, Xu Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm Sin B. 2022; 12(6): 2624-2639.

[127]

Swingle KL, Billingsley MM, Bose SK, et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J Control Release. 2022; 341: 616-633.

[128]

Xue L, Gong N, Shepherd SJ, et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J Am Chem Soc. 2022; 144(22): 9926-9937.

[129]

Chen P, He X, Hu Y, Tian XL, Yu XQ, Zhang J. Spleen-targeted mRNA delivery by amphiphilic carbon dots for tumor immunotherapy. ACS Appl Mater Interfaces. 2023; 15(16): 19937-19950.

[130]

Yu X, Liu S, Cheng Q, et al. Hydrophobic optimization of functional poly(TPAE-co-suberoyl chloride) for extrahepatic mRNA delivery following intravenous administration. Pharmaceutics. 2021; 13(11): 1914.

[131]

Chakraborty A, Dharmaraj S, Truong N, Pearson RM. Excipient-free ionizable polyester nanoparticles for lung-selective and innate immune cell plasmid DNA and mRNA transfection. ACS Appl Mater Interfaces. 2022; 14(51): 56440-56453.

[132]

Cao Y, He Z, Chen Q, et al. Helper-polymer based five-element nanoparticles (FNPs) for lung-specific mRNA delivery with long-term stability after lyophilization. Nano Letters. 2022; 22(16): 6580-6589.

[133]

Yum J, Kim BS, Ogura S, et al. Fine-tuning of polyaspartamide derivatives with alicyclic moieties for systemic mRNA delivery. J Control Release. 2022; 342: 148-156.

[134]

Rotolo L, Vanover D, Bruno NC, et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat Mater. 2022: 1-11.

[135]

Rosigkeit S, Meng M, Grunwitz C, et al. Monitoring translation activity of mRNA-loaded nanoparticles in mice. Mol Pharm. 2018; 15(9): 3909-3919.

[136]

Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020; 15(4): 313-320.

[137]

Shimosakai R, Khalil IA, Kimura S, Harashima H. mRNA-loaded lipid nanoparticles targeting immune cells in the spleen for use as cancer vaccines. Pharmaceuticals. 2022; 15(8): 1017.

[138]

Liu S, Cheng Q, Wei T, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat Mater. 2021; 20(5): 701-710.

[139]

Xue L, Hamilton AG, Zhao G, et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat Commun. 2024; 15(1): 1884.

[140]

Zhang D, Atochina-Vasserman EN, Maurya DS, et al. Targeted delivery of mRNA with one-component ionizable amphiphilic Janus dendrimers. J Am Chem Soc. 2021; 143(43): 17975-17982.

[141]

Zhang D, Atochina-Vasserman EN, Lu J, et al. The unexpected importance of the primary structure of the hydrophobic part of one-component ionizable amphiphilic janus dendrimers in targeted mRNA delivery activity. J Am Chem Soc. 2022; 144(11): 4746-4753.

[142]

Ye H, Shen Z, Wei M, Li Y. Red blood cell hitchhiking enhances the accumulation of nano-and micro-particles in the constriction of a stenosed microvessel. Soft Matter. 2021; 17(1): 40-56.

[143]

Ding Y, Lv B, Zheng J, et al. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J Control Release. 2022; 341: 702-715.

[144]

Zheng J, Lu C, Ding Y, et al. Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: effects of nanoparticle properties. Int J Pharm. 2022; 619: 121719.

[145]

Li J, Ding Y, Cheng Q, et al. Supramolecular erythrocytes-hitchhiking drug delivery system for specific therapy of acute pneumonia. J Control Release. 2022; 350: 777-786.

[146]

Parhiz H, Shuvaev VV, Pardi N, et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J Control Release. 2018; 291: 106-115.

[147]

Patel AK, Kaczmarek JC, Bose S, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 2019; 31(8): 1805116.

[148]

Lokugamage MP, Vanover D, Beyersdorf J, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng. 2021; 5(9): 1059-1068.

[149]

Kim J, Jozic A, Lin Y, et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano. 2022; 16(9): 14792-14806.

[150]

Zhang R, Jing W, Chen C, et al. Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv Mater. 2022; 34(14): 2107506.

[151]

Popowski KD, Moatti A, Scull G, et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter. 2022; 5(9): 2960-2974.

[152]

Ngo W, Ahmed S, Blackadar C, et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev. 2022;185:114238.

[153]

Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev. 1998; 32(1-2): 3-17.

[154]

Sebastiani F, Yanez Arteta M, Lerche M, et al. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano. 2021; 15(4): 6709-6722.

[155]

Zheng Q, Qin F, Luo R, et al. mRNA-loaded lipid-like nanoparticles for liver base editing via the optimization of central composite design. Adv Funct Mater. 2021; 31(32): 2011068.

[156]

Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci. 2023; 18(2): 100779.

[157]

Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S. Liver Architecture, Cell Function, and Disease. Springer; 2009: 399-409.

[158]

Poisson J, Lemoinne S, Boulanger C, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol. 2017; 66(1): 212-227.

[159]

Hajj KA, Melamed JR, Chaudhary N, et al. A potent branched-tail lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo. Nano Lett. 2020; 20(7): 5167-5175.

[160]

Ni H, Hatit MZ, Zhao K, et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo. Nat Commun. 2022; 13(1): 1-9.

[161]

Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018; 22(9): 2227-2235.

[162]

Liu J, Chang J, Jiang Y, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater. 2019; 31(33): 1902575.

[163]

Moghimi SM, Simberg D. Pro-inflammatory concerns with lipid nanoparticles. Mol Ther. 2022; 30(6): 2109-2110.

[164]

Pattipeiluhu R, Arias-Alpizar G, Basha G, et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv Mater. 2022; 34(16): 2201095.

[165]

A Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. J Control Release. 2015; 203: 126-139.

[166]

Chen S, Xu X-L, Zhou B, Tian J, Luo B-M, Zhang L-M. Acidic pH-activated gas-generating nanoparticles with pullulan decorating for hepatoma-targeted ultrasound imaging. ACS Appl Mater Interfaces. 2019; 11(25): 22194-22205.

[167]

Bon C, Hofer T, Bousquet-Mélou A, Davies MR, Krippendorff B-F. Capacity limits of asialoglycoprotein receptor-mediated liver targeting. MAbs. 2017;9(8): 1360-1369.

[168]

Wang Y, Shahi PK, Wang X, et al. In vivo targeted delivery of nucleic acids and CRISPR genome editors enabled by GSH-responsive silica nanoparticles. J Control Release. 2021; 336: 296-309.

[169]

Kim M, Jeong M, Hur S, Cho Y, Lee H. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv. 2021; 7(9): eabf4398.

[170]

Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Comprehens Physiol. 2011; 5(4): 1751-1774.

[171]

Miao J, Yang X, Shang X, et al. Hepatocyte-targeting and microenvironmentally responsive glycolipid-like polymer micelles for gene therapy of hepatitis B. Mol Ther Nucleic Acids. 2021; 24: 127-139.

[172]

Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. New Engl J Med. 2018; 379(1): 11-21.

[173]

Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. New Engl J Med. 2021: 493-502.

[174]

Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016; 534(7607): 396-401.

[175]

Sasaki K, Sato Y, Okuda K, Iwakawa K, Harashima H. mRNA-loaded lipid nanoparticles targeting dendritic cells for cancer immunotherapy. Pharmaceutics. 2022; 14(8): 1572.

[176]

Yan J, Zhang Y, Du S, et al. Nanomaterials-mediated co-stimulation of toll-like receptors and CD40 for antitumor immunity. Adv Mater. 2022:2207486.

[177]

Lvarez-Benedicto E, Farbiak L, Ramírez M, et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci. 2022; 10(2): 549-559.

[178]

LoPresti ST, Arral ML, Chaudhary N, Whitehead KA. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J Control Release. 2022; 345: 819-831.

[179]

Gomi M, Sakurai Y, Sato M, et al. Delivering mRNA to secondary lymphoid tissues by phosphatidylserine-loaded lipid nanoparticles. Adv Healthc Mater. 2022:2202528.

[180]

Luozhong S, Yuan Z. Phosphatidylserine lipid nanoparticles promote systemic RNA delivery to secondary lymphoid organs. Nano Letters. 2022; 22(20): 8304-8311.

[181]

Tombácz I, Laczkó D, Shahnawaz H, et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol Ther. 2021; 29(11): 3293-3304.

[182]

Ren Y, Zeng L, Tang Y, et al. Enhancing spleen-targeted mRNA delivery with branched biodegradable tails in lipid nanoparticles. J Mater Chem B. 2024; 12(33): 8062-8066.

[183]

Cui L, Pereira S, Sonzini S, et al. Development of a high-throughput platform for screening lipid nanoparticles for mRNA delivery. Nanoscale. 2022; 14(4): 1480-1491.

[184]

Bevers S, Kooijmans SAA, Van de Velde E, et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol Ther. 2022; 30(9): 3078-3094.

[185]

Zhang R, El-Mayta R, Murdoch TJ, et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater Sci. 2021; 9(4): 1449-1463.

[186]

Liu S, Wang X, Yu X, et al. Zwitterionic Phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J Am Chem Soc. 2021; 143(50): 21321-21330.

[187]

Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc Natl Acad Sci USA. 2022; 119(34): e2207841119.

[188]

Andretto V, Repellin M, Pujol M, et al. Hybrid core-shell particles for mRNA systemic delivery. J Control Release. 2023; 353: 1037-1049.

[189]

Mckinlay CJ, Benner NL, Haabeth OA, Waymouth RM, Wender PA. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc Natl Acad Sci USA. 2018; 115(26): 201805358.

[190]

Haabeth O, Blake TR, Mckinlay CJ, Waymouth RM, Wender PA, Levy R. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci USA. 2018(39).

[191]

Testa S, Haabeth OA, Blake TR, et al. Fingolimod-conjugated charge-altering releasable transporters efficiently and specifically deliver mRNA to lymphocytes in vivo and in vitro. Biomacromolecules. 2022; 23(7): 2976-2988.

[192]

Nishinakamura R. Human kidney organoids: progress and remaining challenges. Nat Rev Nephrol. 2019; 15(10): 613-624.

[193]

Prikhozhdenko ES, Gusliakova OI, Kulikov OA, et al. Target delivery of drug carriers in mice kidney glomeruli via renal artery. Balance between efficiency and safety. J Control Release. 2021; 329: 175-190.

[194]

Oyama N, Kawaguchi M, Itaka K, Kawakami S. Efficient messenger RNA delivery to the kidney using renal pelvis injection in mice. Pharmaceutics. 2021; 13(11): 1810.

[195]

Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol. 2016; 12(12): 738-753.

[196]

Wang G, Li Q, Chen D, et al. Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics. 2019; 9(21): 6191.

[197]

Wischnjow A, Sarko D, Janzer M, et al. Renal targeting: peptide-based drug delivery to proximal tubule cells. Bioconjug Chem. 2016; 27(4): 1050-1057.

[198]

Tang W, Panja S, Jogdeo CM, et al. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury. Biomaterials. 2022; 285: 121562.

[199]

Tang W, Chen Y, Jang H-S, et al. Preferential siRNA delivery to injured kidneys for combination treatment of acute kidney injury. J Control Release. 2022; 341: 300-313.

[200]

Williams RM, Shah J, Mercer E, et al. Kidney-targeted redox scavenger therapy prevents cisplatin-induced acute kidney injury. Front Pharmacol. 2022;12:790913.

[201]

Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med. 2020; 5(3): e10173.

[202]

Oniszczuk J, Le Floch F, Mansour O, et al. Kidney–Targeted drug delivery systems based on tailor-made nanocapsules. Chem Eng J. 2021; 404: 126475.

[203]

Patel S, Ryals RC, Weller KK, Pennesi ME, Sahay G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Control Release. 2019; 303: 91-100.

[204]

Wang Y, Shahi PK, Xie R, et al. A pH-responsive silica–metal–organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. J Control Release. 2020; 324: 194-203.

[205]

Holmgaard AB, Askou AL, Jensen EG, et al. Targeted knockout of the Vegfa gene in the retina by subretinal injection of RNP complexes containing Cas9 protein and modified sgRNAs. Mol Ther. 2021; 29(1): 191-207.

[206]

Hung ME, Leonard JN. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extracell Vesicles. 2016; 5(1): 31027.

[207]

Dhaliwal HK, Fan Y, Kim J, et al. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol Pharm. 2020, 17(6): 1996-2005.

[208]

Wang Y, Wang X, Xie R, Burger JC, Tong Y, Gong S. Overcoming the blood-brain barrier for gene therapy via systemic administration of GSH-responsive silica nanocapsules. Adv Mater. 2022:2208018.

[209]

Kuang J, Song W, Yin J, et al. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv Funct Mater. 2018; 28(17): 1800025.

[210]

Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as pharmacological carriers to the brain: promises, shortcomings and challenges. Mol Pharm. 2022; 19(11): 3700-3729.

[211]

Parrasia S, Rossa A, Varanita T, et al. An angiopep2-PAPTP construct overcomes the blood-brain barrier. New perspectives against brain tumors. Pharmaceuticals. 2021; 14(2): 129.

[212]

Kim M, Oh J, Lee Y, et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J Control Release. 2022; 350: 471-485.

[213]

Abramson A, Kirtane AR, Shi Y, et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter. 2022; 5(3): 975-987.

[214]

Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol. 2023; 14: 1294929.

[215]

Macri C, Paxman M, Jenika D, et al. FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. NPJ Vaccines. 2024; 9(1): 76. 2024/04/09.

[216]

Bhamidipati K, Malleswara Rao Nakka N, Ahmed M, et al. Enhancing cancer immunotherapy with mannose mimicking glycopolymer nanoparticles induced activation of dendritic cells. Bioorg Chem. 2024; 152: 107711. 2024/11/01/.

[217]

Liu J, Cui Y, Cabral H, et al. Glucosylated nanovaccines for dendritic cell-targeted antigen delivery and amplified cancer immunotherapy. ACS Nano. 2024; 18(37): 25826-25840.

[218]

Liang K, Sun Y, Xie L, et al. Biologically self-assembled tumor cell-derived cancer nanovaccines as an all-in-one platform for cancer immunotherapy. ACS Nano. 2024; 18(8): 6702-6717.

[219]

Wang H, Sobral MC, Zhang DKY, et al. Metabolic labeling and targeted modulation of dendritic cells. Nat Mater. 2020; 19(11): 1244-1252.

[220]

Zhou L, Zhao L, Wang M, et al. Dendritic cell-hitchhiking in vivo for vaccine delivery to lymph nodes. Adv Sci. 2024; 11(33): 2402199.

[221]

Kastenmüller W, Kastenmüller K, Kurts C, Seder RA. Dendritic cell-targeted vaccines–hope or hype?. Nat Rev Immunol. 2014; 14(10): 705-711.

[222]

Li Y, Tong F, Wang Y, et al. I n situ tumor vaccine with optimized nanoadjuvants and lymph node targeting capacity to treat ovarian cancer and metastases. Acta Pharm Sin B. 2024; 14(9): 4102-4117.

[223]

He J, Xiong X, Yang H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response. Cell Res. 2022; 32(6): 530-542.

[224]

Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019; 16(6): 372-385.

[225]

Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science (New York, NY). 2022; 375(6576): 91-96.

[226]

Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 2020; 20(3): 1578-1589.

[227]

Billingsley MM, Hamilton AG, Mai D, et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 2021; 22(1): 533-542.

[228]

Patel SK, Billingsley MM, Frazee C, et al. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. J Control Release. 2022; 347: 521-532.

[229]

Kheirolomoom A, Kare AJ, Ingham ES, et al. In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles leads to T-cell activation, migration, and phenotypic shift. Biomaterials. 2022; 281: 121339.

[230]

Su F-Y, Zhao QH, Dahotre SN, et al. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. Sci Adv. 2022; 8(8): eabm7950.

[231]

Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. Chin Chem Lett. 2022; 33(2): 597-612.

[232]

Kraynak CA, Huang W, Bender EC, et al. Apoptotic body-inspired nanoparticles target macrophages at sites of inflammation to support an anti-inflammatory phenotype shift. Int J Pharm. 2022; 618: 121634.

[233]

Eshaghi B, Fofana J, Nodder SB, Gummuluru S, Reinhard BM. Virus-mimicking polymer nanoparticles targeting CD169+ macrophages as long-acting nanocarriers for combination antiretrovirals. ACS Appl Mater Interfaces. 2022; 14(2): 2488-2500.

[234]

Moharil P, Wan Z, Pardeshi A, et al. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm Sin B. 2022; 12(3): 1148-1162.

[235]

Grant-Serroukh D, Hunter MR, Maeshima R, et al. Lipid-peptide nanocomplexes for mRNA delivery in vitro and in vivo. J Control Release. 2022; 348: 786-797.

[236]

Wang J-H, Forterre AV, Zhao J, et al. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol Cancer Ther. 2018; 17(5): 1133-1142.

[237]

Forterre AV, Wang J-H, Delcayre A, et al. Extracellular vesicle–mediated in vitro transcribed mRNA delivery for treatment of HER2+ breast cancer xenografts in mice by prodrug CB1954 without general toxicityside effect–free GDEPT in mice by CB1954 (Tretazicar). Mol Cancer Ther. 2020; 19(3): 858-867.

[238]

Usman WM, Pham TC, Kwok YY, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018; 9(1): 1-15.

[239]

Shao J, Zaro J, Shen Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int J Nanomed. 2020; 15: 9355.

[240]

Qiao C, Wang H, Guan Q, Wei M, Li Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: insights and future perspectives. Asian J Pharm Sci. 2022; 17(5): 613-629.

[241]

Pietroiusti A, Campagnolo L, Fadeel B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small. 2013; 9(9-10): 1557-1572.

[242]

Isaac AH, Recalde Phillips SY, Ruben E, et al. Impact of PEG sensitization on the efficacy of PEG hydrogel-mediated tissue engineering. Nat Commun. 2024; 15(1): 3283.

[243]

Lin YC, Chen BM, Tran TTM, Chang TC, Al-Qaisi TS, Roffler SR. Accelerated clearance by antibodies against methoxy PEG depends on pegylation architecture. J Control Release. 2023; 354: 354-367.

[244]

Tome I, Francisco V, Fernandes H, Ferreira L. High-throughput screening of nanoparticles in drug delivery. APL Bioeng. 2021; 5(3): 031511.

[245]

Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio; 2024;26:101101.

[246]

Chen J, Xu Y, Zhou M, et al. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc Natl Acad Sci USA. 2023; 120(50): e2309472120.

[247]

Wang W, Feng S, Ye Z, Gao H, Lin J, Ouyang D. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm Sin B. 2022; 12(6): 2950-2962.

[248]

Li B, Raji IO, Gordon AGR, et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat Mater. 2024; 23(7): 1002-1008.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/