Inhibition of Selenoprotein I promotes ferroptosis and reverses resistance to platinum chemotherapy by impairing Akt phosphorylation in ovarian cancer

Jing Li , Mimi Chen , Dingwen Huang , Ziyin Li , Yu Chen , Jinhua Huang , Yuanqun Chen , Zhili Zhou , Zhiying Yu

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70033

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70033 DOI: 10.1002/mco2.70033
ORIGINAL ARTICLE

Inhibition of Selenoprotein I promotes ferroptosis and reverses resistance to platinum chemotherapy by impairing Akt phosphorylation in ovarian cancer

Author information +
History +
PDF

Abstract

Ovarian cancer (OV) ranks among the deadliest gynecological cancer, known for its high risk of relapse and metastasis, and a general resistance to conventional platinum-based chemotherapy. Selenoprotein I (SELENOI) is a crucial mediator implicated in human hereditary spastic paraplegia. However, its role in human tumors remains poorly elucidated. Here, we comprehensively analyzed SELENOI expression patterns, functions, and clinical implications across various malignancies through the integration of bulk transcriptomics, cancer databases, and in vitro and in vivo experiments. Pan-cancer analysis indicated upregulated SELENOI expression across various cancers, correlating with augmented malignancy, suppressed tumor immunity and poor prognosis. Knockdown of SELENOI caused G0/G1-phase cell cycle arrest and diminished aggressive cancer phenotypes in OV cells. Moreover, SELENOI inhibition augments ferroptosis and reverses the cisplatin resistance in OV cells by modulating Akt phosphorylation. Conversely, overexpression of SELENOI in OV cells enhanced therapeutic sensitivity to cisplatin by upregulating Akt phosphorylation. Importantly, in vivo studies demonstrated that SELENOI inhibition suppressed ovarian tumor growth and enhanced cisplatin’s anticancer effects. These findings highlight the significant role of SELENOI in OV by modulating ferroptosis and chemotherapy resistance. Targeting SELENOI represents a promising therapeutic approach to promote the efficacy of platinum-based chemotherapy in OV, particularly in cases of resistance.

Keywords

Akt phosphorylation / chemoresistance / ferroptosis / ovarian cancer / SELENOI

Cite this article

Download citation ▾
Jing Li, Mimi Chen, Dingwen Huang, Ziyin Li, Yu Chen, Jinhua Huang, Yuanqun Chen, Zhili Zhou, Zhiying Yu. Inhibition of Selenoprotein I promotes ferroptosis and reverses resistance to platinum chemotherapy by impairing Akt phosphorylation in ovarian cancer. MedComm, 2024, 5(12): e70033 DOI:10.1002/mco2.70033

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3): 209-249.

[2]

Colombo N, Lorusso D, Scollo P. Impact of recurrence of ovarian cancer on quality of life and outlook for the future. Int J Gynecol Cancer. 2017; 27(6): 1134-1140.

[3]

Christie EL, Bowtell DDL. Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 2017; 28: viii13-viii15.

[4]

Huang J, Chan WC, Ngai CH, et al. Worldwide burden, risk factors, and temporal trends of ovarian cancer: a global study. Cancers (Basel). 2022; 14(9): 2230.

[5]

Daly MB, Pal T, Berry MP, et al. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021; 19(1): 77-102.

[6]

Muñoz-Galván S, Carnero A. Targeting cancer stem cells to overcome therapy resistance in ovarian cancer. Cells. 2020; 9(6): 1402.

[7]

Kurnit KC, Fleming GF, Lengyel E. Updates and new options in advanced epithelial ovarian cancer treatment. Obstet Gynecol. 2021; 137(1): 108-121.

[8]

Tew WP, Lacchetti C, Ellis A, et al. PARP inhibitors in the management of ovarian cancer: ASCO Guideline. J Clin Oncol. 2020; 38(30): 3468-3493.

[9]

Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther. 2020; 5(1): 137.

[10]

Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I. Selenium anticancer properties and impact on cellular redox status. Antioxidants (Basel). 2020; 9(1).

[11]

Ye R, Huang J, Wang Z, Chen Y, Dong Y. The role and mechanism of essential selenoproteins for homeostasis. Antioxidants (Basel). 2022; 11(5).

[12]

Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060-1072.

[13]

Lee N, Park SJ, Lange M, et al. Selenium reduction of ubiquinone via SQOR suppresses ferroptosis. Nat Metab. 2024; 6(2): 343-358.

[14]

Li Y, Yan H, Xu X, Liu H, Wu C, Zhao L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 2020; 19(1): 323-333.

[15]

Cheng Q, Bao L, Li M, Chang K, Yi X. Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo. J Obstet Gynaecol Res. 2021; 47(7): 2481-2491.

[16]

Wang Y, Zhao G, Condello S, et al. Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 2021; 81(2): 384-399.

[17]

Wang H, Lin D, Yu Q, et al. A promising future of ferroptosis in tumor therapy. Front Cell Dev Biol. 2021; 9: 150.

[18]

Rodencal J, Dixon SJ. A tale of two lipids: Lipid unsaturation commands ferroptosis sensitivity. Proteomics. 2023; 23(6): e2100308.

[19]

Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017; 13(1): 91-98.

[20]

Horibata Y, Ando H, Sugimoto H. Locations and contributions of the phosphotransferases EPT1 and CEPT1 to the biosynthesis of ethanolamine phospholipids[S]. J Lipid Res. 2020; 61(8): 1221-1231.

[21]

Horibata Y, Hirabayashi Y. Identification and characterization of human ethanolaminephosphotransferase1. J Lipid Res. 2007; 48(3): 503-508.

[22]

Gibellini F, Smith TK. The Kennedy pathway–de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB life. 2010; 62(6): 414-428.

[23]

Horibata Y, Elpeleg O, Eran A, et al. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans. J Lipid Res. 2018; 59(6): 1015-1026.

[24]

Ahmed MY, Al Khayat A, Al Murshedi F, et al. A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis. Brain. 2017; 140(3): 547-554.

[25]

Fu G, Guy CS, Chapman NM, et al. Metabolic control of T(FH) cells and humoral immunity by phosphatidylethanolamine. Nature. 2021; 595(7869): 724-729.

[26]

Ma C, Martinez Rodriguez V, Hoffmann PR. Roles for selenoprotein I and ethanolamine phospholipid synthesis in T cell activation. Int J Mol Sci. 2021; 22(20): 11174.

[27]

Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019; 569(7755): 270-274.

[28]

Sun J, Lu Q, Sanmamed MF, Wang J. Siglec-15 as an emerging target for next-generation cancer immunotherapy. Clin Cancer Res. 2021; 27(3): 680-688.

[29]

Picard E, Verschoor CP, Ma GW, Pawelec G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front Immunol. 2020; 11: 369.

[30]

Reed A, Ichu TA, Milosevich N, et al. LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem Biol. 2022; 17(6): 1607-1618.

[31]

Kim JW, Lee J-Y, Oh M, Lee E-W. An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med. 2023; 55(8): 1620-1631.

[32]

Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 2020; 117(49): 31189-31197.

[33]

Li HW, Liu MB, Jiang X, et al. GALNT14 regulates ferroptosis and apoptosis of ovarian cancer through the EGFR/mTOR pathway. Future Oncol. 2022; 18(2): 149-161.

[34]

Jin X, Tang J, Qiu X, et al. Ferroptosis: Emerging mechanisms, biological function, and therapeutic potential in cancer and inflammation. Cell Death Discov. 2024; 10(1): 45.

[35]

Gohr K, Hamacher A, Engelke LH, Kassack MU. Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer. 2017; 17(1): 711.

[36]

Zhang Y, Bao C, Mu Q, et al. Reversal of cisplatin resistance by inhibiting PI3K/Akt signal pathway in human lung cancer cells. Neoplasma. 2016; 63(3): 362-370.

[37]

Katamune C, Koyanagi S, Hashikawa K-I, et al. Mutation of the gene encoding the circadian clock component PERIOD2 in oncogenic cells confers chemoresistance by up-regulating the Aldh3a1 gene. J Biol Chem. 2018; 294:jbc.RA118.004942.

[38]

Sarabia-Sánchez M, Alvarado-Ortiz E, Toledo-Guzman ME, García-Carrancá A, Ortiz-Sánchez E. ALDH(HIGH) population is regulated by the AKT/β-catenin pathway in a cervical cancer model. Front Oncol. 2020; 10: 1039.

[39]

Parajuli B, Fishel ML, Hurley TD. Selective ALDH3A1 inhibition by benzimidazole analogues increase mafosfamide sensitivity in cancer cells. J Med Chem. 2014; 57(2): 449-461.

[40]

Dinavahi SS, Bazewicz CG, Gowda R, Robertson GP. Aldehyde dehydrogenase inhibitors for cancer therapeutics. Trends Pharmacol Sci. 2019; 40(10): 774-789.

[41]

Ghezelayagh TS, Pennington KP, Norquist BM, et al. Characterizing TP53 mutations in ovarian carcinomas with and without concurrent BRCA1 or BRCA2 mutations. Gynecol Oncol. 2021; 160(3): 786-792.

[42]

Perets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013; 24(6): 751-765.

[43]

Choi JA, Lee EH, Cho H, Kim JH. High-dose selenium induces ferroptotic cell death in ovarian cancer. Int J Mol Sci. 2023; 24(3).

[44]

Flowers B, Poles A, Kastrati I. Selenium and breast cancer – an update of clinical and epidemiological data. Arch Biochem Biophys. 2022; 732: 109465.

[45]

Kenfield SA, Van Blarigan EL, DuPre N, Stampfer MJ, E LG, Chan JM. Selenium supplementation and prostate cancer mortality. J Natl Cancer Inst. 2015; 107(1): 360.

[46]

Pitts MW, Hoffmann PR. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium. 2018; 70: 76-86.

[47]

Varlamova EG, Goltyaev MV, Novoselov VI, Fesenko EE. Cloning, intracellular localization, and expression of the mammalian selenocysteine-containing protein SELENOI (SelI) in tumor cell lines. Dokl Biochem Biophys. 2017; 476(1): 320-322.

[48]

Govindarajan M, Wohlmuth C, Waas M, Bernardini MQ, Kislinger T. High-throughput approaches for precision medicine in high-grade serous ovarian cancer. J Hematol Oncol. 2020; 13(1): 134.

[49]

Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease. Int Rev Cell Mol Biol. 2016; 321: 29-88.

[50]

Irie A, Yamamoto K, Miki Y, Murakami M. Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci Rep. 2017; 7(1): 46715.

[51]

Hossain MS, Mineno K, Katafuchi T. Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling. PLOS ONE. 2016; 11(3): e0150846.

[52]

Ferreira da Silva T, Granadeiro LS, Bessa Neto D, Luz LL, Safronov BV, Brites P. Plasmalogens regulate the AKT-ULK1 signaling pathway to control the position of the axon initial segment. Prog Neurobiol. 2021; 205: 102123.

[53]

Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014; 13(2): 140-156.

[54]

Zhou P, Deng F, Yang Z, et al. Ginsenoside Rb1 inhibits oxidative stress-induced ovarian granulosa cell injury through Akt-FoxO1 interaction. Sci China Life Sci. 2022; 65(11): 2301-2315.

[55]

Kim J, Shin JH, Chen CH, et al. Targeting aldehyde dehydrogenase activity in head and neck squamous cell carcinoma with a novel small molecule inhibitor. Oncotarget. 2017; 8(32): 52345-52356.

[56]

Voulgaridou GP, Tsochantaridis I, Tolkas C, et al. Aldehyde dehydrogenase 3A1 confers oxidative stress resistance accompanied by altered DNA damage response in human corneal epithelial cells. Free Radic Biol Med. 2020; 150: 66-74.

[57]

Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7): e47.

[58]

Bu D, Luo H, Huo P, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021; 49(W1): W317-w325.

[59]

Basu A, Bodycombe NE, Cheah JH, et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013; 154(5): 1151-1161.

[60]

Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022; 25: 18-27.

[61]

Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010; 38(Web Server issue): W214-220.

[62]

Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021; 49(D1): D605-d612.

[63]

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-2504.

[64]

Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019; 47(W1): W556-w560.

[65]

Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2009; 2: 18.

[66]

Chen X, Miao Z, Divate M, Zhao Z, Cheung E. KM-express: an integrated online patient survival and gene expression analysis tool for the identification and functional characterization of prognostic markers in breast and prostate cancers. Database. 2018; 2018: bay069.

[67]

Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005; 102(43): 15545-15550.

[68]

Tang D, Chen M, Huang X, et al. SRplot: A free online platform for data visualization and graphing. PLOS ONE. 2023; 18(11): e0294236.

[69]

Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017; 6: e26476.

[70]

Li Y, Yang T, Lai T, et al. CDCP: a visualization and analyzing platform for single-cell datasets. J Genet Genom. 2022; 49(7): 689-692.

[71]

Bonneville R, Krook MA, Kautto EA, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017; 2017.

[72]

Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity. 2018; 48(4): 812-830.e814.

[73]

Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013; 4: 2612.

[74]

Fu J, Li K, Zhang W, et al. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020; 12(1): 21.

[75]

Fekete JT, Győrffy B. ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3, 104 breast cancer patients. Int J Cancer. 2019; 145(11): 3140-3151.

[76]

Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023; 51(D1): D571-d582.

[77]

Huang D, Savage SR, Calinawan AP, et al. A highly annotated database of genes associated with platinum resistance in cancer. Oncogene. 2021; 40(46): 6395-6405.

[78]

Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1, 000, 000 profiles. Cell. 2017; 171(6): 1437-1452.e1417.

[79]

Zaharevitz DW, Holbeck SL, Bowerman C, Svetlik PA. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition. J Mol Graph Model. 2002; 20(4): 297-303.

[80]

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873): 583-589.

[81]

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008; 3(6): 1101-1108.

[82]

Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986; 31(4): 229-234.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/