Targeting WDPF domain of Hsp27 achieves a broad spectrum of antiviral

Mandi Wu , Wei Li , Houying Leung , Yiran Wang , Qianya Wan , Peiran Chen , Cien Chen , Yichen Li , Xi Yao , Ming-Liang He

MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70032

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70032 DOI: 10.1002/mco2.70032
ORIGINAL ARTICLE

Targeting WDPF domain of Hsp27 achieves a broad spectrum of antiviral

Author information +
History +
PDF

Abstract

Enterovirus A71 (EV-A71) is a positive-sense single-stranded RNA virus, which hijacks host proteins to benefit viral internal ribosome entry site (IRES)-dependent protein translation and further propagation. We demonstrated that serine 78 (S78) phosphorylation of Hsp27 is critical for Hsp27/hnRNP A1 relocalization upon EV-A71 infection. Here, we report that the deletion of WDPF and ACD domains disturbs subcellular localization of Hsp27, resulting in partial nuclear translocation. The domain deletion-induced Hsp27 nuclear translocation fails to direct hnRNP A1 translocation. The 2Apro-induced IRES activity and viral replication are suppressed by the deletion of WDPF or ACD domain. Surprisingly, a peptide (WDPF) dramatically inhibits S78 phosphorylation. Therefore, hnRNP A1 translocation, viral IRES activity, and viral protein translation and propagation are all strongly suppressed by the WDPF peptide, but not by peptide without WDPFR sequence (ΔWDPF). Moreover, the WDPF peptide also has potent antiviral activity on other RNA virus (e.g., coronavirus HCoV-OC43) and DNA virus (e.g., HSV-1 and HBV). Peptide treatment with kinase inhibitor Sorafenib brings an additional inhibitory effect on HCoV-OC43 and HSV-1. Taken together, we uncover a crucial role of WDPF domain in S78 phosphorylation for EV-A71-induced hnRNP A1 nuclear translocation, IRES-dependent viral protein translation, and EV-A71 propagation. Our results explore a new path for target-based pan-antiviral strategy.

Keywords

antiviral / hnRNP A1 translocation / Hsp27 / phosphorylation,WDPF domain

Cite this article

Download citation ▾
Mandi Wu, Wei Li, Houying Leung, Yiran Wang, Qianya Wan, Peiran Chen, Cien Chen, Yichen Li, Xi Yao, Ming-Liang He. Targeting WDPF domain of Hsp27 achieves a broad spectrum of antiviral. MedComm, 2025, 6(3): e70032 DOI:10.1002/mco2.70032

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu P, Ji W, Li D, et al. Current status of hand-foot-and-mouth disease. J Biomed Sci. 2023; 30(1): 15.

[2]

Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther. 2020; 5(1): 125.

[3]

Chang LY, Lin HY, Gau SS, et al. Enterovirus A71 neurologic complications and long-term sequelae. J Biomed Sci. 2019; 26(1): 57.

[4]

Xing J, Wang K, Wang G, Li N, Zhang Y. Recent advances in enterovirus A71 pathogenesis: a focus on fatal human enterovirus A71 infection. Arch Virol. 2022; 167(12): 2483-2501.

[5]

Akhmadishina LV, Govorukhina MV, Kovalev EV, Nenadskaya SA, Ivanova OE, Lukashev AN. Enterovirus A71 meningoencephalitis outbreak, Rostov-on-Don, Russia, 2013. Emerg Infect Dis. 2015; 21(8): 1440-1443.

[6]

Donato C, Hoi Le T, Hoa NT, et al. Genetic characterization of Enterovirus 71 strains circulating in Vietnam in 2012. Virology. 2016; 495: 1-9.

[7]

Li Y, Gao F, Wang Y, et al. Immunogenicity and safety of inactivated enterovirus A71 vaccines in children aged 6–35 months in China: a non-inferiority, randomised controlled trial. Lancet Reg Health West Pac. 2021; 16: 100284.

[8]

Zhang X, Zhang Y, Li H, Liu L. Hand-foot-and-mouth disease-associated enterovirus and the development of multivalent HFMD vaccines. Int J Mol Sci. 2022; 24(1): 169.

[9]

Nguyen TT, Chiu CH, Lin CY, et al. Efficacy, safety, and immunogenicity of an inactivated, adjuvanted enterovirus 71 vaccine in infants and children: a multiregion, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet. 2022; 399(10336): 1708-1717.

[10]

Nguyen-Tran H, Messacar K. Preventing enterovirus A71 disease: another promising vaccine for children. Lancet. 2022; 399(10336): 1671-1673.

[11]

Lin JY, Kung YA, Shih SR. Antivirals and vaccines for enterovirus A71. J Biomed Sci. 2019; 26(1): 65.

[12]

Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: past, present, and future. Acta Pharm Sin B. 2022; 12(4): 1542-1566.

[13]

Baggen J, Thibaut HJ, Strating J, van Kuppeveld FJM. The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol. 2018; 16(6): 368-381.

[14]

Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010; 10(11): 778-790.

[15]

Plevka P, Perera R, Cardosa J, Kuhn RJ, Rossmann MG. Crystal structure of human enterovirus 71. Science. 2012; 336(6086): 1274.

[16]

Xia H, Wang P, Wang GC, et al. Human enterovirus nonstructural protein 2CATPase functions as both an RNA helicase and ATP-independent RNA chaperone. PLoS Pathog. 2015; 11(7): e1005067.

[17]

Liu Y, Wang C, Mueller S, Paul AV, Wimmer E, Jiang P. Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathog. 2010; 6(8): e1001066.

[18]

Xiao X, Lei X, Zhang Z, et al. Enterovirus 3A facilitates viral replication by promoting phosphatidylinositol 4-kinase IIIbeta-ACBD3 interaction. J Virol. 2017; 91(19): e00791-17..

[19]

Lei X, Sun Z, Liu X, Jin Q, He B, Wang J. Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol. 2011; 85(17): 8811-8818.

[20]

Li H, Yao Y, Chen Y, et al. TRAF3IP3 is cleaved by EV71 3C protease and exhibits antiviral activity. Front Microbiol. 2022; 13: 914971.

[21]

Li C, Qiao Q, Hao SB, et al. Nonstructural protein 2A modulates replication and virulence of enterovirus 71. Virus Res. 2018; 244: 262-269.

[22]

Su YS, Tsai AH, Ho YF, Huang SY, Liu YC, Hwang LH. Stimulation of the internal ribosome entry site (IRES)-dependent translation of enterovirus 71 by DDX3X RNA helicase and viral 2A and 3C proteases. Front Microbiol. 2018; 9: 1324.

[23]

Shih SR, Stollar V, Li ML. Host factors in enterovirus 71 replication. J Virol. 2011; 85(19): 9658-9666.

[24]

Zhang C, Li Y, Li J. Dysregulated autophagy contributes to the pathogenesis of enterovirus A71 infection. Cell Biosci. 2020; 10(1): 142.

[25]

Huang PN, Lin JY, Locker N, et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic Acids Res. 2011; 39(22): 9633-9648.

[26]

Fuentes Y, Olguin V, Lopez-Ulloa B, et al. Heterogeneous nuclear ribonucleoprotein K promotes cap-independent translation initiation of retroviral mRNAs. Nucleic Acids Res. 2024; 52(5): 2625-2647.

[27]

Tolbert M, Morgan CE, Pollum M, et al. HnRNP A1 alters the structure of a conserved enterovirus IRES domain to stimulate viral translation. J Mol Biol. 2017; 429(19): 2841-2858.

[28]

Lin JY, Shih SR, Pan M, et al. hnRNP A1 interacts with the 5’ untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol. 2009; 83(12): 6106-6114.

[29]

Kaur R, Lal SK. The multifarious roles of heterogeneous ribonucleoprotein A1 in viral infections. Rev Med Virol. 2020; 30(2): e2097.

[30]

Dan X, Wan Q, Yi L, et al. Hsp27 responds to and facilitates enterovirus A71 replication by enhancing viral internal ribosome entry site-mediated translation. J Virol. 2019; 93(9): e02322-18.

[31]

Wu M, Wan Q, Dan X, et al. Targeting Ser78 phosphorylation of Hsp27 achieves potent antiviral effects against enterovirus A71 infection. Emerg Microbes Infect. 2024; 13(1): 2368221.

[32]

Kostenko S, Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci. 2009; 66(20): 3289-3307.

[33]

Henriques A, Koliaraki V, Kollias G. Mesenchymal MAPKAPK2/HSP27 drives intestinal carcinogenesis. Proc Natl Acad Sci USA. 2018; 115(24): E5546-E5555.

[34]

Deng K, Liu L, Tan X, et al. WIP1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal Transduct Target Ther. 2020; 5(1): 36.

[35]

Mellier G, Liu D, Bellot G, Holme AL, Pervaiz S. Small molecule sensitization to TRAIL is mediated via nuclear localization, phosphorylation and inhibition of chaperone activity of Hsp27. Cell Death Dis. 2013; 4(10): e890.

[36]

Geum D, Son GH, Kim K. Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. J Biol Chem. 2002; 277(22): 19913-19921.

[37]

Lelj-Garolla B, Mauk AG. Roles of the N-and C-terminal sequences in Hsp27 self-association and chaperone activity. Protein Sci. 2012; 21(1): 122-133.

[38]

Selig EE, Zlatic CO, Cox D, et al. N-and C-terminal regions of alphaB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation. J Biol Chem. 2020; 295(29): 9838-9854.

[39]

Hayes D, Napoli V, Mazurkie A, Stafford WF, Graceffa P. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J Biol Chem. 2009; 284(28): 18801-18807.

[40]

Jovcevski B, Kelly MA, Rote AP, et al. Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity. Chem Biol. 2015; 22(2): 186-195.

[41]

Clouser AF, Baughman HE, Basanta B, Guttman M, Nath A, Klevit RE. Interplay of disordered and ordered regions of a human small heat shock protein yields an ensemble of ‘quasi-ordered’ states. Elife. 2019; 8: e50259.

[42]

Nappi L, Aguda AH, Nakouzi NA, et al. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. J Clin Invest. 2020; 130(2): 699-714.

[43]

Wendt R, Lingitz MT, Laggner M, et al. Clinical relevance of elevated soluble ST2, HSP27 and 20S proteasome at hospital admission in patients with COVID-19. Biology (Basel). 2021; 10(11): 1186.

[44]

Mathew SS, Della Selva MP, Burch AD. Modification and reorganization of the cytoprotective cellular chaperone Hsp27 during herpes simplex virus type 1 infection. J Virol. 2009; 83(18): 9304-9312.

[45]

Itzhaki RF. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front Aging Neurosci. 2018; 10: 324.

[46]

De Chiara G, Piacentini R, Fabiani M, et al. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. 2019; 15(3): e1007617.

[47]

Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov. 2019; 18(11): 827-844.

[48]

Jeng WJ, Papatheodoridis GV, Lok ASF. Hepatitis B. Lancet. 2023; 401(10381): 1039-1052.

[49]

Boora S, Sharma V, Kaushik S, Bhupatiraju AV, Singh S, Kaushik S. Hepatitis B virus-induced hepatocellular carcinoma: a persistent global problem. Braz J Microbiol. 2023; 54(2): 679-689.

[50]

Harimoto N, Shimada M, Aishima S, et al. The role of heat shock protein 27 expression in hepatocellular carcinoma in Japan: special reference to the difference between hepatitis B and C. Liver Int. 2004; 24(4): 316-321.

[51]

Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006; 5(10): 835-844.

[52]

Garcia JA, Rini BI. Recent progress in the management of advanced renal cell carcinoma. CA Cancer J Clin. 2007; 57(2): 112-125.

[53]

Gao M, Duan H, Liu J, et al. The multi-targeted kinase inhibitor sorafenib inhibits enterovirus 71 replication by regulating IRES-dependent translation of viral proteins. Antiviral Res. 2014; 106: 80-85.

[54]

Holguin BA, Hildenbrand ZL, Bernal RA. Insights into the role of heat shock protein 27 in the development of neurodegeneration. Front Mol Neurosci. 2022; 15: 868089.

[55]

Alderson TR, Roche J, Gastall HY, et al. Local unfolding of the HSP27 monomer regulates chaperone activity. Nat Commun. 2019; 10(1): 1068.

[56]

Baranova EV, Weeks SD, Beelen S, Bukach OV, Gusev NB, Strelkov SV. Three-dimensional structure of alpha-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol. 2011; 411(1): 110-122.

[57]

Pasta SY, Raman B, Ramakrishna T, Rao Ch M. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Mol Vis. 2004; 10: 655-662.

[58]

Alderson TR, Benesch JLP, Baldwin AJ. Proline isomerization in the C-terminal region of HSP27. Cell Stress Chaperones. 2017; 22(4): 639-651.

[59]

Theriault JR, Lambert H, Chavez-Zobel AT, Charest G, Lavigne P, Landry J. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem. 2004; 279(22): 23463-23471.

[60]

Ling S, Luo M, Jiang S, et al. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-kappaB signaling pathway. Virology. 2018; 518: 202-209.

[61]

Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000; 2(9): 645-652.

[62]

Watters K, Palmenberg AC. Differential processing of nuclear pore complex proteins by rhinovirus 2A proteases from different species and serotypes. J Virol. 2011; 85(20): 10874-10883.

[63]

Watters K, Inankur B, Gardiner JC, et al. Differential disruption of nucleocytoplasmic trafficking pathways by rhinovirus 2A proteases. J Virol. 2017; 91(8): e02472-e02416.

[64]

Park N, Skern T, Gustin KE. Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease. J Biol Chem. 2010; 285(37): 28796-287805.

[65]

Park N, Schweers NJ, Gustin KE. Selective removal of FG repeat domains from the nuclear pore complex by enterovirus 2A(pro). J Virol. 2015; 89(21): 11069-11079.

[66]

Walker EJ, Younessi P, Fulcher AJ, et al. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells. PLoS One. 2013; 8(8): e71316.

[67]

Monette A, Ajamian L, Lopez-Lastra M, Mouland AJ. Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression. J Biol Chem. 2009; 284(45): 31350-31362.

[68]

Yi L, He Y, Chen Y, Kung HF, He ML. Potent inhibition of human enterovirus 71 replication by type I interferon subtypes. Antivir Ther. 2011; 16(1): 51-58.

[69]

Dong Q, Men R, Dan X, et al. Hsc70 regulates the IRES activity and serves as an antiviral target of enterovirus A71 infection. Antiviral Res. 2018; 150: 39-46.

[70]

Lu J, Yi L, Zhao J, et al. Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol. 2012; 86(7): 3767-3776.

[71]

Chen Y, Du D, Wu J, et al. Inhibition of hepatitis B virus replication by stably expressed shRNA. Biochem Biophys Res Commun. 2003; 311(2): 398-404.

[72]

Li C, Huang L, Sun W, et al. Saikosaponin D suppresses enterovirus A71 infection by inhibiting autophagy. Signal Transduct Target Ther. 2019; 4: 4.

[73]

Zhou F, Wan Q, Lu J, Chen Y, Lu G, He ML. Pim1 impacts enterovirus A71 replication and represents a potential target in antiviral therapy. iScience. 2019; 19: 715-727.

[74]

Ma Y, Peng J, Liu W, et al. Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics. 2009; 8(8): 1878-1890.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/