Atopic dermatitis: pathogenesis and therapeutic intervention

Chengcheng Yue , Hong Zhou , Xiaoyan Wang , Jiadong Yu , Yawen Hu , Pei Zhou , Fulei Zhao , Fanlian Zeng , Guolin Li , Ya Li , Yuting Feng , Xiaochi Sun , Shishi Huang , Mingxiang He , Wenling Wu , Nongyu Huang , Jiong Li

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70029

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70029 DOI: 10.1002/mco2.70029
REVIEW

Atopic dermatitis: pathogenesis and therapeutic intervention

Author information +
History +
PDF

Abstract

The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.

Keywords

atopic dermatitis / immune cells / pathophysiology / therapeutic intervention

Cite this article

Download citation ▾
Chengcheng Yue, Hong Zhou, Xiaoyan Wang, Jiadong Yu, Yawen Hu, Pei Zhou, Fulei Zhao, Fanlian Zeng, Guolin Li, Ya Li, Yuting Feng, Xiaochi Sun, Shishi Huang, Mingxiang He, Wenling Wu, Nongyu Huang, Jiong Li. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm, 2024, 5(12): e70029 DOI:10.1002/mco2.70029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Laughter MR, Maymone MBC, Mashayekhi S, et al. The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990–2017. Br J Dermatol. 2021; 184(2): 304-309.

[2]

Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol. 2024; 132(2): 187-195.

[3]

Cao X, Wang M, Zhou M, et al. Global, regional and national burden of paediatric atopic dermatitis: a trend and geographic inequalities analysis. Clin Exp Allergy. 2024; 54(10): 747-759.

[4]

Elezbawy B, Farghaly M, Al Lafi A, et al. Strategic approaches to reducing the burden of atopic dermatitis in the Middle East and Africa Region. Value Health Reg Issues. 2024; 42: 100987.

[5]

Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022; 7(1): 135.

[6]

Coates M, Lee MJ, Norton D, MacLeod AS. The skin and intestinal microbiota and their specific innate immune systems. Front Immunol. 2019; 10: 2950.

[7]

Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019; 20(8): 1811

[8]

Gallegos-Alcala P, Jimenez M, Cervantes-Garcia D, Salinas E. The keratinocyte as a crucial cell in the predisposition, onset, progression, therapy and study of the atopic dermatitis. Int J Mol Sci. 2021; 22(19):10661

[9]

De Benedetto A, Rafaels NM, McGirt LY, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011; 127(3): 773-786. e1-e7.

[10]

Schmuth M, Eckmann S, Moosbrugger-Martinz V, et al. Skin barrier in atopic dermatitis. J Invest Dermatol. 2024; 144(5): 989-1000. e1.

[11]

Prost-Squarcioni C. [Histology of skin and hair follicle]. Med Sci (Paris). 2006; 22(2): 131-137.

[12]

Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. 2019; 19(1): 19-30.

[13]

Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. Immunity. 2019; 50(3): 552-565.

[14]

Campione E, Lanna C, Diluvio L, et al. Skin immunity and its dysregulation in atopic dermatitis, hidradenitis suppurativa and vitiligo. Cell Cycle. 2020; 19(3): 257-267.

[15]

Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014; 14(5): 433.

[16]

Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov. 2022; 21(1): 21-40.

[17]

Stander S. Atopic dermatitis. N Engl J Med. 2021; 384(12): 1136-1143.

[18]

Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016; 387(10023): 1109-1122.

[19]

Thyssen JP, Halling AS, Schmid-Grendelmeier P, Guttman-Yassky E, Silverberg JI. Comorbidities of atopic dermatitis-what does the evidence say? J Allergy Clin Immunol. 2023; 151(5): 1155-1162.

[20]

Ferrucci SM, Tavecchio S, Angileri L, Surace T, Berti E, Buoli M. Factors associated with affective symptoms and quality of life in patients with atopic dermatitis. Acta Derm Venereol. 2021; 101(11): adv00590.

[21]

Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev. 2011; 242(1): 233-46.

[22]

Malik K, Heitmiller KD, Czarnowicki T. An Update on the Pathophysiology of Atopic Dermatitis. Dermatol Clin. 2017; 35(3): 317-326.

[23]

Dharmage SC, Lowe AJ, Matheson MC, Burgess JA, Allen KJ, Abramson MJ. Atopic dermatitis and the atopic march revisited. Allergy. 2014; 69(1): 17-27.

[24]

Shaker M. New insights into the allergic march. Curr Opin Pediatr. 2014; 26(4): 516-20.

[25]

Nomura T, Kabashima K. Advances in atopic dermatitis in 2019–2020: Endotypes from skin barrier, ethnicity, properties of antigen, cytokine profiles, microbiome, and engagement of immune cells. J Allergy Clin Immunol. 2021; 148(6): 1451-1462.

[26]

Kim HW, Ju DB, Kye YC, et al. Galectin-9 induced by dietary probiotic mixture regulates immune balance to reduce atopic dermatitis symptoms in mice. Front Immunol. 2019; 10: 3063.

[27]

Jin H, He R, Oyoshi M, Geha RS. Animal models of atopic dermatitis. J Invest Dermatol. 2009; 129(1): 31-40.

[28]

Fang Z, Li L, Zhao J, et al. Bifidobacteria adolescentis regulated immune responses and gut microbial composition to alleviate DNFB-induced atopic dermatitis in mice. Eur J Nutr. 2020; 59(7): 3069-3081.

[29]

Peng W, Novak N. Pathogenesis of atopic dermatitis. Clin Exp Allergy. 2015; 45(3): 566-574.

[30]

Lee JH, Lee YS, Lee EJ, Lee JH, Kim TY. Capsiate inhibits DNFB-induced atopic dermatitis in NC/Nga mice through mast cell and CD4+ T-cell inactivation. J Invest Dermatol. 2015; 135(8): 1977-1985.

[31]

Sasso O, Summa M, Armirotti A, Pontis S, De Mei C, Piomelli D. The N-acylethanolamine acid amidase inhibitor ARN077 suppresses inflammation and pruritus in a mouse model of allergic dermatitis. J Invest Dermatol. 2018; 138(3): 562-569.

[32]

Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018; 4(1): 1.

[33]

Liu X, Xu J, Wang Z, et al. Differential changes in the gut microbiota between extrinsic and intrinsic atopic dermatitis. J Autoimmun. 2023; 141: 103096.

[34]

Faye O, Flohr C, Kabashima K, et al. Atopic dermatitis: A global health perspective. J Eur Acad Dermatol Venereol. 2024; 38(5): 801-811.

[35]

Chu DK, Koplin JJ, Ahmed T, Islam N, Chang CL, Lowe AJ. How to prevent atopic dermatitis (eczema) in 2024: theory and evidence. J Allergy Clin Immunol Pract. 2024; 12(7): 1695-1704.

[36]

Boothe WD, Tarbox JA, Tarbox MB. Atopic dermatitis: pathophysiology. Adv Exp Med Biol. 2024; 1447: 21-35.

[37]

Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011; 242(1): 10-30.

[38]

Budu-Aggrey A, Kilanowski A, Sobczyk MK, et al. European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation. Nat Commun. 2023; 14(1): 6172.

[39]

Virolainen SJ, Satish L, Biagini JM, et al. Filaggrin loss-of-function variants are associated with atopic dermatitis phenotypes in a diverse, early-life prospective cohort. JCI Insight. 2024; 9(9):e178258

[40]

Stamatas GN, Sato T, Chaoimh CN, et al. Early skin inflammatory biomarker is predictive of development and persistence of atopic dermatitis in infants. J Allergy Clin Immunol. 2024; 153(6): 1597-1603 e4.

[41]

Zakiudin DP, Thyssen JP, Zachariae C, Videm V, Oien T, Simpson MR. Filaggrin mutation status and prevention of atopic dermatitis with maternal probiotic supplementation. Acta Derm Venereol. 2024; 104: adv24360.

[42]

Schuler CF, Tsoi LC, Billi AC, Harms PW, Weidinger S, Gudjonsson JE. Genetic and immunological pathogenesis of atopic dermatitis. J Invest Dermatol. 2024; 144(5): 954-968.

[43]

Huffaker MF, Kanchan K, Bahnson HT, et al. Epidermal differentiation complex genetic variation in atopic dermatitis and peanut allergy. J Allergy Clin Immunol. 2023; 151(4): 1137-1142. e4.

[44]

Marsella R, Ahrens K, Wilkes R, Munguia N. Trichohyalin gene expression is negatively correlated with the severity of dermatitis in a canine atopic dermatitis model. Front Vet Sci. 2024; 11: 1396557.

[45]

Makino T, Mizawa M, Takemoto K, Yamamoto S, Shimizu T. Altered expression of S100 fused-type proteins in an atopic dermatitis skin model. Exp Dermatol. 2023; 32(12): 2160-2165.

[46]

Sliz E, Huilaja L, Pasanen A, et al. Uniting biobank resources reveals novel genetic pathways modulating susceptibility for atopic dermatitis. J Allergy Clin Immunol. 2022; 149(3): 1105-1112. e9.

[47]

Margolis DJ, Duke JL, Mitra N, et al. A combination of HLA-DP alpha and beta chain polymorphisms paired with a SNP in the DPB1 3’ UTR region, denoting expression levels, are associated with atopic dermatitis. Front Genet. 2023; 14: 1004138.

[48]

Mucha S, Baurecht H, Novak N, et al. Protein-coding variants contribute to the risk of atopic dermatitis and skin-specific gene expression. J Allergy Clin Immunol. 2020; 145(4): 1208-1218.

[49]

Paternoster L, Standl M, Waage J, et al. Multi-ancestry genome-wide association study of 21, 000 cases and 95, 000 controls identifies new risk loci for atopic dermatitis. Nat Genet. 2015; 47(12): 1449-1456.

[50]

Erratum. J Invest Dermatol. 2018; 138(2): 472-473.

[51]

Arkwright PD, Koplin JJ. Impact of a decade of research into atopic dermatitis. J Allergy Clin Immunol Pract. 2023; 11(1): 63-71.

[52]

Celebi Sozener Z, Treffeisen ER, Ozdel Ozturk B, Schneider LC. Global warming and implications for epithelial barrier disruption and respiratory and dermatologic allergic diseases. J Allergy Clin Immunol. 2023; 152(5): 1033-1046.

[53]

Hulpusch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol. 2024; 154(1): 31-41.

[54]

Rauer L, Reiger M, Bhattacharyya M, et al. Skin microbiome and its association with host cofactors in determining atopic dermatitis severity. J Eur Acad Dermatol Venereol. 2023; 37(4): 772-782.

[55]

De Tomassi A, Reiter A, Reiger M, et al. Combining 16S sequencing and qPCR quantification reveals staphylococcus aureus driven bacterial overgrowth in the skin of severe atopic dermatitis patients. Biomolecules. 2023; 13(7): 1030

[56]

Mohammad S, Karim MR, Iqbal S, et al. Atopic dermatitis: Pathophysiology, microbiota, and metabolome - a comprehensive review. Microbiol Res. 2024; 281: 127595.

[57]

Saheb Kashaf S, Harkins CP, Deming C, et al. Staphylococcal diversity in atopic dermatitis from an individual to a global scale. Cell Host Microbe. 2023; 31(4): 578-592. e6.

[58]

van den Bogaard EH, Elias PM, Goleva E, et al. Targeting skin barrier function in atopic dermatitis. J Allergy Clin Immunol Pract. 2023; 11(5): 1335-1346.

[59]

Verzeaux L, Vyumvuhore R, Boudier D, et al. Atopic skin: In vivo Raman identification of global molecular signature, a comparative study with healthy skin. Exp Dermatol. 2018; 27(4): 403-408.

[60]

Yoo S, Kim J, Jeong ET, Hwang SJ, Kang NG, Lee J. Penetration rates into the stratum corneum layer: a novel quantitative indicator for assessing skin barrier function. Skin Res Technol. 2024; 30(3): e13655.

[61]

Nakahara T, Kido-Nakahara M, Tsuji G, Furue M. Basics and recent advances in the pathophysiology of atopic dermatitis. J Dermatol. 2021; 48(2): 130-139.

[62]

Berdyshev E, Bronova I, Leung DYM, Goleva E. Methodological considerations for lipid and polar component analyses in human skin stratum corneum. Cell Biochem Biophys. 2021; 79(3): 659-668.

[63]

Jiang Z, Liu S, Yuan S, Zhang H, Yuan S. Models of the three-component bilayer of stratum corneum: a molecular simulation study. J Phys Chem B. 2024; 128(16): 3833-3843.

[64]

Mijaljica D, Townley JP, Spada F, Harrison IP. The heterogeneity and complexity of skin surface lipids in human skin health and disease. Prog Lipid Res. 2024; 93: 101264.

[65]

Schmitt T, Neubert RHH. State of the art in stratum corneum research. Part II: hypothetical stratum corneum lipid matrix models. Skin Pharmacol Physiol. 2020; 33(4): 213-230.

[66]

Suzuki M, Ohno Y, Kihara A. Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. J Lipid Res. 2022; 63(7): 100235.

[67]

Berdyshev E, Goleva E, Bissonnette R, et al. Dupilumab significantly improves skin barrier function in patients with moderate-to-severe atopic dermatitis. Allergy. 2022; 77(11): 3388-3397.

[68]

Yin H, Qiu Z, Zhu R, et al. Dysregulated lipidome of sebum in patients with atopic dermatitis. Allergy. 2023; 78(6): 1524-1537.

[69]

Beck LA, Cork MJ, Amagai M, et al. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis. JID Innov. 2022; 2(5): 100131.

[70]

Ma F, Plazyo O, Billi AC, et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat Commun. 2023; 14(1): 3455.

[71]

Gupta RK, Figueroa DS, Fung K, et al. LIGHT signaling through LTbetaR and HVEM in keratinocytes promotes psoriasis and atopic dermatitis-like skin inflammation. J Autoimmun. 2024; 144: 103177.

[72]

Meesters LD, Niehues H, Johnston L, et al. Keratinocyte signaling in atopic dermatitis: Investigations in organotypic skin models toward clinical application. J Allergy Clin Immunol. 2023; 151(5): 1231-1235.

[73]

Das P, Mounika P, Yellurkar ML, et al. Keratinocytes: an enigmatic factor in atopic dermatitis. Cells. 2022; 11(10): 1683

[74]

Chieosilapatham P, Kiatsurayanon C, Umehara Y, et al. Keratinocytes: innate immune cells in atopic dermatitis. Clin Exp Immunol. 2021; 204(3): 296-309.

[75]

Yu J, Zhao Q, Wang X, et al. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J Autoimmun. 2022; 133: 102916.

[76]

Humeau M, Boniface K, Bodet C. Cytokine-mediated crosstalk between keratinocytes and T cells in atopic dermatitis. Front Immunol. 2022; 13: 801579.

[77]

Zhou J, Liang G, Liu L, et al. Single-cell RNA-seq reveals abnormal differentiation of keratinocytes and increased inflammatory differentiated keratinocytes in atopic dermatitis. J Eur Acad Dermatol Venereol. 2023; 37(11): 2336-2348.

[78]

Wang Y, Tan L, Jiao K, et al. Scutellarein attenuates atopic dermatitis by selectively inhibiting transient receptor potential vanilloid 3 channels. Br J Pharmacol. 2022; 179(20): 4792-4808.

[79]

Ni X, Xu Y, Wang W, et al. IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation. Nat Immunol. 2022; 23(11): 1577-1587.

[80]

Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med. 2007; 13(10): 1155-1159.

[81]

Wang Y, Xiang Y, Xin VW, et al. Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 2020; 13(1): 107.

[82]

Buckwalter MR, Albert ML. Orchestration of the immune response by dendritic cells. Curr Biol. 2009; 19(9): R355-61.

[83]

Luo J, Zhu Z, Zhai Y, et al. The role of TSLP in atopic dermatitis: from pathogenetic molecule to therapeutical target. Mediators Inflamm. 2023; 2023: 7697699.

[84]

Kaplan DH. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 2010; 31(12): 446-451.

[85]

Asahina A, Hosoi J, Grabbe S, Granstein RD. Modulation of Langerhans cell function by epidermal nerves. J Allergy Clin Immunol. 1995; 96(6 Pt 2): 1178-82.

[86]

Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010; 234(1): 120-141.

[87]

Collin M, Bigley V. Many Langerhans make light work of skin immunity. Immunity. 2021; 54(10): 2188-2190.

[88]

Rajesh A, Wise L, Hibma M. The role of Langerhans cells in pathologies of the skin. Immunol Cell Biol. 2019; 97(8): 700-713.

[89]

Yoshida K, Kubo A, Fujita H, et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 2014; 134(4): 856-864.

[90]

Zaniboni MC, Samorano LP, Orfali RL, Aoki V. Skin barrier in atopic dermatitis: beyond filaggrin. An Bras Dermatol. 2016; 91(4): 472-478.

[91]

Marschall P, Wei R, Segaud J, et al. Dual function of Langerhans cells in skin TSLP-promoted T(FH) differentiation in mouse atopic dermatitis. J Allergy Clin Immunol. 2021; 147(5): 1778-1794.

[92]

Nakajima S, Igyarto BZ, Honda T, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012; 129(4): 1048-1055. e6.

[93]

Nakatsuji T, Gallo RL. The role of the skin microbiome in atopic dermatitis. Ann Allergy Asthma Immunol. 2019; 122(3): 263-269.

[94]

Stevens ML, Gonzalez T, Schauberger E, et al. Simultaneous skin biome and keratinocyte genomic capture reveals microbiome differences by depth of sampling. J Allergy Clin Immunol. 2020; 146(6): 1442-1445.

[95]

Iwamoto K, Numm TJ, Koch S, Herrmann N, Leib N, Bieber T. Langerhans and inflammatory dendritic epidermal cells in atopic dermatitis are tolerized toward TLR2 activation. Allergy. 2018; 73(11): 2205-2213.

[96]

Salim F, Gunawan H, Suwarsa O, Sutedja E. Increased expression of toll-like receptor (TLR) 2 and TLR6 on peripheral blood monocytes by induction of staphylococcal enterotoxin b during exacerbation of atopic dermatitis patients. Clin Cosmet Investig Dermatol. 2023; 16: 301-307.

[97]

Askarian F, Wagner T, Johannessen M, Nizet V. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol Rev. 2018; 42(5): 656-671.

[98]

van Dalen R, De La Cruz Diaz JS, Rumpret M, et al. Langerhans cells sense staphylococcus aureus wall teichoic acid through langerin to induce inflammatory responses. mBio. 2019; 10(3): e00330-19

[99]

Hendriks A, van Dalen R, Ali S, et al. Impact of glycan linkage to staphylococcus aureus wall teichoic acid on langerin recognition and langerhans cell activation. ACS Infect Dis. 2021; 7(3): 624-635.

[100]

Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020; 124(1): 36-43.

[101]

Leitch CS, Natafji E, Yu C, et al. Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 2016; 138(2): 482-490. e7.

[102]

Angeli V, Staumont D, Charbonnier AS, et al. Activation of the D prostanoid receptor 1 regulates immune and skin allergic responses. J Immunol. 2004; 172(6): 3822-3829.

[103]

Didovic S, Opitz FV, Holzmann B, Forster I, Weighardt H. Requirement of MyD88 signaling in keratinocytes for Langerhans cell migration and initiation of atopic dermatitis-like symptoms in mice. Eur J Immunol. 2016; 46(4): 981-992.

[104]

Hinz T, Zaccaro D, Byron M, et al. Atopic dermo-respiratory syndrome is a correlate of eczema herpeticum. Allergy. 2011; 66(7): 925-933.

[105]

Staudacher A, Hinz T, Novak N, von Bubnoff D, Bieber T. Exaggerated IDO1 expression and activity in Langerhans cells from patients with atopic dermatitis upon viral stimulation: a potential predictive biomarker for high risk of Eczema herpeticum. Allergy. 2015; 70(11): 1432-1439.

[106]

Bryan E, Teague JE, Eligul S, et al. Human skin T cells express conserved T-cell receptors that cross-react with staphylococcal superantigens and CD1a. J Invest Dermatol. 2024; 144(4): 833-843.

[107]

Monnot GC, Wegrecki M, Cheng TY, et al. Staphylococcal phosphatidylglycerol antigens activate human T cells via CD1a. Nat Immunol. 2023; 24(1): 110-122.

[108]

Bedoui S, Whitney PG, Waithman J, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol. 2009; 10(5): 488-495.

[109]

Seneschal J, Jiang X, Kupper TS. Langerin+ dermal DC, but not Langerhans cells, are required for effective CD8-mediated immune responses after skin scarification with vaccinia virus. J Invest Dermatol. 2014; 134(3): 686-694.

[110]

Flacher V, Tripp CH, Mairhofer DG, et al. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol Med. 2014; 6(9): 1191-204.

[111]

Hain T, Melchior F, Kamenjarin N, et al. Dermal CD207-negative migratory dendritic cells are fully competent to prime protective, skin homing cytotoxic T-lymphocyte responses. J Invest Dermatol. 2019; 139(2): 422-429.

[112]

Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008; 8(12): 935-947.

[113]

Ginhoux F, Collin MP, Bogunovic M, et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med. 2007; 204(13): 3133-3146.

[114]

Singh TP, Zhang HH, Borek I, et al. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat Commun. 2016; 7: 13581.

[115]

Henri S, Poulin LF, Tamoutounour S, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med. 2010; 207(1): 189-206.

[116]

Xiao C, Zhu Z, Zhang C, et al. A population of dermal Langerin(+) dendritic cells promote the inflammation in mouse model of atopic dermatitis. Front Immunol. 2022; 13: 981819.

[117]

Lee CH, Chen JS, Chiu HC, et al. Dermal dendritic cells, but not Langerhans cells, are critical in murine single epicutaneous sensitization. Exp Dermatol. 2015; 24(1): 67-69.

[118]

He H, Suryawanshi H, Morozov P, et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J Allergy Clin Immunol. 2020; 145(6): 1615-1628.

[119]

Bangert C, Rindler K, Krausgruber T, et al. Persistence of mature dendritic cells, T(H)2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4Ralpha blockade. Sci Immunol. 2021; 6(55):eabe2749

[120]

Bakker D, de Bruin-Weller M, Drylewicz J, van Wijk F, Thijs J. Biomarkers in atopic dermatitis. J Allergy Clin Immunol. 2023; 151(5): 1163-1168.

[121]

De Bruyn Carlier T, Badloe FMS, Ring J, Gutermuth J, Kortekaas Krohn I. Autoreactive T cells and their role in atopic dermatitis. J Autoimmun. 2021; 120: 102634.

[122]

Han J, Cai X, Qin S, et al. TMEM232 promotes the inflammatory response in atopic dermatitis via the nuclear factor-kappaB and signal transducer and activator of transcription 3 signalling pathways. Br J Dermatol. 2023; 189(2): 195-209.

[123]

Sato M, Matsuo K, Susami Y, et al. A CCR4 antagonist attenuates atopic dermatitis-like skin inflammation by inhibiting the recruitment and expansion of Th2 cells and Th17 cells. Int Immunol. 2023; 35(9): 437-446.

[124]

Nakatani T, Kaburagi Y, Shimada Y, et al. CCR4 memory CD4+ T lymphocytes are increased in peripheral blood and lesional skin from patients with atopic dermatitis. J Allergy Clin Immunol. 2001; 107(2): 353-358.

[125]

Matsuo K, Hatanaka S, Kimura Y, et al. A CCR4 antagonist ameliorates atopic dermatitis-like skin lesions induced by dibutyl phthalate and a hydrogel patch containing ovalbumin. Biomed Pharmacother. 2019; 109: 1437-1444.

[126]

Bissonnette R, DuBois J, Facheris P, et al. Clinical and molecular effects of oral CCR4 antagonist RPT193 in atopic dermatitis: A Phase 1 study. Allergy. 2024; 79(4): 924-936.

[127]

Elsner JS, Carlsson M, Stougaard JK, et al. The OX40 axis is associated with both systemic and local involvement in atopic dermatitis. Acta Derm Venereol. 2020; 100(6): adv00099.

[128]

Levartovsky S, Msarwa S, Reiter S, Eli I, Winocur E, Sarig R. The association between emotional stress, sleep, and awake bruxism among dental students: a sex comparison. J Clin Med. 2021; 11(1): 10

[129]

Iriki H, Takahashi H, Amagai M. Diverse role of OX40 on T cells as a therapeutic target for skin diseases. J Invest Dermatol. 2023; 143(4): 545-553.

[130]

Croft M, Esfandiari E, Chong C, et al. OX40 in the pathogenesis of atopic dermatitis-a new therapeutic target. Am J Clin Dermatol. 2024; 25(3): 447-461.

[131]

Hsu UH, Chiang BL. gammadelta T cells and allergic diseases. Clin Rev Allergy Immunol. 2023; 65(2): 172-182.

[132]

Yoshida T, Beck LA, De Benedetto A. Skin barrier defects in atopic dermatitis: from old idea to new opportunity. Allergol Int. 2022; 71(1): 3-13.

[133]

Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018; 10(3): 207-215.

[134]

Spidale NA, Malhotra N, Frascoli M, et al. Neonatal-derived IL-17 producing dermal gammadelta T cells are required to prevent spontaneous atopic dermatitis. Elife. 2020; 9: e51188.

[135]

Wang J, Pajulas A, Fu Y, et al. gammadelta T cell–mediated wound healing is diminished by allergic skin inflammation. J Invest Dermatol. 2022; 142(10): 2805-2816. e4.

[136]

Chojnacka-Purpurowicz J, Owczarczyk-Saczonek A, Nedoszytko B. The role of gamma delta T lymphocytes in physiological and pathological condition-focus on psoriasis, atopic dermatitis, autoimmune disorders, cancer and lymphomas. Int J Mol Sci. 2024; 25(14): 7960

[137]

Clowry J, Dempsey DJ, Claxton TJ, et al. Distinct T cell signatures are associated with Staphylococcus aureus skin infection in pediatric atopic dermatitis. JCI Insight. 2024; 9(9):e178789

[138]

Nicolas LSS, Czarnowicki T, Akdis M, et al. CLA+ memory T cells in atopic dermatitis: CLA+ T cells and atopic dermatitis. Allergy. 2024; 79(1): 15-25.

[139]

Zheng C, Cao T, Ye C, Zou Y. Neutrophil recruitment by CD4 tissue-resident memory T cells induces chronic recurrent inflammation in atopic dermatitis. Clin Immunol. 2023; 256: 109805.

[140]

Pham JP, Wark KJL, Woods J, Frew JW. Resident cutaneous memory T cells: a clinical review of their role in chronic inflammatory dermatoses and potential as therapeutic targets. Br J Dermatol. 2023; 189(6): 656-663.

[141]

Migayron L, Merhi R, Seneschal J, Boniface K. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive. J Allergy Clin Immunol. 2024; 153(3): 606-614.

[142]

Braun C, Badiou C, Guironnet-Paquet A, et al. Staphylococcus aureus-specific skin resident memory T cells protect against bacteria colonization but exacerbate atopic dermatitis-like flares in mice. J Allergy Clin Immunol. 2024; 154(2): 355-374.

[143]

Kolkhir P, Akdis CA, Akdis M, et al. Type 2 chronic inflammatory diseases: targets, therapies and unmet needs. Nat Rev Drug Discov. 2023; 22(9): 743-767.

[144]

Matejuk A. Skin immunity. Arch Immunol Ther Exp (Warsz). 2018; 66(1): 45-54.

[145]

Kroger M, Scheffel J, Nikolaev VV, et al. In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging. Sci Rep. 2020; 10(1): 14930.

[146]

Roy S, Chompunud Na Ayudhya C, Thapaliya M, Deepak V, Ali H. Multifaceted MRGPRX2: new insight into the role of mast cells in health and disease. J Allergy Clin Immunol. 2021; 148(2): 293-308.

[147]

Toyoshima S, Sakamoto-Sasaki T, Kurosawa Y, et al. miR103a-3p in extracellular vesicles from FcepsilonRI-aggregated human mast cells enhances IL-5 production by group 2 innate lymphoid cells. J Allergy Clin Immunol. 2021; 147(5): 1878-1891.

[148]

Wang Z, Babina M. MRGPRX2 signals its importance in cutaneous mast cell biology: does MRGPRX2 connect mast cells and atopic dermatitis? Exp Dermatol. 2020; 29(11): 1104-1111.

[149]

Jarvikallio A, Harvima IT, Naukkarinen A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res. 2003; 295(1): 2-7.

[150]

Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y. Mast cells in atopic dermatitis. Curr Opin Immunol. 2009; 21(6): 666-678.

[151]

Keith YH, Honda T, Ono S, et al. Infiltration and local differentiation of bone marrow-derived integrinbeta7-positive mast cell progenitors in atopic dermatitis-like skin. J Allergy Clin Immunol. 2022.

[152]

Serhan N, Basso L, Sibilano R, et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol. 2019; 20(11): 1435-1443.

[153]

Chaki S, Alkanfari I, Roy S, et al. Inhibition of orai channel function regulates Mas-related G protein-coupled receptor-mediated responses in mast cells. Front Immunol. 2021; 12: 803335.

[154]

Luo X, Chen J, Yang H, et al. Dendritic cell immunoreceptor drives atopic dermatitis by modulating oxidized CaMKII-involved mast cell activation. JCI Insight. 2022; 7(5): e152559.

[155]

Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol. 2014; 133(4): 1184-1194.

[156]

Mortaz E, Amani S, Mumby S, et al. Role of mast cells and type 2 innate lymphoid (ILC2) cells in lung transplantation. J Immunol Res. 2018; 2018: 2785971.

[157]

Rafei-Shamsabadi DA, Klose CSN, Halim TYF, Tanriver Y, Jakob T. Context dependent role of type 2 innate lymphoid cells in allergic skin inflammation. Front Immunol. 2019; 10: 2591.

[158]

Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D(2) receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res. 2018; 19(1): 189.

[159]

Mobus L, Rodriguez E, Harder I, et al. Atopic dermatitis displays stable and dynamic skin transcriptome signatures. J Allergy Clin Immunol. 2021; 147(1): 213-223.

[160]

Yang TB, Kim BS. Pruritus in allergy and immunology. J Allergy Clin Immunol. 2019; 144(2): 353-360.

[161]

Dunford PJ, Williams KN, Desai PJ, Karlsson L, McQueen D, Thurmond RL. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol. 2007; 119(1): 176-183.

[162]

Facheris P, Jeffery J, Del Duca E, Guttman-Yassky E. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol Immunol. 2023; 20(5): 448-474.

[163]

Jia T, Che D, Zheng Y, et al. Mast cells initiate type 2 inflammation through tryptase released by MRGPRX2/MRGPRB2 activation in atopic dermatitis. J Invest Dermatol. 2024; 144(1): 53-62. e2.

[164]

Redhu D, Franke K, Aparicio-Soto M, et al. Mast cells instruct keratinocytes to produce thymic stromal lymphopoietin: relevance of the tryptase/protease-activated receptor 2 axis. J Allergy Clin Immunol. 2022; 149(6): 2053-2061. e6.

[165]

Gupta K, Harvima IT. Mast cell-neural interactions contribute to pain and itch. Immunol Rev. 2018; 282(1): 168-187.

[166]

Cianferoni A, Spergel J. The importance of TSLP in allergic disease and its role as a potential therapeutic target. Expert Rev Clin Immunol. 2014; 10(11): 1463-1474.

[167]

Ebina-Shibuya R, Leonard WJ. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol. 2023; 23(1): 24-37.

[168]

Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell. 2018; 174(5): 1054-1066.

[169]

Mohammadi H, Sharafkandi N, Hemmatzadeh M, et al. The role of innate lymphoid cells in health and disease. J Cell Physiol. 2018; 233(6): 4512-4529.

[170]

Spits H, Artis D, Colonna M, et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol. 2013; 13(2): 145-149.

[171]

Eberl G, Colonna M, Di Santo JP, McKenzie AN. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science. 2015; 348(6237): aaa6566.

[172]

Nagasawa M, Spits H, Ros XR. Innate lymphoid cells (ILCs): cytokine hubs regulating immunity and tissue homeostasis. Cold Spring Harb Perspect Biol. 2018; 10(12):a030304

[173]

Alkon N, Bauer WM, Krausgruber T, et al. Single-cell analysis reveals innate lymphoid cell lineage infidelity in atopic dermatitis. J Allergy Clin Immunol. 2022; 149(2): 624-639.

[174]

Reynolds G, Vegh P, Fletcher J, et al. Developmental cell programs are co-opted in inflammatory skin disease. Science. 2021; 371(6527):eaba6500

[175]

Jia H, Wan H, Zhang D. Innate lymphoid cells: a new key player in atopic dermatitis. Front Immunol. 2023; 14: 1277120.

[176]

Yashiro T, Moro K. Crossing the valley of death: Toward translational research regarding ILC2. Allergol Int. 2023; 72(2): 187-193.

[177]

Moro K, Yamada T, Tanabe M, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010; 463(7280): 540-544.

[178]

Martinez-Gonzalez I, Steer CA, Takei F. Lung ILC2s link innate and adaptive responses in allergic inflammation. Trends Immunol. 2015; 36(3): 189-195.

[179]

Hirahara K, Aoki A, Kiuchi M, Nakayama T. Memory-type pathogenic T(H)2 cells and ILC2s in type 2 allergic inflammation. J Allergy Clin Immunol. 2021; 147(6): 2063-2066.

[180]

Salimi M, Barlow JL, Saunders SP, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013; 210(13): 2939-2950.

[181]

Stanbery AG, Shuchi S, vonJakob M, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol. 2022; 150(6): 1302-1313.

[182]

Leyva-Castillo JM, Galand C, Mashiko S, et al. ILC2 activation by keratinocyte-derived IL-25 drives IL-13 production at sites of allergic skin inflammation. J Allergy Clin Immunol. 2020; 145(6): 1606-1614. e4.

[183]

McKenzie ANJ, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity. 2014; 41(3): 366-374.

[184]

Ryffel B, Alves-Filho JC. ILC2s and basophils team up to orchestrate IL-33-induced atopic dermatitis. J Invest Dermatol. 2019; 139(10): 2077-2079.

[185]

Lee JK, Seok JK, Cho I, et al. Topical application of celastrol alleviates atopic dermatitis symptoms mediated through the regulation of thymic stromal lymphopoietin and group 2 innate lymphoid cells. J Toxicol Environ Health A. 2021; 84(22): 922-931.

[186]

Kim MH, Jin SP, Jang S, et al. IL-17A-producing innate lymphoid cells promote skin inflammation by inducing IL-33-driven type 2 immune responses. J Invest Dermatol. 2020; 140(4): 827-837. e9.

[187]

Valle-Noguera A, Ochoa-Ramos A, Gomez-Sanchez MJ, Cruz-Adalia A. Type 3 innate lymphoid cells as regulators of the host-pathogen interaction. Front Immunol. 2021; 12: 748851.

[188]

Geering B, Stoeckle C, Conus S, Simon HU. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 2013; 34(8): 398-409.

[189]

Dorosz A, Grosicki M, Dybas J, et al. Eosinophils and neutrophils-molecular differences revealed by spontaneous Raman, CARS and fluorescence microscopy. Cells. 2020; 9(9): 2041

[190]

Evrard M, Kwok IWH, Chong SZ, et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity. 2018; 48(2): 364-379. e8.

[191]

Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018; 9: 113.

[192]

Miyagawa F, Ozato K, Tagaya Y, Asada H. Type I IFN derived from Ly6C(hi) monocytes suppresses type 2 inflammation in a murine model of atopic dermatitis. J Invest Dermatol. 2023;144(3):520-530.e2.

[193]

Tavares LP, Peh HY, Tan WSD, et al. Granulocyte-targeted therapies for airway diseases. Pharmacol Res. 2020; 157: 104881.

[194]

Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol. 2021; 14(4): 815-827.

[195]

Walsh CM, Hill RZ, Schwendinger-Schreck J, et al. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. Elife. 2019; 8: e48448

[196]

Jiang Y, Ma W. Assessment of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in atopic dermatitis patients. Med Sci Monit. 2017; 23: 1340-1346.

[197]

Inokuchi-Sakata S, Ishiuji Y, Katsuta M, et al. Role of eosinophil relative count and neutrophil-to-lymphocyte ratio in the assessment of severity of atopic dermatitis. Acta Derm Venereol. 2021; 101(7): adv00491.

[198]

Schabitz A, Eyerich K, Garzorz-Stark N. So close, and yet so far away: the dichotomy of the specific immune response and inflammation in psoriasis and atopic dermatitis. J Intern Med. 2021; 290(1): 27-39.

[199]

Bruynzeel-Koomen CA, Van Wichen DF, Spry CJ, Venge P, Bruynzeel PL. Active participation of eosinophils in patch test reactions to inhalant allergens in patients with atopic dermatitis. Br J Dermatol. 1988; 118(2): 229-238.

[200]

Kong DH, Kim YK, Kim MR, Jang JH, Lee S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int J Mol Sci. 2018; 19(4): 1057

[201]

Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011; 15(6): 1607-1638.

[202]

Simon D, Braathen LR, Simon HU. Eosinophils and atopic dermatitis. Allergy. 2004; 59(6): 561-570.

[203]

Wang J, Zhou Y, Zhang H, et al. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther. 2023; 8(1): 138.

[204]

Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. 2014; 5: 570.

[205]

Beyer L, Kabatas AS, Mommert S, et al. Histamine activates human eosinophils via H(2)R and H(4)R predominantly in atopic dermatitis patients. Int J Mol Sci. 2022; 23(18):10294

[206]

Belanger E, Madore AM, Boucher-Lafleur AM, et al. Eosinophil microRNAs play a regulatory role in allergic diseases included in the atopic march. Int J Mol Sci. 2020; 21(23): 9011

[207]

Kim BS, Wang K, Siracusa MC, et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014; 193(7): 3717-3725.

[208]

Mashiko S, Mehta H, Bissonnette R, Sarfati M. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. J Dermatol Sci. 2017; 88(2): 167-174.

[209]

Chen YL, Hardman CS, Yadava K, Ogg G. Innate lymphocyte mechanisms in skin diseases. Annu Rev Immunol. 2020; 38: 171-202.

[210]

Imamura S, Washio K, Mizuno M, Oda Y, Fukunaga A, Nishigori C. Activated steady status and distinctive FcepsilonRI-mediated responsiveness in basophils of atopic dermatitis. Allergol Int. 2021; 70(3): 327-334.

[211]

Siracusa MC, Saenz SA, Hill DA, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature. 2011; 477(7363): 229-233.

[212]

Pellefigues C, Naidoo K, Mehta P, et al. Basophils promote barrier dysfunction and resolution in the atopic skin. J Allergy Clin Immunol. 2021; 148(3): 799-812. e10.

[213]

Wang F, Trier AM, Li F, et al. A basophil-neuronal axis promotes itch. Cell. 2021; 184(2): 422-440. e17.

[214]

Hashimoto T, Yokozeki H, Karasuyama H, Satoh T. IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J Allergy Clin Immunol. 2023; 151(3): 737-746 e6.

[215]

Takahashi K, Miyake K, Ito J, et al. Topical application of a PDE4 inhibitor ameliorates atopic dermatitis through inhibition of basophil IL-4 production. J Invest Dermatol. 2023;144(5):1048-1057.e8.

[216]

Mitamura Y, Reiger M, Kim J, et al. Spatial transcriptomics combined with single-cell RNA-sequencing unravels the complex inflammatory cell network in atopic dermatitis. Allergy. 2023; 78(8): 2215-2231.

[217]

Zhang B, Roesner LM, Traidl S, et al. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy. 2023; 78(2): 439-453.

[218]

Fassett MS, Braz JM, Castellanos CA, et al. IL-31-dependent neurogenic inflammation restrains cutaneous type 2 immune response in allergic dermatitis. Sci Immunol. 2023; 8(88): eabi6887.

[219]

Yu DM, Zhao J, Lee EE, et al. GLUT3 promotes macrophage signaling and function via RAS-mediated endocytosis in atopic dermatitis and wound healing. J Clin Invest. 2023; 133(21):e170706

[220]

Yang L, Fu J, Han X, et al. Hsa_circ_0004287 inhibits macrophage-mediated inflammation in an N(6)-methyladenosine-dependent manner in atopic dermatitis and psoriasis. J Allergy Clin Immunol. 2022; 149(6): 2021-2033.

[221]

Zhu Y, Liu Y, Ma Y, et al. Macrophage autophagy deficiency-induced CEBPB accumulation alleviates atopic dermatitis via impairing M2 polarization. Cell Rep. 2023; 42(11): 113430.

[222]

Miyake K, Ito J, Takahashi K, et al. Single-cell transcriptomics identifies the differentiation trajectory from inflammatory monocytes to pro-resolving macrophages in a mouse skin allergy model. Nat Commun. 2024; 15(1): 1666.

[223]

Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018; 49(4): 595-613.

[224]

Afshari M, Kolackova M, Rosecka M, Celakovska J, Krejsek J. Unraveling the skin; a comprehensive review of atopic dermatitis, current understanding, and approaches. Front Immunol. 2024; 15: 1361005.

[225]

Klaeschen AS, Numm TJ, Herrmann N, et al. JAK1/2 inhibition impairs the development and function of inflammatory dendritic epidermal cells in atopic dermatitis. J Allergy Clin Immunol. 2021; 147(6): 2202-2212. e8.

[226]

Penzes Z, Horvath D, Molnar P, et al. Anandamide modulation of monocyte-derived Langerhans cells: implications for immune homeostasis and skin inflammation. Front Immunol. 2024; 15: 1423776.

[227]

Gao C, Zhao Y, Ge L, et al. Distinct maturation, glucose metabolism, and inflammatory function of human monocytes-derived IDECs mediated by anti-IgE and Pam3CSK4 alone or in combination. Front Immunol. 2024; 15: 1403263.

[228]

Jin SP, Lee K, Bang YJ, et al. Mapping the immune cell landscape of severe atopic dermatitis by single-cell RNA-seq. Allergy. 2024; 79(6): 1584-1597.

[229]

Miyagawa F, Ozato K, Tagaya Y, Asada H. Type I IFN derived from Ly6C(hi) monocytes suppresses type 2 inflammation in a murine model of atopic dermatitis. J Invest Dermatol. 2024; 144(3): 520-530. e2.

[230]

Lopez DV, Kongsbak-Wismann M. Role of IL-22 in homeostasis and diseases of the skin. APMIS. 2022; 130(6): 314-322.

[231]

Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev. 2021; 302(1): 147-162.

[232]

Davidson S, Coles M, Thomas T, et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol. 2021; 21(11): 704-717.

[233]

Di X, Chen J, Li Y, et al. Crosstalk between fibroblasts and immunocytes in fibrosis: From molecular mechanisms to clinical trials. Clin Transl Med. 2024; 14(1): e1545.

[234]

Wang L, Wang B, Kou E, Du L, Zhu Y. New insight into the role of fibroblasts in the epithelial immune microenvironment in the single-cell era. Front Immunol. 2023; 14: 1259515.

[235]

Gahr N, Folster-Holst R, Weichenthal M, Christophers E, Schroder JM, Bartels J. Dermal fibroblasts from acute inflamed atopic dermatitis lesions display increased eotaxin/CCL11 responsiveness to interleukin-4 stimulation. Br J Dermatol. 2011; 164(3): 586-592.

[236]

Ko KI, Merlet JJ, DerGarabedian BP, et al. NF-kappaB perturbation reveals unique immunomodulatory functions in Prx1(+) fibroblasts that promote development of atopic dermatitis. Sci Transl Med. 2022; 14(630): eabj0324.

[237]

Kwon Y, Choi Y, Kim M, Jeong MS, Jung HS, Jeoung D. HDAC6 and CXCL13 mediate atopic dermatitis by regulating cellular interactions and expression levels of miR-9 and SIRT1. Front Pharmacol. 2021; 12: 691279.

[238]

Herro R, Shui JW, Zahner S, et al. LIGHT-HVEM signaling in keratinocytes controls development of dermatitis. J Exp Med. 2018; 215(2): 415-422.

[239]

Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in allergy and inflammation. Front Immunol. 2021; 12: 722170.

[240]

Mitamura Y, Nunomura S, Nanri Y, et al. The IL-13/periostin/IL-24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy. 2018; 73(9): 1881-1891.

[241]

Jiao D, Wong CK, Qiu HN, et al. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation. Cell Mol Immunol. 2016; 13(4): 535-550.

[242]

Fournier B. The function of TLR2 during staphylococcal diseases. Front Cell Infect Microbiol. 2012; 2: 167.

[243]

Wong CK, Leung KM, Qiu HN, Chow JY, Choi AO, Lam CW. Activation of eosinophils interacting with dermal fibroblasts by pruritogenic cytokine IL-31 and alarmin IL-33: implications in atopic dermatitis. PLoS One. 2012; 7(1): e29815.

[244]

Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine. 2022; 154: 155890.

[245]

Gieseck RL, 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 2018; 18(1): 62-76.

[246]

Sidler D, Wu P, Herro R, et al. TWEAK mediates inflammation in experimental atopic dermatitis and psoriasis. Nat Commun. 2017; 8: 15395.

[247]

Zhou L, Yuan X, Hu Y, et al. Blockade of HMGB1 reduces inflammation and pruritus in atopic dermatitis by inhibiting skin fibroblasts activation. Int Arch Allergy Immunol. 2023: 1-12.

[248]

Berroth A, Kuhnl J, Kurschat N, et al. Role of fibroblasts in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2013; 131(6): 1547-1554.

[249]

Hu Z, Zhao X, Wu Z, et al. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther. 2024; 9(1): 9.

[250]

Takeda A, Salmi M, Jalkanen S. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system. Trends Immunol. 2023; 44(1): 72-86.

[251]

Sibler E, He Y, Ducoli L, et al. Single-cell transcriptional heterogeneity of lymphatic endothelial cells in normal and inflamed murine lymph nodes. Cells. 2021; 10(6): 1371

[252]

Nakajima S, Tie D, Nomura T, Kabashima K. Novel pathogenesis of atopic dermatitis from the view of cytokines in mice and humans. Cytokine. 2021; 148: 155664.

[253]

Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol. 2019; 20(12): 1603-1609.

[254]

Garcia-Reyes MM, Zumaya-Perez LC, Pastelin-Palacios R, Moreno-Eutimio MA. Serum thymic stromal lymphopoietin (TSLP) levels in atopic dermatitis patients: a systematic review and meta-analysis. Clin Exp Med. 2023; 23(8): 4129-4139.

[255]

Furue M, Chiba T, Tsuji G, et al. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int. 2017; 66(3): 398-403.

[256]

Dumortier A, Durham AD, Di Piazza M, et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One. 2010; 5(2): e9258.

[257]

Wilson SR, The L, Batia LM, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013; 155(2): 285-295.

[258]

Siracusa MC, Saenz SA, Wojno ED, et al. Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation. Immunity. 2013; 39(6): 1158-1170.

[259]

Yu J, Song P, Bai Y, et al. CD36-SREBP1 axis mediates TSLP production in obesity-exacerbated atopic dermatitis. J Invest Dermatol. 2023; 143(11): 2153-2162 e12.

[260]

Segaud J, Yao W, Marschall P, et al. Context-dependent function of TSLP and IL-1beta in skin allergic sensitization and atopic march. Nat Commun. 2022; 13(1): 4703.

[261]

Hou T, Tsang MS, Kan LL, et al. IL-37 targets TSLP-primed basophils to alleviate atopic dermatitis. Int J Mol Sci. 2021; 22(14): 7393

[262]

Nakajima S, Kabata H, Kabashima K, Asano K. Anti-TSLP antibodies: targeting a master regulator of type 2 immune responses. Allergol Int. 2020; 69(2): 197-203.

[263]

Fornasa G, Tsilingiri K, Caprioli F, et al. Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. J Allergy Clin Immunol. 2015; 136(2): 413-22.

[264]

Berna R, Mitra N, Lou C, et al. TSLP and IL-7R variants are associated with persistent atopic dermatitis. J Invest Dermatol. 2021; 141(2): 446-450 e2.

[265]

Simpson EL, Parnes JR, She D, et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J Am Acad Dermatol. 2019; 80(4): 1013-1021.

[266]

Hoy SM. Tezepelumab: first approval. Drugs. 2022; 82(4): 461-468.

[267]

Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018; 281(1): 154-168.

[268]

Cayrol C, Girard JP. Interleukin-33 (IL-33): a critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine. 2022; 156: 155891.

[269]

Dai X, Tohyama M, Murakami M, et al. House dust mite allergens induce interleukin 33 (IL-33) synthesis and release from keratinocytes via ATP-mediated extracellular signaling. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(5): 165719.

[270]

Savinko T, Matikainen S, Saarialho-Kere U, et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol. 2012; 132(5): 1392-400.

[271]

Al Kindi A, Williams H, Matsuda K, et al. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33. J Allergy Clin Immunol. 2021; 147(4): 1354-1368 e3.

[272]

Peng G, Mu Z, Cui L, et al. Anti-IL-33 antibody has a therapeutic effect in an atopic dermatitis murine model induced by 2, 4-dinitrochlorobenzene. Inflammation. 2018; 41(1): 154-163.

[273]

Imai Y, Yasuda K, Sakaguchi Y, et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA. 2013; 110(34): 13921-13926.

[274]

Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016; 16(11): 676-689.

[275]

Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity. 2015; 42(6): 1005-1019.

[276]

Imai Y, Yasuda K, Nagai M, et al. IL-33-induced atopic dermatitis-like inflammation in mice is mediated by group 2 innate lymphoid cells in concert with basophils. J Invest Dermatol. 2019; 139(10): 2185-2194 e3.

[277]

Qiu Z, Zhu Z, Liu X, et al. A dysregulated sebum-microbial metabolite-IL-33 axis initiates skin inflammation in atopic dermatitis. J Exp Med. 2022; 219(10):e20212397

[278]

Pietka W, Sundnes O, Hammarstrom C, Zucknick M, Khnykin D, Haraldsen G. Lack of interleukin-33 and its receptor does not prevent calcipotriol-induced atopic dermatitis-like inflammation in mice. Sci Rep. 2020; 10(1): 6451.

[279]

Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol. 2021; 148(1): 40-52.

[280]

Schuler CF, Billi AC, Maverakis E, Tsoi LC, Gudjonsson JE. Novel insights into atopic dermatitis. J Allergy Clin Immunol. 2023; 151(5): 1145-1154.

[281]

Aktar MK, Kido-Nakahara M, Furue M, Nakahara T. Mutual upregulation of endothelin-1 and IL-25 in atopic dermatitis. Allergy. 2015; 70(7): 846-854.

[282]

Xu M, Lu H, Lee YH, et al. An interleukin-25-mediated autoregulatory circuit in keratinocytes plays a pivotal role in psoriatic skin inflammation. Immunity. 2018; 48(4): 787-798 e4.

[283]

Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001; 15(6): 985-995.

[284]

Basalygo M, Sliwinska J, Zbikowska-Gotz M, et al. Evaluation of the effect of the interleukin-25 serum concentration on the intensity of the symptoms of atopic dermatitis and epidermal barrier. Postepy Dermatol Alergol. 2021; 38(6): 1071-1077.

[285]

Hvid M, Vestergaard C, Kemp K, Christensen GB, Deleuran B, Deleuran M. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol. 2011; 131(1): 150-157.

[286]

Gamez C, Metcalfe J, Prescott SL, Palmer DJ. Lower cord blood IL-17 and IL-25, but not other epithelial cell-derived cytokines are associated with atopic dermatitis in infancy. Int Arch Allergy Immunol. 2021; 182(6): 474-478.

[287]

Alkon N, Assen FP, Arnoldner T, et al. Single-cell RNA sequencing defines disease-specific differences between chronic nodular prurigo and atopic dermatitis. J Allergy Clin Immunol. 2023; 152(2): 420-435.

[288]

Guttman-Yassky E, Bissonnette R, Ungar B, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019; 143(1): 155-172.

[289]

Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014; 134(4): 769-779.

[290]

Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002; 347(15): 1151-1160.

[291]

Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol. 2021; 17(8): 835-852.

[292]

Takahashi K, Miyake K, Ito J, et al. Topical application of a PDE4 inhibitor ameliorates atopic dermatitis through inhibition of basophil IL-4 production. J Invest Dermatol. 2024; 144(5): 1048-1057 e8.

[293]

Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012; 12(11): 786-798.

[294]

Neunkirchner A, Kratzer B, Kohler C, et al. Genetic restriction of antigen-presentation dictates allergic sensitization and disease in humanized mice. EBioMedicine. 2018; 31: 66-78.

[295]

Spergel JM, Mizoguchi E, Oettgen H, Bhan AK, Geha RS. Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J Clin Invest. 1999; 103(8): 1103-1111.

[296]

Kimura M, Tsuruta S, Yoshida T. Correlation of house dust mite-specific lymphocyte proliferation with IL-5 production, eosinophilia, and the severity of symptoms in infants with atopic dermatitis. J Allergy Clin Immunol. 1998; 101(1 Pt 1): 84-89.

[297]

Leyva-Castillo JM, Sun L, Wu SY, Rockowitz S, Sliz P, Geha RS. Single-cell transcriptome profile of mouse skin undergoing antigen-driven allergic inflammation recapitulates findings in atopic dermatitis skin lesions. J Allergy Clin Immunol. 2022; 150(2): 373-384.

[298]

Matsumoto K, Morita H, Nakae S. New insights into human atopic dermatitis provided by mouse models. J Allergy Clin Immunol. 2021; 148(3): 722-724.

[299]

Landheer J, Giovannone B, Sadekova S, et al. TSLP is differentially regulated by vitamin D3 and cytokines in human skin. Immun Inflamm Dis. 2015; 3(1): 32-43.

[300]

Naidoo K, Jagot F, van den Elsen L, et al. Eosinophils determine dermal thickening and water loss in an MC903 model of atopic dermatitis. J Invest Dermatol. 2018; 138(12): 2606-2616.

[301]

Alam MJ, Xie L, Yap YA, Robert R. A mouse model of MC903-induced atopic dermatitis. Curr Protoc. 2023; 3(3): e695.

[302]

Moosbrugger-Martinz V, Schmuth M, Dubrac S. A mouse model for atopic dermatitis using topical application of vitamin D3 or of its analog MC903. Methods Mol Biol. 2017; 1559: 91-106.

[303]

Li XM, Kleiner G, Huang CK, et al. Murine model of atopic dermatitis associated with food hypersensitivity. J Allergy Clin Immunol. 2001; 107(4): 693-702.

[304]

Laouini D, Kawamoto S, Yalcindag A, et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol. 2003; 112(5): 981-987.

[305]

Kim D, Kobayashi T, Nagao K. Research techniques made simple: mouse models of atopic dermatitis. J Invest Dermatol. 2019; 139(5): 984-990 e1.

[306]

Chan LS, Robinson N, Xu L. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Invest Dermatol. 2001; 117(4): 977-983.

[307]

Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004; 5(7): 752-760.

[308]

Kobayashi T, Glatz M, Horiuchi K, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015; 42(4): 756-766.

[309]

Oranje AP, Verbeek R, Verzaal P, Haspels I, Prens E, Nagelkerken L. Wet-wrap treatment using dilutions of tacrolimus ointment and fluticasone propionate cream in human APOC1 (+/+) mice with atopic dermatitis. Br J Dermatol. 2009; 160(1): 54-61.

[310]

Nagelkerken L, Verzaal P, Lagerweij T, et al. Development of atopic dermatitis in mice transgenic for human apolipoprotein C1. J Invest Dermatol. 2008; 128(5): 1165-1172.

[311]

Matsuda H, Watanabe N, Geba GP, et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol. 1997; 9(3): 461-466.

[312]

Jeong GH, Lee JH. Dysregulated Hippo signaling pathway and YAP activation in atopic dermatitis: insights from clinical and animal studies. Int J Mol Sci. 2023; 24(24):17322

[313]

Kim SH, Seong GS, Choung SY. Fermented Morinda citrifolia (Noni) alleviates DNCB-induced atopic dermatitis in NC/Nga mice through modulating immune balance and skin barrier function. Nutrients. 2020; 12(1): 249

[314]

Lee S, Lim NY, Kang MS, et al. IL-31RA and TRPV1 expression in atopic dermatitis induced with trinitrochlorobenzene in Nc/Nga mice. Int J Mol Sci. 2023; 24(17):13521

[315]

Gilhar A, Reich K, Keren A, Kabashima K, Steinhoff M, Paus R. Mouse models of atopic dermatitis: a critical reappraisal. Exp Dermatol. 2021; 30(3): 319-336.

[316]

Hikita I, Yoshioka T, Mizoguchi T, et al. Characterization of dermatitis arising spontaneously in DS-Nh mice maintained under conventional conditions: another possible model for atopic dermatitis. J Dermatol Sci. 2002; 30(2): 142-153.

[317]

Castex-Rizzi N, Galliano MF, Aries MF, et al. In vitro approaches to pharmacological screening in the field of atopic dermatitis. Br J Dermatol. 2014; 170 Suppl 1: 12-18.

[318]

Sarama R, Matharu PK, Abduldaiem Y, Correa MP, Gil CD, Greco KV. In vitro disease models for understanding psoriasis and atopic dermatitis. Front Bioeng Biotechnol. 2022; 10: 803218.

[319]

Niehues H, Bouwstra JA, El Ghalbzouri A, Brandner JM, Zeeuwen P, van den Bogaard EH. 3D skin models for 3R research: the potential of 3D reconstructed skin models to study skin barrier function. Exp Dermatol. 2018; 27(5): 501-511.

[320]

De Vuyst E, Salmon M, Evrard C, Lambert de Rouvroit C, Poumay Y. Atopic dermatitis studies through in vitro models. Front Med (Lausanne). 2017; 4: 119.

[321]

Panel AAJADG, Chu DK, Schneider L, et al. Atopic dermatitis (eczema) guidelines: 2023 American Academy of Allergy, Asthma and Immunology/American College of Allergy, Asthma and Immunology Joint Task Force on Practice Parameters GRADE-and Institute of Medicine-based recommendations. Ann Allergy Asthma Immunol. 2024; 132(3): 274-312.

[322]

Sidbury R, Alikhan A, Bercovitch L, et al. Guidelines of care for the management of atopic dermatitis in adults with topical therapies. J Am Acad Dermatol. 2023; 89(1): e1-e20.

[323]

Castela E, Archier E, Devaux S, et al. Topical corticosteroids in plaque psoriasis: a systematic review of risk of adrenal axis suppression and skin atrophy. J Eur Acad Dermatol Venereol. 2012; 26 Suppl 3: 47-51.

[324]

Nakahara T, Morimoto H, Murakami N, Furue M. Mechanistic insights into topical tacrolimus for the treatment of atopic dermatitis. Pediatr Allergy Immunol. 2018; 29(3): 233-238.

[325]

Eichenfield LF, Ahluwalia J, Waldman A, Borok J, Udkoff J, Boguniewicz M. Current guidelines for the evaluation and management of atopic dermatitis: a comparison of the Joint Task Force Practice Parameter and American Academy of Dermatology guidelines. J Allergy Clin Immunol. 2017; 139(4S): S49-S57.

[326]

Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014; 71(1): 116-132.

[327]

Drucker AM, Eyerich K, de Bruin-Weller MS, et al. Use of systemic corticosteroids for atopic dermatitis: International Eczema Council consensus statement. Br J Dermatol. 2018; 178(3): 768-775.

[328]

Sidbury R, Davis DM, Cohen DE, et al. Guidelines of care for the management of atopic dermatitis: section 3. Management and treatment with phototherapy and systemic agents. J Am Acad Dermatol. 2014; 71(2): 327-349.

[329]

Choo ZY, Mehlis SL, Joyce JC. Updates in atopic dermatitis for the primary care physician: a review of advances in the understanding and treatment of atopic dermatitis. Dis Mon. 2024; 70(4): 101687.

[330]

Goujon C, Viguier M, Staumont-Salle D, et al. Methotrexate versus cyclosporine in adults with moderate-to-severe atopic dermatitis: a phase III randomized noninferiority trial. J Allergy Clin Immunol Pract. 2018; 6(2): 562-569 e3.

[331]

Roekevisch E, Schram ME, Leeflang MMG, et al. Methotrexate versus azathioprine in patients with atopic dermatitis: 2-year follow-up data. J Allergy Clin Immunol. 2018; 141(2): 825-827 e10.

[332]

West J, Ogston S, Foerster J. Safety and efficacy of methotrexate in psoriasis: a meta-analysis of published trials. PLoS One. 2016; 11(5): e0153740.

[333]

Bieber T, Paller AS, Kabashima K, et al. Atopic dermatitis: pathomechanisms and lessons learned from novel systemic therapeutic options. J Eur Acad Dermatol Venereol. 2022; 36(9): 1432-1449.

[334]

Huang IH, Chung WH, Wu PC, Chen CB. JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: an updated review. Front Immunol. 2022; 13: 1068260.

[335]

Gargiulo L, Ibba L, Malagoli P, et al. Management of patients affected by moderate-to-severe atopic dermatitis with JAK inhibitors in real-world clinical practice: an italian delphi consensus. Dermatol Ther (Heidelb). 2024; 14(4): 919-932.

[336]

Labib A, Ju T, Yosipovitch G. Emerging treatments for itch in atopic dermatitis: a review. J Am Acad Dermatol. 2023; 89(2): 338-344.

[337]

Fan T, Wang W, Wang Y, et al. PDE4 inhibitors: potential protective effects in inflammation and vascular diseases. Front Pharmacol. 2024; 15: 1407871.

[338]

Eichenfield LF, Stripling S, Fung S, Cha A, O’Brien A, Schachner LA. Recent developments and advances in atopic dermatitis: a focus on epidemiology, pathophysiology, and treatment in the pediatric setting. Paediatr Drugs. 2022; 24(4): 293-305.

[339]

Guttman-Yassky E, Blauvelt A, Eichenfield LF, et al. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatol. 2020; 156(4): 411-420.

[340]

Miron Y, Miller PE, Hughes C, Indersmitten T, Lerner EA, Cevikbas F. Mechanistic insights into the antipruritic effects of lebrikizumab, an anti-IL-13 mAb. J Allergy Clin Immunol. 2022; 150(3): 690-700.

[341]

Silverberg JI, Guttman-Yassky E, Gooderham M, et al. Health-related quality of life with tralokinumab in moderate-to-severe atopic dermatitis: A phase 2b randomized study. Ann Allergy Asthma Immunol. 2021; 126(5): 576-583 e4.

[342]

Kabashima K, Matsumura T, Komazaki H, Kawashima M, Nemolizumab JPSG. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: results from two phase III, long-term studies. Br J Dermatol. 2022; 186(4): 642-651.

[343]

Bangert C, Alkon N, Chennareddy S, et al. Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells. Nat Commun. 2024; 15(1): 2839.

[344]

Edamitsu T, Taguchi K, Okuyama R, Yamamoto M. AHR and NRF2 in skin homeostasis and atopic dermatitis. Antioxidants (Basel). 2022; 11(2): 227

[345]

Silverberg JI, Boguniewicz M, Quintana FJ, et al. Tapinarof validates the aryl hydrocarbon receptor as a therapeutic target: a clinical review. J Allergy Clin Immunol. 2024; 154(1): 1-10.

[346]

Guttman-Yassky E, Croft M, Geng B, et al. The role of OX40 ligand/OX40 axis signalling in atopic dermatitis. Br J Dermatol. 2024; 191(4): 488-496.

[347]

Weidinger S, Bieber T, Cork MJ, et al. Safety and efficacy of amlitelimab, a fully human nondepleting, noncytotoxic anti-OX40 ligand monoclonal antibody, in atopic dermatitis: results of a phase IIa randomized placebo-controlled trial. Br J Dermatol. 2023; 189(5): 531-539.

[348]

Guttman-Yassky E, Simpson EL, Reich K, et al. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: a multicentre, double-blind, placebo-controlled phase 2b study. Lancet. 2023; 401(10372): 204-214.

[349]

Olbrich H, Sadik CD, Ludwig RJ, Thaci D, Boch K. Dupilumab in inflammatory skin diseases: a systematic review. Biomolecules. 2023; 13(4): 634

[350]

Lavazais S, Jargosch M, Dupont S, et al. IRAK4 inhibition dampens pathogenic processes driving inflammatory skin diseases. Sci Transl Med. 2023; 15(683): eabj3289.

[351]

Yue C, Hu Y, Yu J, et al. IL-38 aggravates atopic dermatitis via facilitating migration of Langerhans cells. Int J Biol Sci. 2024; 20(8): 3094-3112.

[352]

Ackerman L, Acloque G, Bacchelli S, et al. IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial. Nat Med. 2023; 29(12): 3127-3136.

[353]

Ferrara F, Zovi A, Capuozzo M, Langella R. Atopic dermatitis: treatment and innovations in immunotherapy. Inflammopharmacology. 2024; 32(3): 1777-1789.

[354]

Deeks ED, Duggan S. Abrocitinib: first approval. Drugs. 2021; 81(18): 2149-2157.

[355]

Yoon S, Kim K, Shin K, et al. The safety of systemic Janus kinase inhibitors in atopic dermatitis: a systematic review and meta-analysis of randomized controlled trials. J Eur Acad Dermatol Venereol. 2024; 38(1): 52-61.

[356]

Chovatiya R, Paller AS. JAK inhibitors in the treatment of atopic dermatitis. J Allergy Clin Immunol. 2021; 148(4): 927-940.

[357]

Guttman-Yassky E, Teixeira HD, Simpson EL, et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. Lancet. 2021; 397(10290): 2151-2168.

[358]

Kleinman E, Laborada J, Metterle L, Eichenfield LF. What’s new in topicals for atopic dermatitis? Am J Clin Dermatol. 2022; 23(5): 595-603.

[359]

Muller S, Maintz L, Bieber T. Treatment of atopic dermatitis: Recently approved drugs and advanced clinical development programs. Allergy. 2024; 79(6): 1501-1515.

[360]

Nakagawa H, Nemoto O, Igarashi A, et al. Delgocitinib ointment in pediatric patients with atopic dermatitis: a phase 3, randomized, double-blind, vehicle-controlled study and a subsequent open-label, long-term study. J Am Acad Dermatol. 2021; 85(4): 854-862.

[361]

Papp K, Szepietowski JC, Kircik L, et al. Long-term safety and disease control with ruxolitinib cream in atopic dermatitis: Results from two phase 3 studies. J Am Acad Dermatol. 2023; 88(5): 1008-1016.

[362]

Reich K, Thyssen JP, Blauvelt A, et al. Efficacy and safety of abrocitinib versus dupilumab in adults with moderate-to-severe atopic dermatitis: a randomised, double-blind, multicentre phase 3 trial. Lancet. 2022; 400(10348): 273-282.

[363]

Igarashi A, Katsunuma T, Matsumura T, Komazaki H, Nemolizumab JPSG. Efficacy and safety of nemolizumab in paediatric patients aged 6–12 years with atopic dermatitis with moderate-to-severe pruritus: results from a phase III, randomized, double-blind, placebo-controlled, multicentre study. Br J Dermatol. 2023; 190(1): 20-28.

[364]

Park CW, Kim BJ, Lee YW, et al. Asivatrep, a TRPV1 antagonist, for the topical treatment of atopic dermatitis: Phase 3, randomized, vehicle-controlled study (CAPTAIN-AD). J Allergy Clin Immunol. 2022; 149(4): 1340-1347 e4.

[365]

Keam SJ. Tapinarof cream 1%: first approval. Drugs. 2022; 82(11): 1221-1228.

[366]

Simpson EL, Guttman-Yassky E, Eichenfield LF, et al. Tralokinumab therapy for moderate-to-severe atopic dermatitis: clinical outcomes with targeted IL-13 inhibition. Allergy. 2023; 78(11): 2875-2891.

[367]

Silverberg JI, Guttman-Yassky E, Thaci D, et al. Two phase 3 trials of lebrikizumab for moderate-to-severe atopic dermatitis. N Engl J Med. 2023; 388(12): 1080-1091.

[368]

Ma L, Tao X, Liu S, et al. Efficacy and safety of crisaborole ointment 2% in Chinese patients aged >/= 2 years with mild to moderate atopic dermatitis. Dermatol Ther (Heidelb). 2024; 14(5): 1229-1243.

[369]

Eichenfield LF, Gower RG, Xu J, et al. Once-daily crisaborole ointment, 2%, as a long-term maintenance treatment in patients aged >/= 3 months with mild-to-moderate atopic dermatitis: a 52-week clinical study. Am J Clin Dermatol. 2023; 24(4): 623-635.

[370]

Silverberg JI, Kirsner RS, Margolis DJ, et al. Efficacy and safety of crisaborole ointment, 2%, in participants aged >/= 45 years with stasis dermatitis: Results from a fully decentralized, randomized, proof-of-concept phase 2a study. J Am Acad Dermatol. 2024; 90(5): 945-952.

[371]

Zirwas MJ, Draelos ZD, DuBois J, et al. Efficacy of roflumilast foam, 0.3%, in patients with seborrheic dermatitis: a double-blind, vehicle-controlled phase 2a randomized clinical trial. JAMA Dermatol. 2023; 159(6): 613-620.

[372]

Saeki H, Ito K, Yokota D, Tsubouchi H. Difamilast ointment in adult patients with atopic dermatitis: a phase 3 randomized, double-blind, vehicle-controlled trial. J Am Acad Dermatol. 2022; 86(3): 607-614.

[373]

Picone V, Vallone Y, Patruno C, Napolitano M. An overview of new and emerging antibody therapies for moderate-severe atopic dermatitis in adults. Expert Rev Clin Pharmacol. 2023; 16(12): 1239-1248.

[374]

Guttman-Yassky E, Bahadori L, Brooks L, et al. Treating moderate-to-severe atopic dermatitis with benralizumab: results from the HILLIER study, a plain language summary. Immunotherapy. 2024; 16(10): 641-648.

[375]

Ungar B, Pavel AB, Li R, et al. Phase 2 randomized, double-blind study of IL-17 targeting with secukinumab in atopic dermatitis. J Allergy Clin Immunol. 2021; 147(1): 394-397.

[376]

Bangert C, Loesche C, Skvara H, et al. IgE depletion with ligelizumab does not significantly improve clinical symptoms in patients with moderate-to-severe atopic dermatitis. J Invest Dermatol. 2023; 143(10): 1896-1905 e8.

[377]

Laska J, Tota M, Lacwik J, Sedek L, Gomulka K. IL-22 in atopic dermatitis. Cells. 2024; 13(16): 1398

[378]

Brunner PM, Pavel AB, Khattri S, et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab. J Allergy Clin Immunol. 2019; 143(1): 142-154.

[379]

Guttman-Yassky E, Brunner PM, Neumann AU, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol. 2018; 78(5): 872-881 e6.

[380]

Chen YL, Gutowska-Owsiak D, Hardman CS, et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med. 2019; 11(515):eaax2945

[381]

Iznardo H, Puig L. IL-1 family cytokines in inflammatory dermatoses: pathogenetic role and potential therapeutic implications. Int J Mol Sci. 2022; 23(16): 9479

[382]

Bissonnette R, Abramovits W, Saint-Cyr Proulx E, et al. Spesolimab, an anti-interleukin-36 receptor antibody, in patients with moderate-to-severe atopic dermatitis: Results from a multicentre, randomized, double-blind, placebo-controlled, phase IIa study. J Eur Acad Dermatol Venereol. 2023; 37(3): 549-557.

[383]

Simpson EL, Guttman-Yassky E, Pawlikowski J, Ghorayeb EG, Ota T, Lebwohl MG. Interleukin-1alpha inhibitor bermekimab in patients with atopic dermatitis: randomized and nonrandomized studies. Arch Dermatol Res. 2024; 316(8): 589.

[384]

Alam MJ, Xie L, Yap YA, Marques FZ, Robert R. Manipulating microbiota to treat atopic dermatitis: functions and therapies. Pathogens. 2022; 11(6): 642

[385]

Pique N, Berlanga M, Minana-Galbis D. Health benefits of heat-killed (tyndallized) probiotics: an overview. Int J Mol Sci. 2019; 20(10): 2534

[386]

De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms. 2021; 9(2): 353

[387]

Jeong K, Kim M, Jeon SA, Kim YH, Lee S. A randomized trial of Lactobacillus rhamnosus IDCC 3201 tyndallizate (RHT3201) for treating atopic dermatitis. Pediatr Allergy Immunol. 2020; 31(7): 783-792.

[388]

De Almeida CV, Antiga E, Lulli M. Oral and topical probiotics and postbiotics in skincare and dermatological therapy: a concise review. Microorganisms. 2023; 11(6)

[389]

Flohr C. How we treat atopic dermatitis now and how that will change over the next 5 years. Br J Dermatol. 2023; 188(6): 718-725.

[390]

Ameen A, Dhaheri AA, Reda AM, et al. Consensus recommendations for the management of atopic dermatitis in the United Arab Emirates. Dermatol Ther (Heidelb). 2024; 14(9): 2299-2330.

[391]

Lugovic-Mihic L, Mestrovic-Stefekov J, Potocnjak I, et al. Atopic dermatitis: disease features, therapeutic options, and a multidisciplinary approach. Life (Basel). 2023; 13(6): 1419

[392]

Chu CY, Chan Y, Wananukul S, et al. Management of moderate-to-severe atopic dermatitis in adults: a cross-sectional survey of dermatologists within the asia-pacific region. Dermatol Ther (Heidelb). 2024; 14(9): 2559-2576.

[393]

Sharma N, Chaudhary SM, Khungar N, et al. Dietary influences on skin health in common dermatological disorders. Cureus. 2024; 16(2): e55282.

[394]

Singleton H, Hodder A, Almilaji O, et al. Educational and psychological interventions for managing atopic dermatitis (eczema). Cochrane Database Syst Rev. 2024; 8(8): CD014932.

[395]

Zhong W, Li W, Wu G. Are behavioral interventions a better choice for atopic dermatitis patients? A meta-analysis of 6 randomized controlled trials. An Bras Dermatol. 2024; 99(4): 503-512.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

413

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/