Cerebral vascular malformations: pathogenesis and therapy

Qiheng He , Ran Huo , Yingfan Sun , Zhiyao Zheng , Hongyuan Xu , Shaozhi Zhao , Yang Ni , Qifeng Yu , Yuming Jiao , Wenqian Zhang , Jizong Zhao , Yong Cao

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70027

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70027 DOI: 10.1002/mco2.70027
REVIEW

Cerebral vascular malformations: pathogenesis and therapy

Author information +
History +
PDF

Abstract

Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.

Keywords

arteriovenous malformations / biopsy / cavernous malformations / cerebral vascular malformation / microenvironment / somatic mutation

Cite this article

Download citation ▾
Qiheng He, Ran Huo, Yingfan Sun, Zhiyao Zheng, Hongyuan Xu, Shaozhi Zhao, Yang Ni, Qifeng Yu, Yuming Jiao, Wenqian Zhang, Jizong Zhao, Yong Cao. Cerebral vascular malformations: pathogenesis and therapy. MedComm, 2024, 5(12): e70027 DOI:10.1002/mco2.70027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lawton MT, Rutledge WC, Kim H, et al. Brain arteriovenous malformations. Nat Rev Dis Primers. 2015; 1: 15008.

[2]

Solomon RA. Arteriovenous malformations of the brain. N Engl J Med. 2017; 377(5): 498.

[3]

Solomon RA. Arteriovenous malformations of the brain. N Engl J Med. 2017; 376(19): 1859-1866.

[4]

Al-Shahi R, Bhattacharya JJ, Currie DG, et al. Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke. 2003; 34(5): 1163-1169.

[5]

Murphy PA, Kim TN, Huang L, et al. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci USA. 2014; 111(50): 18007-18012.

[6]

Arteriovenous Malformation Study Group. Arteriovenous malformations of the brain in adults. N Engl J Med. 1999; 340(23): 1812-1818.

[7]

Al-Shahi R, Fang JS, Lewis SC, Warlow CP. Prevalence of adults with brain arteriovenous malformations: a community based study in Scotland using capture-recapture analysis. J Neurol Neurosurg Psychiatry. 2002; 73(5): 547-551.

[8]

Hofmeister C, Stapf C, Hartmann A, et al. Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke. 2000; 31(6): 1307-1310.

[9]

Gross BA, Du R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J Neurosurg. 2013; 118(2): 437-443.

[10]

Fullerton HJ, Achrol AS, Johnston SC, et al. Long-term hemorrhage risk in children versus adults with brain arteriovenous malformations. Stroke. 2005; 36(10): 2099-2104.

[11]

Kim H, Nelson J, Krings T, et al. Hemorrhage rates from brain arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia. Stroke. 2015; 46(5): 1362-1364.

[12]

Flemming KD, Graff-Radford J, Aakre J, et al. Population-based prevalence of cerebral cavernous malformations in older adults: mayo clinic study of aging. JAMA Neurol. 2017; 74(7): 801-805.

[13]

Akers A, Al-Shahi Salman R, A Awad I, et al. Synopsis of Guidelines for the Clinical Management of Cerebral Cavernous Malformations: consensus recommendations based on systematic literature review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery. 2017; 80(5): 665-680.

[14]

Lin F, He Q, Gao Z, et al. Treatments and outcomes of untreated cerebral cavernous malformations in China: study protocol of a nationwide multicentre prospective cohort study. BMJ Open. 2020; 10(10): e037957.

[15]

Morris Z, Whiteley WN. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. Bmj. 2009; 339: b3016.

[16]

Al-Holou WN, O’Lynnger TM, Pandey AS, et al. Natural history and imaging prevalence of cavernous malformations in children and young adults. J Neurosurg Pediatr. 2012; 9(2): 198-205.

[17]

Otten P, Pizzolato GP, Rilliet B, Berney J. 131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24, 535 autopsies]. Neurochirurgie. 1989; 35(2): 82-83. 128–131.

[18]

Washington CW, McCoy KE, Zipfel GJ. Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation. Neurosurg Focus. 2010; 29(3): E7.

[19]

Tasiou A, Brotis AG, Kalogeras A, et al. Cavernous malformations of the central nervous system: an international consensus statement. Brain Spine. 2023; 3: 102707.

[20]

Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009; 5(12): 659-670.

[21]

Fox CK, Nelson J, McCulloch CE, et al. Seizure incidence rates in children and adults with familial cerebral cavernous malformations. Neurology. 2021; 97(12): e1210-e1216.

[22]

Al-Shahi Salman R, Hall JM, Horne MA, et al. Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol. 2012; 11(3): 217-224.

[23]

Li C, Zhuo L, Kang Y, et al. Prevalence, genetic and clinical characteristics in first-degree relatives of patients with familial cerebral cavernous malformations in China. Stroke Vasc Neurol. 2024.

[24]

Denier C, Labauge P, Bergametti F, et al. Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol. 2006; 60(5): 550-556.

[25]

Flemming KD, Lanzino G. Cerebral cavernous malformation: what a practicing clinician should know. Mayo Clin Proc. 2020; 95(9): 2005-2020.

[26]

Moore SA, Brown RD Jr, Christianson TJ, Flemming KD. Long-term natural history of incidentally discovered cavernous malformations in a single-center cohort. J Neurosurg. 2014; 120(5): 1188-1192.

[27]

Potts MB, Lau D, Abla AA, et al. Current surgical results with low-grade brain arteriovenous malformations. J Neurosurg. 2015; 122(4): 912-920.

[28]

van Beijnum J, van der Worp HB, Buis DR, et al. Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA. 2011; 306(18): 2011-2019.

[29]

Gross BA, Smith ER, Goumnerova L, Proctor MR, Madsen JR, Scott RM. Resection of supratentorial lobar cavernous malformations in children: clinical article. J Neurosurg Pediatr. 2013; 12(4): 367-373.

[30]

Gross BA, Du R. Diagnosis and treatment of vascular malformations of the brain. Curr Treat Options Neurol. 2014; 16(1): 279.

[31]

Lawton MT, Project UBAMS. Spetzler-Martin Grade III arteriovenous malformations: surgical results and a modification of the grading scale. Neurosurgery. 2003; 52(4): 740-748. discussion 748–9.

[32]

Wu EM, El Ahmadieh TY, McDougall CM, et al. Embolization of brain arteriovenous malformations with intent to cure: a systematic review. J Neurosurg. 2019; 132(2): 388-399.

[33]

Raymond J, Gentric JC, Magro E, et al. Endovascular treatment of brain arteriovenous malformations: clinical outcomes of patients included in the registry of a pragmatic randomized trial. J Neurosurg. 2023; 138(5): 1393-1402.

[34]

Quinn JC, Mittal N, Baisre A, et al. Vascular inflammation with eosinophils after the use of n-butyl cyanoacrylate liquid embolic system. J Neurointerv Surg. 2011; 3(1): 21-24.

[35]

Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003; 52(2): 296-307. discussion 307–8.

[36]

Raffa SJ, Chi YY, Bova FJ, Friedman WA. Validation of the radiosurgery-based arteriovenous malformation score in a large linear accelerator radiosurgery experience. J Neurosurg. 2009; 111(4): 832-839.

[37]

Han JH, Kim DG, Chung HT, et al. Clinical and neuroimaging outcome of cerebral arteriovenous malformations after Gamma Knife surgery: analysis of the radiation injury rate depending on the arteriovenous malformation volume. J Neurosurg. 2008; 109(2): 191-198.

[38]

Pan HC, Sheehan J, Stroila M, Steiner M, Steiner L. Late cyst formation following gamma knife surgery of arteriovenous malformations. J Neurosurg. 2005; 102: 124-127. Suppl.

[39]

Skjoth-Rasmussen J, Roed H, Ohlhues L, Jespersen B, Juhler M. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2010; 77(2): 542-547.

[40]

Gross BA, Ropper AE, Du R. Vascular complications of stereotactic radiosurgery for arteriovenous malformations. Clin Neurol Neurosurg. 2013; 115(6): 713-717.

[41]

St George EJ, Perks J, Plowman PN. Stereotactic radiosurgery XIV: the role of the haemosiderin ‘ring’ in the development of adverse reactions following radiosurgery for intracranial cavernous malformations: a sustainable hypothesis. Br J Neurosurg. 2002; 16(4): 385-391.

[42]

Karlsson B, Kihlstrom L, Lindquist C, Ericson K, Steiner L. Radiosurgery for cavernous malformations. J Neurosurg. 1998; 88(2): 293-297.

[43]

Singh R, Dumot C, Mantziaris G, et al. Clinical outcomes following stereotactic radiosurgery for cerebral cavernous malformations of the basal ganglia and thalamus. J Neurosurg. 2024; 140(6): 1762-1768.

[44]

Dumot C, Mantziaris G, Dayawansa S, et al. Stereotactic radiosurgery for haemorrhagic cerebral cavernous malformation: a multi-institutional, retrospective study. Stroke Vasc Neurol. 2024; 9(3): 221-229.

[45]

Bizzi A, Blasi V, Falini A, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008; 248(2): 579-589.

[46]

Wang LJ, Lin FX, Zhao B, Wu J, Cao Y, Wang S. Testing the reliability of BOLD-fMRI motor mapping in patients with cerebral arteriovenous malformations by electric cortical stimulation and surgery outcomes. World Neurosurg. 2016; 92: 386-396.

[47]

Okada T, Miki Y, Kikuta K, et al. Diffusion tensor fiber tractography for arteriovenous malformations: quantitative analyses to evaluate the corticospinal tract and optic radiation. AJNR Am J Neuroradiol. 2007; 28(6): 1107-1113.

[48]

Jiao Y, Lin F, Wu J, et al. A supplementary grading scale combining lesion-to-eloquence distance for predicting surgical outcomes of patients with brain arteriovenous malformations. J Neurosurg. 2018; 128(2): 530-540.

[49]

Wen Z, Zheng K, Guo S, et al. The difference of functional MR imaging in evaluating outcome of patients with diffuse and compact brain arteriovenous malformation. Neurosurg Rev. 2024; 47(1): 347.

[50]

Mascitelli JR, Yoon S, Cole TS, Kim H, Lawton MT. Does eloquence subtype influence outcome following arteriovenous malformation surgery?. J Neurosurg. 2018; 131(3): 876-883.

[51]

Xu H, Qin Z, Xu M, Chen C, Zhang J, Chen X. Clinical experience with intraoperative ultrasonographic image in microsurgical resection of cerebral arteriovenous malformations. World Neurosurg. 2017; 97: 93-97.

[52]

Wang Y, Wang Y, Wang Y, Taniguchi N, Chen XC. Intraoperative real-time contrast-enhanced ultrasound angiography: a new adjunct in the surgical treatment of arteriovenous malformations. J Neurosurg. 2007; 107(5): 959-964.

[53]

Fu B, Zhao JZ, Yu LB. The application of ultrasound in the management of cerebral arteriovenous malformation. Neurosci Bull. 2008; 24(6): 387-394.

[54]

Winter F, Blair L, Buchfelder M, Roessler K. Application of functional imaging, neuronavigation, and intraoperative MR imaging in the surgical treatment of brain cavernomas. Neurol Res. 2021; 43(4): 278-282.

[55]

Mathiesen T, Peredo I, Edner G, et al. Neuronavigation for arteriovenous malformation surgery by intraoperative three-dimensional ultrasound angiography. Neurosurgery. 2007; 60(4): 345-350. Suppl 2. discussion 350–1.

[56]

Wu X, Xie L, Lei J, et al. Acute traumatic coma awakening by right median nerve electrical stimulation: a randomised controlled trial. Intensive Care Med. 2023; 49(6): 633-644.

[57]

Yang Y, He Q, Dang Y, et al. Long-term functional outcomes improved with deep brain stimulation in patients with disorders of consciousness. Stroke Vasc Neurol. 2023; 8(5): 368-378.

[58]

Powell MP, Verma N, Sorensen E, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med. 2023; 29(3): 689-699.

[59]

Yang Y, He Q, Xia X, et al. Long-term functional prognosis and related factors of spinal cord stimulation in patients with disorders of consciousness. CNS Neurosci Ther. 2022; 28(8): 1249-1258.

[60]

Maury EA, Walsh CA, Kahle KT. Neurosurgery elucidates somatic mutations. Science. 2023; 382(6677): 1360-1362.

[61]

Hongo H, Miyawaki S, Teranishi Y, et al. Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet. 2023; 68(3): 157-167.

[62]

Pang M, Zhang G, Shang C, et al. Advances in the study of KRAS in brain arteriovenous malformation. Cerebrovasc Dis. 2023.

[63]

Nikolaev SI, Vetiska S, Bonilla X, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med. 2018; 378(3): 250-261.

[64]

Hong T, Yan Y, Li J, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain. 2019; 142(1): 23-34.

[65]

Priemer DS, Vortmeyer AO, Zhang S, Chang HY, Curless KL, Cheng L. Activating KRAS mutations in arteriovenous malformations of the brain: frequency and clinicopathologic correlation. Hum Pathol. 2019; 89: 33-39.

[66]

Oka M, Kushamae M, Aoki T, et al. KRAS G12D or G12V mutation in human brain arteriovenous malformations. World Neurosurg. 2019; 126: e1365-e1373.

[67]

Goss JA, Huang AY, Smith E, et al. Somatic mutations in intracranial arteriovenous malformations. PLoS One. 2019; 14(12): e0226852.

[68]

Gao S, Nelson J, Weinsheimer S, et al. Somatic mosaicism in the MAPK pathway in sporadic brain arteriovenous malformation and association with phenotype. J Neurosurg. 2022; 136(1): 148-155.

[69]

Li H, Nam Y, Huo R, et al. De novo germline and somatic variants convergently promote endothelial-to-mesenchymal transition in simplex brain arteriovenous malformation. Circ Res. 2021; 129(9): 825-839.

[70]

Mukhtarova K, Zholdybayeva E, Kairov U, et al. Whole-exome sequencing reveals pathogenic SIRT1 variant in brain arteriovenous malformation: a case report. Genes (Basel). 2022; 13(10): 1689.

[71]

Walcott BP, Winkler EA, Zhou S, et al. Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing. Hum Genome Var. 2018; 5: 18001.

[72]

Scimone C, Granata F, Longo M, et al. Germline mutation enrichment in pathways controlling endothelial cell homeostasis in patients with brain arteriovenous malformation: implication for molecular diagnosis. Int J Mol Sci. 2020; 21(12): 4321.

[73]

Zafar A, Quadri SA, Farooqui M, et al. Familial cerebral cavernous malformations. Stroke. 2019; 50(5): 1294-1301.

[74]

Heckl S, Aschoff A, Kunze S. Radiation-induced cavernous hemangiomas of the brain: a late effect predominantly in children. Cancer. 2002; 94(12): 3285-3291.

[75]

Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau W, Wilson CB. Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology. 1994; 193(3): 629-636.

[76]

Denier C, Labauge P, Brunereau L, et al. Clinical features of cerebral cavernous malformations patients with KRIT1 mutations. Ann Neurol. 2004; 55(2): 213-220.

[77]

Labauge P, Denier C, Bergametti F, Tournier-Lasserve E. Genetics of cavernous angiomas. Lancet Neurol. 2007; 6(3): 237-244.

[78]

Chohan MO, Marchio S, Morrison LA, et al. Emerging pharmacologic targets in cerebral cavernous malformation and potential strategies to alter the natural history of a difficult disease: a review. JAMA Neurol. 2019; 76(4): 492-500.

[79]

Dammann P, Wrede KH, Maderwald S, et al. The venous angioarchitecture of sporadic cerebral cavernous malformations: a susceptibility weighted imaging study at 7 T MRI. J Neurol Neurosurg Psychiatry. 2013; 84(2): 194-200.

[80]

Li DY, Whitehead KJ. Evaluating strategies for the treatment of cerebral cavernous malformations. Stroke. 2010; 41(10): S92-S94. Suppl.

[81]

Petersen TA, Morrison LA, Schrader RM, Hart BL. Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol. 2010; 31(2): 377-382.

[82]

McDonald DA, Shi C, Shenkar R, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet. 2014; 23(16): 4357-4370.

[83]

Ren AA, Snellings DA, Su YS, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021; 594(7862): 271-276.

[84]

Huo R, Yang Y, Sun Y, et al. Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation. Angiogenesis. 2023; 26(2): 295-312.

[85]

Weng J, Yang Y, Song D, et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am J Hum Genet. 2021; 108(5): 942-950.

[86]

Ren J, Huang Y, Ren Y, et al. Somatic variants of MAP3K3 are sufficient to cause cerebral and spinal cord cavernous malformations. Brain. 2023; 146(9): 3634-3647.

[87]

Smith ER. Cavernous malformations of the central nervous system. N Engl J Med. 2024; 390(11): 1022-1028.

[88]

Peyre M, Miyagishima D, Bielle F, et al. Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. N Engl J Med. 2021; 385(11): 996-1004.

[89]

Hong T, Xiao X, Ren J, et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain. 2021; 144(9): 2648-2658.

[90]

Snellings DA, Hong CC, Ren AA, et al. Cerebral cavernous malformation: from mechanism to therapy. Circ Res. 2021; 129(1): 195-215.

[91]

Koester SW, Rhodenhiser EG, Dabrowski SJ, et al. Radiation-induced cerebral cavernous malformations: a single-center experience and systematic literature review. World Neurosurg. 2023; 179: 222-232. e2.

[92]

Tsao MN, Li YQ, Lu G, Xu Y, Wong CS. Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol. 1999; 58(10): 1051-1060.

[93]

Huo R, Yang Y, Xu H, et al. Somatic GJA4 mutation in intracranial extra-axial cavernous hemangiomas. Stroke Vasc Neurol. 2023; 8(6): 453-462.

[94]

Ren J, Cui Z, Jiang C, et al. GNA14 and GNAQ somatic mutations cause spinal and intracranial extra-axial cavernous hemangiomas. Am J Hum Genet. 2024; 111(7): 1370-1382.

[95]

Peterson K, Coffman S, Zehri A, Anzalone A, Xiang Z, Wolfe S. Somatic mosaicism in the pathogenesis of de novo cerebral arteriovenous malformations: a paradigm shift implicating the RAS-MAPK signaling cascade. Cerebrovasc Dis. 2021; 50(2): 231-238.

[96]

Cheng F, Nussinov R. KRAS activating signaling triggers arteriovenous malformations. Trends Biochem Sci. 2018; 43(7): 481-483.

[97]

Fish JE, Flores Suarez CP, Boudreau E, et al. Somatic gain of KRAS function in the endothelium is sufficient to cause vascular malformations that require MEK but not PI3K signaling. Circ Res. 2020; 127(6): 727-743.

[98]

Park ES, Kim S, Huang S, et al. Selective endothelial hyperactivation of oncogenic KRAS induces brain arteriovenous malformations in mice. Ann Neurol. 2021; 89(5): 926-941.

[99]

Xu H, Huo R, Li H, et al. KRAS mutation-induced EndMT of brain arteriovenous malformation is mediated through the TGF-beta/BMP-SMAD4 pathway. Stroke Vasc Neurol. 2023; 8(3): 197-206.

[100]

Tu T, Yu J, Jiang C, et al. Somatic Braf(V600E) mutation in the cerebral endothelium induces brain arteriovenous malformations. Angiogenesis. 2024; 27(3): 441-460.

[101]

Walchli T, Ghobrial M, Schwab M, et al. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature. 2024; 632(8025): 603-613.

[102]

Lin Y, Gahn J, Banerjee K, et al. Role of endothelial PDGFB in arterio-venous malformations pathogenesis. Angiogenesis. 2024; 27(2): 193-209.

[103]

Nadeem T, Bogue W, Bigit B, Cuervo H. Deficiency of Notch signaling in pericytes results in arteriovenous malformations. JCI Insight. 2020; 5(21): e125940.

[104]

Winkler EA, Birk H, Burkhardt JK, et al. Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J Neurosurg. 2018; 129(6): 1464-1474.

[105]

He Q, Huo R, Wang J, et al. Exosomal miR-3131 derived from endothelial cells with KRAS mutation promotes EndMT by targeting PICK1 in brain arteriovenous malformations. CNS Neurosci Ther. 2023; 29(5): 1312-1324.

[106]

Lucas M, Costa AF, Montori M, Solano F, Zayas MD, Izquierdo G. Germline mutations in the CCM1 gene, encoding Krit1, cause cerebral cavernous malformations. Ann Neurol. 2001; 49(4): 529-532.

[107]

Boulday G, Rudini N, Maddaluno L, et al. Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med. 2011; 208(9): 1835-1847.

[108]

You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zhu Y. Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med. 2013; 17(3): 407-418.

[109]

Kleaveland B, Zheng X, Liu JJ, et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med. 2009; 15(2): 169-176.

[110]

Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S. ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet. 2008; 17(16): 2424-2432.

[111]

Mably JD, Chuang LP, Serluca FC, Mohideen MA, Chen JN, Fishman MC. santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development. 2006; 133(16): 3139-3146.

[112]

Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development. 2004; 131(6): 1437-1448.

[113]

Wang X, Hou Y, Deng K, Zhang Y, Wang DC, Ding J. Structural insights into the molecular recognition between cerebral cavernous malformation 2 and mitogen-activated protein kinase kinase kinase 3. Structure. 2015; 23(6): 1087-1096.

[114]

Fisher OS, Deng H, Liu D, et al. Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun. 2015; 6: 7937.

[115]

Cuttano R, Rudini N, Bravi L, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2016; 8(1): 6-24.

[116]

Zhou Z, Tang AT, Wong WY, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016; 532(7597): 122-126.

[117]

Maddaluno L, Rudini N, Cuttano R, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013; 498(7455): 492-496.

[118]

Snellings DA, Girard R, Lightle R, et al. Developmental venous anomalies are a genetic primer for cerebral cavernous malformations. Nat Cardiovasc Res. 2022; 1: 246-252.

[119]

Boulday G, Blecon A, Petit N, et al. Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech. 2009; 2(3-4): 168-177.

[120]

Zhou HJ, Qin L, Jiang Q, et al. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun. 2021; 12(1): 504.

[121]

Lopez-Ramirez MA, Fonseca G, Zeineddine HA, et al. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med. 2017; 214(11): 3331-3346.

[122]

DiStefano PV, Glading AJ. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J Cell Mol Med. 2020; 24(1): 632-639.

[123]

Tu T, Peng Z, Ren J, Zhang H. Cerebral cavernous malformation: immune and inflammatory perspectives. Front Immunol. 2022; 13: 922281.

[124]

Yamamoto M, Ramirez SH, Sato S, et al. Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol. 2008; 172(2): 521-533.

[125]

Min W, Qin L, Zhang H, et al. mTORC1 signaling in brain endothelial progenitors contributes to CCM pathogenesis. Circ Res. 2024; 135(4): e94-e113.

[126]

Tang AT, Choi JP, Kotzin JJ, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017; 545(7654): 305-310.

[127]

Tang AT, Sullivan KR, Hong CC, et al. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med. 2019; 11(520): eaaw3521.

[128]

Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov. 2021; 20(3): 179-199.

[129]

Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017; 14(12): 749-762.

[130]

Kuo MD, Jamshidi N. Behind the numbers: decoding molecular phenotypes with radiogenomics–guiding principles and technical considerations. Radiology. 2014; 270(2): 320-325.

[131]

Limaye N, Kangas J, Mendola A, et al. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet. 2015; 97(6): 914-921.

[132]

Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009; 41(1): 118-124.

[133]

Couto JA, Vivero MP, Kozakewich HP, et al. A somatic MAP3K3 mutation is associated with verrucous venous malformation. Am J Hum Genet. 2015; 96(3): 480-486.

[134]

Couto JA, Huang L, Vivero MP, et al. Endothelial cells from capillary malformations are enriched for somatic GNAQ mutations. Plast Reconstr Surg. 2016; 137(1): 77e-82e.

[135]

Couto JA, Huang AY, Konczyk DJ, et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet. 2017; 100(3): 546-554.

[136]

Ayturk UM, Couto JA, Hann S, et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am J Hum Genet. 2016; 98(4): 789-795.

[137]

Stor MLE, Horbach SER, Lokhorst MM, et al. Genetic mutations and phenotype characteristics in peripheral vascular malformations: a systematic review. J Eur Acad Dermatol Venereol. 2024; 38(7): 1314-1328.

[138]

Gault J, Sain S, Hu LJ, Awad IA. Spectrum of genotype and clinical manifestations in cerebral cavernous malformations. Neurosurgery. 2006; 59(6): 1278-1284. discussion 1284–85.

[139]

Shenkar R, Shi C, Rebeiz T, et al. Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med. 2015; 17(3): 188-196.

[140]

Riant F, Bergametti F, Fournier HD, et al. CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol. 2013; 4(4): 165-172.

[141]

Fauth C, Rostasy K, Rath M, et al. Highly variable intrafamilial manifestations of a CCM3 mutation ranging from acute childhood cerebral haemorrhage to late-onset meningiomas. Clin Neurol Neurosurg. 2015; 128: 41-43.

[142]

Cigoli MS, Avemaria F, De Benedetti S, et al. PDCD10 gene mutations in multiple cerebral cavernous malformations. PLoS One. 2014; 9(10): e110438.

[143]

Nikoubashman O, Di Rocco F, Davagnanam I, Mankad K, Zerah M, Wiesmann M. Prospective hemorrhage rates of cerebral cavernous malformations in children and adolescents based on MRI appearance. AJNR Am J Neuroradiol. 2015; 36(11): 2177-2183.

[144]

Flemming KD, Smith E, Marchuk D, Derry WB, Familial Cerebral Cavernous Malformations. In: Adam MP, Feldman J, Mirzaa GM, et al, eds. GeneReviews((R)). 1993.

[145]

Geraldo AF, Alves C, Luis A, et al. Natural history of familial cerebral cavernous malformation syndrome in children: a multicenter cohort study. Neuroradiology. 2023; 65(2): 401-414.

[146]

Clatterbuck RE, Elmaci I, Rigamonti D. The nature and fate of punctate (type IV) cavernous malformations. Neurosurgery. 2001; 49(1): 26-30. discussion 30–2.

[147]

Wang J, Yu QF, Huo R, et al. Zabramski classification in predicting the occurrence of symptomatic intracerebral hemorrhage in sporadic cerebral cavernous malformations. J Neurosurg. 2024; 140(3): 792-799.

[148]

Choquet H, Pawlikowska L, Nelson J, et al. Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc Dis. 2014; 38(6): 433-440.

[149]

Yang X, Dai Z, Gao C, et al. Cerebral cavernous malformation development in chronic mouse models driven by dual recombinases induced gene deletion in brain endothelial cells. J Cereb Blood Flow Metab. 2022; 42(12): 2230-2244.

[150]

Fisher DG, Sharifi KA, Ulutas EZ, et al. Magnetic resonance imaging of mouse cerebral cavernomas reveal differential lesion progression and variable permeability to gadolinium. Arterioscler Thromb Vasc Biol. 2023; 43(6): 958-970.

[151]

Saggi S, Winkler EA, Ammanuel SG, et al. Machine learning for predicting hemorrhage in pediatric patients with brain arteriovenous malformation. J Neurosurg Pediatr. 2022; 30(2): 203-209.

[152]

Oermann EK, Rubinsteyn A, Ding D, et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep. 2016; 6: 21161.

[153]

Jiao Y, Zhang J, Yang X, et al. Artificial intelligence-assisted evaluation of the spatial relationship between brain arteriovenous malformations and the corticospinal tract to predict postsurgical motor defects. AJNR Am J Neuroradiol. 2023; 44(1): 17-25.

[154]

Jabal MS, Mohammed MA, Kobeissi H, Lanzino G, Brinjikji W, Flemming KD. Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations. J Stroke Cerebrovasc Dis. 2024; 33(1): 107462.

[155]

Li X, Jones P, Zhao M. Identifying potential (re)hemorrhage among sporadic cerebral cavernous malformations using machine learning. Sci Rep. 2024; 14(1): 11022.

[156]

Serio VB, Palmieri M, Loberti L, et al. Nosological and theranostic approach to vascular malformation through cfDNA NGS liquid biopsy. J Clin Med. 2022; 11(13): 3740.

[157]

Zenner K, Jensen DM, Cook TT, et al. Cell-free DNA as a diagnostic analyte for molecular diagnosis of vascular malformations. Genet Med. 2021; 23(1): 123-130.

[158]

Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol. 2018; 15(9): 541-563.

[159]

Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022; 23(13): 7167.

[160]

Li X, Lin F, Wu J, Wang S. LncRNAs expression signatures of human brain arteriovenous malformation revealed by microarray. Medicine (Baltimore). 2018; 97(30): e11308.

[161]

Subhash S, Kalmbach N, Wegner F, et al. Transcriptome-wide profiling of cerebral cavernous malformations patients reveal important long noncoding RNA molecular signatures. Sci Rep. 2019; 9(1): 18203.

[162]

Huang J, Song J, Qu M, et al. MicroRNA-137 and microRNA-195* inhibit vasculogenesis in brain arteriovenous malformations. Ann Neurol. 2017; 82(3): 371-384.

[163]

Chen Y, Li Z, Shi Y, et al. Deep sequencing of small RNAs in blood of patients with brain arteriovenous malformations. World Neurosurg. 2018; 115: e570-e579.

[164]

Lee JS, Kim G, Lee JH, et al. MicroRNA-135b-5p is a pathologic biomarker in the endothelial cells of arteriovenous malformations. Int J Mol Sci. 2024; 25(9): 4888.

[165]

Kar S, Bali KK, Baisantry A, Geffers R, Samii A, Bertalanffy H. Genome-wide sequencing reveals micrornas downregulated in cerebral cavernous malformations. J Mol Neurosci. 2017; 61(2): 178-188.

[166]

Kar S, Bali KK, Baisantry A, et al. Genome-wide sequencing reveals small nucleolar RNAs downregulated in cerebral cavernous malformations. Cell Mol Neurobiol. 2018; 38(7): 1369-1382.

[167]

Li X, Gui Z, Han Y, et al. Comprehensive analysis of dysregulated exosomal long non-coding RNA networks associated with arteriovenous malformations. Gene. 2020; 738: 144482.

[168]

Renedo D, Rivier CA, Koo AB, et al. APOE ϵ4 and intracerebral hemorrhage in patients with brain arteriovenous malformation. JAMA Netw Open. 2024; 7(2): e2355368.

[169]

Srinath A, Xie B, Li Y, et al. Plasma metabolites with mechanistic and clinical links to the neurovascular disease cavernous angioma. Commun Med (Lond). 2023; 3(1): 35.

[170]

Li C, Wang X, Yan J, et al. Cholic acid protects in vitro neurovascular units against oxygen and glucose deprivation-induced injury through the BDNF-TrkB signaling pathway. Oxid Med Cell Longev. 2020; 2020: 1201624.

[171]

Winkler E, Wu D, Gil E, et al. Endoluminal biopsy for molecular profiling of human brain vascular malformations. Neurology. 2022; 98(16): e1637-e1647.

[172]

Smits PJ, Konczyk DJ, Sudduth CL, Goss JA, Greene AK. Endothelial MAP2K1 mutations in arteriovenous malformation activate the RAS/MAPK pathway. Biochem Biophys Res Commun. 2020; 529(2): 450-454.

[173]

Seebauer CT, Wiens B, Hintschich CA, et al. Targeting the microenvironment in the treatment of arteriovenous malformations. Angiogenesis. 2024; 27(1): 91-103.

[174]

Cheng P, Ma L, Shaligram S, et al. Effect of elevation of vascular endothelial growth factor level on exacerbation of hemorrhage in mouse brain arteriovenous malformation. J Neurosurg. 2019; 132(5): 1566-1573.

[175]

Walker EJ, Su H, Shen F, et al. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke. 2012; 43(7): 1925-1930.

[176]

Chen W, Guo Y, Walker EJ, et al. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler Thromb Vasc Biol. 2013; 33(2): 305-310.

[177]

Zhu W, Chen W, Zou D, et al. Thalidomide reduces hemorrhage of brain arteriovenous malformations in a mouse model. Stroke. 2018; 49(5): 1232-1240.

[178]

Choi JP, Wang R, Yang X, et al. Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. Sci Adv. 2018; 4(11): eaau0731.

[179]

Bravi L, Rudini N, Cuttano R, et al. Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci USA. 2015; 112(27): 8421-8426.

[180]

Whitehead KJ, Chan AC, Navankasattusas S, et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med. 2009; 15(2): 177-184.

[181]

Lisowska J, Rodel CJ, Manet S, et al. The CCM1-CCM2 complex controls complementary functions of ROCK1 and ROCK2 that are required for endothelial integrity. J Cell Sci. 2018; 131(15): jcs216093.

[182]

Zheng X, Xu C, Di Lorenzo A, et al. CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest. 2010; 120(8): 2795-2804.

[183]

Borikova AL, Dibble CF, Sciaky N, et al. Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem. 2010; 285(16): 11760-11764.

[184]

McKerracher L, Shenkar R, Abbinanti M, et al. A brain-targeted orally available ROCK2 inhibitor benefits mild and aggressive cavernous angioma disease. Transl Stroke Res. 2020; 11(3): 365-376.

[185]

Shenkar R, Shi C, Austin C, et al. RhoA kinase inhibition with fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke. 2017; 48(1): 187-194.

[186]

Shenkar R, Peiper A, Pardo H, et al. Rho kinase inhibition blunts lesion development and hemorrhage in murine models of aggressive pdcd10/ccm3 disease. Stroke. 2019; 50(3): 738-744.

[187]

Stockton RA, Shenkar R, Awad IA, Ginsberg MH. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med. 2010; 207(4): 881-896.

[188]

Marchi S, Corricelli M, Trapani E, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015; 7(11): 1403-1417.

[189]

Wustehube J, Bartol A, Liebler SS, et al. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci USA. 2010; 107(28): 12640-12645.

[190]

You C, Zhao K, Dammann P, et al. EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol Med. 2017; 21(9): 1848-1858.

[191]

He Y, Zhang H, Yu L, et al. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal. 2010; 3(116): ra26.

[192]

Gibson CC, Zhu W, Davis CT, et al. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation. 2015; 131(3): 289-299.

[193]

Otten C, Knox J, Boulday G, et al. Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations. EMBO Mol Med. 2018; 10(10): e9155.

[194]

Reinhard M, Schuchardt F, Meckel S, et al. Propranolol stops progressive multiple cerebral cavernoma in an adult patient. J Neurol Sci. 2016; 367: 15-17.

[195]

Zabramski JM, Kalani MYS, Filippidis AS, Spetzler RF. Propranolol treatment of cavernous malformations with symptomatic hemorrhage. World Neurosurg. 2016; 88: 631-639.

[196]

Oldenburg J, Malinverno M, Globisch MA, et al. Propranolol reduces the development of lesions and rescues barrier function in cerebral cavernous malformations: a preclinical study. Stroke. 2021; 52(4): 1418-1427.

[197]

Mabray MC, Caprihan A, Nelson J, et al. Effect of simvastatin on permeability in cerebral cavernous malformation type 1 patients: results from a pilot small randomized controlled clinical trial. Transl Stroke Res. 2020; 11(3): 319-321.

[198]

Polster SP, Stadnik A, Akers AL, et al. Atorvastatin treatment of cavernous angiomas with symptomatic hemorrhage exploratory proof of concept (AT CASH EPOC) trial. Neurosurgery. 2019; 85(6): 843-853.

[199]

Winkler EA, Kim CN, Ross JM, et al. A single-cell atlas of the normal and malformed human brain vasculature. Science. 2022; 375(6584): eabi7377.

[200]

Chen Y, Zhu W, Bollen AW, et al. Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery. 2008; 62(6): 1340-1349. discussion 1349–50.

[201]

Weinsheimer SM, Xu H, Achrol AS, et al. Gene expression profiling of blood in brain arteriovenous malformation patients. Transl Stroke Res. 2011; 2(4): 575-587.

[202]

Li X, Wang R, Wang X, Xue X, Ran D, Wang S. Relevance of IL-6 and MMP-9 to cerebral arteriovenous malformation and hemorrhage. Mol Med Rep. 2013; 7(4): 1261-1266.

[203]

Noshiro S, Mikami T, Kataoka-Sasaki Y, et al. Biological relevance of tissue factor and IL-6 in arteriovenous malformations. Neurosurg Rev. 2017; 40(3): 359-367.

[204]

Chen Y, Fan Y, Poon KY, et al. MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Front Biosci. 2006; 11: 3121-3128.

[205]

Chen Y, Pawlikowska L, Yao JS, et al. Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol. 2006; 59(1): 72-80.

[206]

Lee CZ, Xue Z, Zhu Y, Yang GY, Young WL. Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral hemorrhage. Stroke. 2007; 38(9): 2563-2568.

[207]

Lee CZ, Xu B, Hashimoto T, McCulloch CE, Yang GY, Young WL. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke. 2004; 35(7): 1715-1719.

[208]

Hashimoto T, Matsumoto MM, Li JF, Lawton MT, Young WL. University of California SFBSG. Suppression of MMP-9 by doxycycline in brain arteriovenous malformations. BMC Neurol. 2005; 5(1): 1.

[209]

Vogelpoel LT, Hansen IS, Rispens T, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014; 5: 5444.

[210]

Globisch MA, Onyeogaziri FC, Jauhiainen S, et al. Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation. Blood. 2022; 140(20): 2154-2169.

[211]

Lai CC, Nelsen B, Frias-Anaya E, et al. Neuroinflammation plays a critical role in cerebral cavernous malformation disease. Circ Res. 2022; 131(11): 909-925.

[212]

Yau ACY, Globisch MA, Onyeogaziri FC, et al. Inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cell Mol Life Sci. 2022; 79(4): 206.

[213]

Shi C, Shenkar R, Du H, et al. Immune response in human cerebral cavernous malformations. Stroke. 2009; 40(5): 1659-1665.

[214]

Shi C, Shenkar R, Kinloch A, et al. Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations. J Neuroimmunol. 2014; 272(1-2): 67-75.

[215]

Shi C, Shenkar R, Batjer HH, Check IJ, Awad IA. Oligoclonal immune response in cerebral cavernous malformations. Laboratory investigation. J Neurosurg. 2007; 107(5): 1023-1026.

[216]

Zhang D, Kinloch AJ, Srinath A, et al. Antibodies in cerebral cavernous malformations react with cytoskeleton autoantigens in the lesional milieu. J Autoimmun. 2020; 113: 102469.

[217]

Shi C, Shenkar R, Zeineddine HA, et al. B-cell depletion reduces the maturation of cerebral cavernous malformations in murine models. J Neuroimmune Pharmacol. 2016; 11(2): 369-377.

[218]

Yau ACY, Globisch MA, Onyeogaziri FC, et al. Correction: inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cell Mol Life Sci. 2022; 79(7): 388.

[219]

Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN, Marchuk DA. Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol. 2004; 165(5): 1509-1518.

[220]

Li Y, Yang J, Huang Y, et al. Cellular heterogeneity and immune microenvironment revealed by single-cell transcriptome in venous malformation and cavernous venous malformation. J Mol Cell Cardiol. 2022; 162: 130-143.

[221]

Koskimaki J, Zhang D, Li Y, et al. Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations. Acta Neuropathol Commun. 2019; 7(1): 132.

[222]

Fan X, Gao X, Deng Y, et al. Untargeted plasma metabolome identifies biomarkers in patients with extracranial arteriovenous malformations. Front Physiol. 2023; 14: 1207390.

[223]

Fraissenon A, Bayard C, Morin G, et al. Sotorasib for vascular malformations associated with KRAS G12C mutation. N Engl J Med. 2024; 391(4): 334-342.

[224]

Sato Y, Silina K, van den Broek M, Hirahara K, Yanagita M. The roles of tertiary lymphoid structures in chronic diseases. Nat Rev Nephrol. 2023; 19(8): 525-537.

[225]

Lin Y, Wan Z, Liu B, et al. B cell-reactive triad of B cells, follicular helper and regulatory T cells at homeostasis. Cell Res. 2024; 34(4): 295-308.

[226]

Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A. Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol. 2022; 19(7): 441-457.

[227]

Lauss M, Donia M, Svane IM, Jönsson G. B cells and tertiary lymphoid structures: friends or foes in cancer immunotherapy? Clin Cancer Res. 2022; 28(9): 1751-1758.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/