The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression

Zhuoran Gu , Libin Zou , Xinjian Pan , Yang Yu , Yongqiang Liu , Zhijin Zhang , Ji Liu , Shiyu Mao , Junfeng Zhang , Changcheng Guo , Wei Li , Jiang Geng , Wentao Zhang , Xudong Yao , Bing Shen

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70026

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70026 DOI: 10.1002/mco2.70026
REVIEW

The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression

Author information +
History +
PDF

Abstract

RNA modification has emerged as a crucial area of research in epigenetics, significantly influencing tumor biology by regulating RNA metabolism. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification, the sole known acetylation in eukaryotic RNA, influences cancer pathogenesis and progression. NAT10 is the only writer of ac4C and catalyzes acetyl transfer on targeted RNA, and ac4C helps to improve the stability and translational efficiency of ac4C-modified RNA. NAT10 is highly expressed and associated with poor prognosis in pan-cancers. Based on its molecular mechanism and biological functions, ac4C is a central factor in tumorigenesis, tumor progression, drug resistance, and tumor immune escape. Despite the increasing focus on ac4C, the specific regulatory mechanisms of ac4C in cancer remain elusive. The present review thoroughly analyzes the current knowledge on NAT10-mediated ac4C modification in cancer, highlighting its broad regulatory influence on targeted gene expression and tumor biology. This review also summarizes the limitations and perspectives of current research on NAT10 and ac4C in cancer, to identify new therapeutic targets and advance cancer treatment strategies.

Keywords

cancer / epitranscriptome / N4-acetylation (ac4C) / N-acetyltransferase 10 (NAT10) / RNA modification

Cite this article

Download citation ▾
Zhuoran Gu, Libin Zou, Xinjian Pan, Yang Yu, Yongqiang Liu, Zhijin Zhang, Ji Liu, Shiyu Mao, Junfeng Zhang, Changcheng Guo, Wei Li, Jiang Geng, Wentao Zhang, Xudong Yao, Bing Shen. The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression. MedComm, 2024, 5(12): e70026 DOI:10.1002/mco2.70026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science. 2018; 361(6409): 1346-1349.

[2]

Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020; 20(6): 303-322.

[3]

Luo J, Cao J, Chen C, Xie H. Emerging role of RNA acetylation modification ac4C in diseases: current advances and future challenges. Biochem Pharmacol. 2023; 213: 115628.

[4]

Karthiya R, Wasil SM, Khandelia P. Emerging role of N4-acetylcytidine modification of RNA in gene regulation and cellular functions. Mol Biol Rep. 2020; 47(11): 9189-9199.

[5]

Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017; 169(7): 1187-1200.

[6]

Sas-Chen A, Thomas JM, Matzov D, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020; 583(7817): 638-643.

[7]

Chen L, Wang WJ, Liu Q, et al. NAT10-mediated N4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Res. 2022; 50(19): 10896-10913.

[8]

Zachau HG, Dütting D, Feldmann H. Nucleotide sequences of two serine-specific transfer ribonucleic acids. Angew Chem Int Ed Engl. 1966; 5(4): 422.

[9]

Xie T, Fu DJ, Li ZM, et al. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol Cancer. 2022; 21(1): 173.

[10]

Yu YZ, Lv DJ, Wang C, et al. Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p. Mol Cancer. 2022; 21(1): 12.

[11]

Lv DJ, Song XL, Huang B, et al. HMGB1 promotes prostate cancer development and metastasis by interacting with brahma-related gene 1 and activating the Akt signaling pathway. Theranostics. 2019; 9(18): 5166-5182.

[12]

Hao H, Liu W, Miao Y, et al. N4-acetylcytidine regulates the replication and pathogenicity of enterovirus 71. Nucleic Acids Res. 2022; 50(16): 9339-9354.

[13]

Jin G, Xu M, Zou M, Duan S. The processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic review. Mol Ther Nucleic Acids. 2020; 20: 13-24.

[14]

Stern L, Schulman LH. The role of the minor base N4-acetylcytidine in the function of the Escherichia coli noninitiator methionine transfer RNA. J Biol Chem. 1978; 253(17): 6132-6139.

[15]

Thomas G, Gordon J, Rogg H. N4-Acetylcytidine. A previously unidentified labile component of the small subunit of eukaryotic ribosomes. J Biol Chem. 1978; 253(4): 1101-1105.

[16]

Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018; 175(7): 1872-1886. e24.

[17]

Tardu M, Jones JD, Kennedy RT, Lin Q, Koutmou KS. Identification and quantification of modified nucleosides in Saccharomyces cerevisiae mRNAs. ACS Chem Biol. 2019; 14(7): 1403-1409.

[18]

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73(1): 17-48.

[19]

Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012; 487(7406): 239-243.

[20]

Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: leading to a therapeutic dead end. Cancer Lett. 2015; 367(1): 12-17.

[21]

Thomas JM, Briney CA, Nance KD, et al. A chemical signature for cytidine acetylation in RNA. J Am Chem Soc. 2018; 140(40): 12667-12670.

[22]

Mezzar S, de Schryver E, Van Veldhoven PP. RP-HPLC-fluorescence analysis of aliphatic aldehydes: application to aldehyde-generating enzymes HACL1 and SGPL1. J Lipid Res. 2014; 55(3): 573-582.

[23]

Yang J, Sharma S, Watzinger P, Hartmann JD, Kötter P, Entian KD. Mapping of complete set of ribose and base modifications of yeast rRNA by RP-HPLC and mung bean nuclease assay. PLoS One. 2016; 11(12): e0168873.

[24]

Liu R, Wubulikasimu Z, Cai R, et al. NAT10-mediated N4-acetylcytidine mRNA modification regulates self-renewal in human embryonic stem cells. Nucleic Acids Res. 2023; 51(16): 8514-8531.

[25]

Song S, Li B, Jin X, et al. NAT10 overexpression promotes tumorigenesis and epithelial-mesenchymal transition through AKT pathway in gastric cancer. Dig Dis Sci. 2024; 69(9): 3261-3275.

[26]

Sinclair WR, Arango D, Shrimp JH, et al. Profiling cytidine acetylation with specific affinity and reactivity. ACS Chem Biol. 2017; 12(12): 2922-2926.

[27]

Thomas JM, Bryson KM, Meier JL. Nucleotide resolution sequencing of N4-acetylcytidine in RNA. Methods Enzymol. 2019; 621: 31-51.

[28]

Alam W, Tayara H, Chong KT. XG-ac4C: identification of N4-acetylcytidine (ac4C) in mRNA using eXtreme gradient boosting with electron-ion interaction pseudopotentials. Sci Rep. 2020; 10(1): 20942.

[29]

Zhao W, Zhou Y, Cui Q, Zhou Y. PACES: prediction of N4-acetylcytidine (ac4C) modification sites in mRNA. Sci Rep. 2019; 9(1): 11112.

[30]

Sharma S, Marchand V, Motorin Y, Lafontaine DLJ. Identification of sites of 2’-O-methylation vulnerability in human ribosomal RNAs by systematic mapping. Sci Rep. 2017; 7(1): 11490.

[31]

Noon KR, Bruenger E, McCloskey JA. Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol. 1998; 180(11): 2883-2888.

[32]

Staehelin M, Rogg H, Baguley BC, Ginsberg T, Wehrli W. Structure of a mammalian serine tRNA. Nature. 1968; 219(5161): 1363-1365.

[33]

Oashi Z, Murao K, Yahagi T, Von Minden DL, McCloskey JA, Nishimura S. Characterization of C + located in the first position of the anticodon of Escherichia coli tRNA Met as N 4 - acetylcytidine. Biochim Biophys Acta. 1972; 262(2): 209-213.

[34]

Kowalski S, Yamane T, Fresco JR. Nucleotide sequence of the “denaturable” leucine transfer RNA from yeast. Science. 1971; 172(3981): 385-387.

[35]

Zhou Y, Ji M, Xia Y, et al. Silencing of IRF8 mediated by m6A modification promotes the progression of T-cell acute lymphoblastic leukemia. Adv Sci (Weinh). 2023; 10(2): e2201724.

[36]

Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 2005; 33: D139-D140. Database issue.

[37]

Johansson MJO, Byström AS. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA. 2004; 10(4): 712-719.

[38]

Johansen T, Johansen S, Haugli FB. Nucleotide sequence of the Physarum polycephalum small subunit ribosomal RNA as inferred from the gene sequence: secondary structure and evolutionary implications. Curr Genet. 1988; 14(3): 265-273.

[39]

Lv J, Liu H, Wang Q, Tang Z, Hou L, Zhang B. Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun. 2003; 311(2): 506-513.

[40]

Ito S, Horikawa S, Suzuki T, et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014; 289(52): 35724-35730.

[41]

Gregory RI, Yan KP, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004; 432(7014): 235-240.

[42]

Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell. 2004; 16(6): 861-865.

[43]

Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005; 436(7051): 740-744.

[44]

Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19(1): 92-105.

[45]

Zhang H, Lu R, Huang J, et al. N4-acetylcytidine modifies primary microRNAs for processing in cancer cells. Cell Mol Life Sci. 2024; 81(1): 73.

[46]

Zhang X, Zeng J, Wang J, et al. Revealing the potential markers of N(4)-Acetylcytidine through acRIP-seq in Triple-negative breast cancer. Genes (Basel). 2022; 13(12): 2400.

[47]

Yu XM, Li SJ, Yao ZT, et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 2023; 42(14): 1101-1116.

[48]

Ma Y, Li W, Fan C, Wang Y, Jiang H, Yang W. Comprehensive analysis of long non-coding RNAs N4-acetylcytidine in Alzheimer’s disease mice model using high-throughput sequencing. J Alzheimers Dis. 2022; 90(4): 1659-1675.

[49]

Yan Q, Zhou J, Wang Z, et al. NAT10-dependent N4-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation. Nat Commun. 2023; 14(1): 6327.

[50]

Ma L, Zheng Y, Zhou Z, et al. Dissection of mRNA ac4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene. Mol Hortic. 2024; 4(1): 5.

[51]

Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m6A and other RNA modifications and their roles in cancer. Front Med. 2024; 18(4): 622-648.

[52]

Zhang C, Yuan L, Zou Q, et al. CircMAST1 inhibits cervical cancer progression by hindering the N4-acetylcytidine modification of YAP mRNA. Cell Mol Biol Lett. 2024; 29(1): 25.

[53]

Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science. 2014; 344(6183): 527-532.

[54]

Liu HY, Liu YY, Yang F, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020; 48(7): 3638-3656.

[55]

Dalhat MH, Narayan S, Serio H, Arango D. Dissecting the oncogenic properties of essential RNA-modifying enzymes: a focus on NAT10. Oncogene. 2024; 43(15): 1077-1086.

[56]

Ito S, Akamatsu Y, Noma A, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. J Biol Chem. 2014; 289(38): 26201-26212.

[57]

Lin J, Xiang Y, Huang J, et al. NAT10 maintains OGA mRNA stability through ac4C modification in regulating oocyte maturation. Front Endocrinol (Lausanne). 2022; 13: 907286.

[58]

Guo G, Shi X, Wang H, et al. Epitranscriptomic N4-acetylcytidine profiling in CD4+ T cells of systemic lupus erythematosus. Front Cell Dev Biol. 2020; 8: 842.

[59]

Deng M, Zhang L, Zheng W, et al. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. J Exp Clin Cancer Res. 2023; 42(1): 9.

[60]

Yu C, Chen Y, Luo H, et al. NAT10 promotes vascular remodelling via mRNA ac4C acetylation. Eur Heart J. 2024:ehae707. Published online October 25, .

[61]

Ma N, Liu H, Wu Y, Yao M, Zhang B. Inhibition of N-acetyltransferase 10 suppresses the progression of prostate cancer through regulation of DNA replication. Int J Mol Sci. 2022; 23(12): 6573.

[62]

Tesarova T, Fiala O, Hora M, Vaclavikova R. Non-coding transcriptome profiles in clear-cell renal cell carcinoma. Nat Rev Urol. 2024. Published online September 6.

[63]

Kumbhar BV, Kamble AD, Sonawane KD. Conformational preferences of modified nucleoside N(4)-acetylcytidine, ac4C occur at “wobble” 34th position in the anticodon loop of tRNA. Cell Biochem Biophys. 2013; 66(3): 797-816.

[64]

Arango D, Sturgill D, Yang R, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022; 82(15): 2797-2814. e11.

[65]

Xie L, Zhong X, Cao W, Liu J, Zu X, Chen L. Mechanisms of NAT10 as ac4C writer in diseases. Mol Ther Nucleic Acids. 2023; 32: 359-368.

[66]

Zhang H, Chen Z, Zhou J, et al. NAT10 regulates neutrophil pyroptosis in sepsis via acetylating ULK1 RNA and activating STING pathway. Commun Biol. 2022; 5(1): 916.

[67]

Paulitschke V, Berger W, Paulitschke P, et al. Vemurafenib resistance signature by proteome analysis offers new strategies and rational therapeutic concepts. Mol Cancer Ther. 2015; 14(3): 757-768.

[68]

Chi YH, Haller K, Peloponese JM, Jeang KT. Histone acetyltransferase hALP and nuclear membrane protein hsSUN1 function in de-condensation of mitotic chromosomes. J Biol Chem. 2007; 282(37): 27447-27458.

[69]

Kong R, Zhang L, Hu L, et al. hALP, a novel transcriptional U three protein (t-UTP), activates RNA polymerase I transcription by binding and acetylating the upstream binding factor (UBF). J Biol Chem. 2011; 286(9): 7139-7148.

[70]

Sharma S, Langhendries JL, Watzinger P, Kötter P, Entian KD, Lafontaine DLJ. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015; 43(4): 2242-2258.

[71]

Cui L, Ma R, Cai J, et al. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther. 2022; 7: 334.

[72]

Ding M, Yu Z, Lu T, Hu S, Zhou X, Wang X. N-acetyltransferase 10 facilitates tumorigenesis of diffuse large B-cell lymphoma by regulating AMPK/mTOR signalling through N4-acetylcytidine modification of SLC30A9. Clin Transl Med. 2024; 14(7): e1747.

[73]

Qu Z, Pang X, Mei Z, et al. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury. Redox Biol. 2024; 72: 103145.

[74]

Wang X, Ling R, Peng Y, Qiu W, Chen D. RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification. Int J Oral Sci. 2024; 16(1): 6.

[75]

Jin C, Wang T, Zhang D, et al. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac4C acetylation of KIF23 mRNA. J Exp Clin Cancer Res. 2022; 41(1): 345.

[76]

Cui Z, Xu Y, Wu P, et al. NAT10 promotes osteogenic differentiation of periodontal ligament stem cells by regulating VEGFA-mediated PI3K/AKT signaling pathway through ac4C modification. Odontology. 2023; 111(4): 870-882.

[77]

Yan Q, Zhou J, Gu Y, et al. Lactylation of NAT10 promotes N4-acetylcytidine modification on tRNASer-CGA-1-1 to boost oncogenic DNA virus KSHV reactivation. Cell Death Differ. 2024. Published online June 15.

[78]

Massagué J. G1 cell-cycle control and cancer. Nature. 2004; 432(7015): 298-306.

[79]

Wang C, Wang T, Li KJ, et al. SETD4 inhibits prostate cancer development by promoting H3K27me3-mediated NUPR1 transcriptional repression and cell cycle arrest. Cancer Lett. 2023; 579: 216464.

[80]

Li D, Yuan D, Shen H, Mao X, Yuan S, Liu Q. Gremlin-1: an endogenous BMP antagonist induces epithelial-mesenchymal transition and interferes with redifferentiation in fetal RPE cells with repeated wounds. Mol Vis. 2019; 25: 625-635.

[81]

Zhu Z, Xing X, Huang S, Tu Y. NAT10 promotes osteogenic differentiation of mesenchymal stem cells by mediating N4-acetylcytidine modification of gremlin 1. Stem Cells Int. 2021; 2021: 8833527.

[82]

Carreira ACO, Zambuzzi WF, Rossi MC, Astorino Filho R, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: promising molecules for bone healing, bioengineering, and regenerative medicine. Vitam Horm. 2015; 99: 293-322.

[83]

Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev. 1999; 20(4): 501-534.

[84]

Li KJ, Hong Y, Yu YZ, et al. NAT10 promotes prostate cancer growth and metastasis by acetylating mRNAs of HMGA1 and KRT8. Adv Sci (Weinh). 2024; 11(32): e2310131.

[85]

Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022; 23(1): 74-88.

[86]

Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997; 88(3): 323-331.

[87]

Hirao A, Kong YY, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000; 287(5459): 1824-1827.

[88]

Polyak K, Kato JY, Solomon MJ, et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 1994; 8(1): 9-22.

[89]

Kato JY, Matsuoka M, Polyak K, Massagué J, Sherr CJ. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell. 1994; 79(3): 487-496.

[90]

Vlach J, Hennecke S, Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J. 1997; 16(17): 5334-5344.

[91]

Lloyd RV, Erickson LA, Jin L, et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol. 1999; 154(2): 313-323.

[92]

Kahlert C, Lahes S, Radhakrishnan P, et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res. 2011; 17(24): 7654-7663.

[93]

Zhang S, Liu Y, Ma X, et al. Recent advances in the potential role of RNA N4-acetylcytidine in cancer progression. Cell Commun Signal. 2024; 22(1): 49.

[94]

Chen X, Hao Y, Liu Y, et al. NAT10/ac4C/FOXP1 promotes malignant progression and facilitates immunosuppression by reprogramming glycolytic metabolism in cervical cancer. Adv Sci (Weinh). 2023; 10(32): e2302705.

[95]

Jin C, Gao J, Zhu J, Ao Y, Shi B, Li X. Exosomal NAT10 from esophageal squamous cell carcinoma cells modulates macrophage lipid metabolism and polarization through ac4C modification of FASN. Transl Oncol. 2024; 45: 101934.

[96]

Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012; 148(1-2): 349-361.

[97]

Ye X, Tam WL, Shibue T, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015; 525(7568): 256-260.

[98]

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15(3): 178-196.

[99]

Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009; 9(4): 265-273.

[100]

Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006; 7(2): 131-142.

[101]

MacLeod MKL, Clambey ET, Kappler JW, Marrack P. CD4 memory T cells: what are they and what can they do?. Semin Immunol. 2009; 21(2): 53-61.

[102]

Kanchan T, Saraf A, Krishan K, Surekha B, Garg P, Misra S. COVID-19 pandemic: a reminder to develop forensic radiology facility. J Infect Dev Ctries. 2021; 15(11): 1593-1596.

[103]

Qin G, Bai F, Hu H, et al. Targeting the NAT10/NPM1 axis abrogates PD-L1 expression and improves the response to immune checkpoint blockade therapy. Mol Med. 2024; 30(1): 13.

[104]

Wang T, Zou Y, Huang N, Teng J, Chen J. CCDC84 acetylation oscillation regulates centrosome duplication by modulating HsSAS-6 degradation. Cell Rep. 2019; 29(7): 2078-2091. e5.

[105]

Shan MM, Zou YJ, Pan ZN, et al. Kinesin motor KIFC1 is required for tubulin acetylation and actin-dependent spindle migration in mouse oocyte meiosis. Development. 2022; 149(5): dev200231.

[106]

Liu X, Cai S, Zhang C, et al. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res. 2018; 46(18): 9601-9616.

[107]

Xu L, Fang J, Pan J, et al. Zinc finger-inspired peptide-metal-phenolic nanointerface enhances bone-implant integration under bacterial infection microenvironment through immune modulation and osteogenesis promotion. Bioact Mater. 2024; 41: 564-576.

[108]

Stanislauskienė R, Laurynėnas A, Rutkienė R, et al. YqfB protein from Escherichia coli: an atypical amidohydrolase active towards N4-acylcytosine derivatives. Sci Rep. 2020; 10(1): 788.

[109]

Zhang Z, Zhang Y, Cai Y, et al. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-κB pathway in macrophages. Biochim Biophys Acta Mol Cell Res. 2023; 1870(7): 119521.

[110]

Liang SP, Wang XZ, Piao MH, et al. Activated SIRT1 contributes to DPT-induced glioma cell parthanatos by upregulation of NOX2 and NAT10. Acta Pharmacol Sin. 2023; 44(10): 2125-2138.

[111]

Liu S, Lin C, Lin X, et al. NAT10 phase separation regulates YTHDF1 splicing to promote gastric cancer progression. Cancer Res. 2024. Published online July 18.

[112]

Zi J, Han Q, Gu S, et al. Targeting NAT10 induces apoptosis associated with enhancing endoplasmic reticulum stress in acute myeloid leukemia cells. Front Oncol. 2020; 10: 598107.

[113]

Wang G, Zhang M, Zhang Y, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022; 12(5): e738.

[114]

Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res. 2023; 83(10): 1666-1683.

[115]

Shuai Y, Zhang H, Liu C, et al. CLIC3 interacts with NAT10 to inhibit N4-acetylcytidine modification of p21 mRNA and promote bladder cancer progression. Cell Death Dis. 2024; 15(1): 9.

[116]

Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009; 9(6): 400-414.

[117]

Zhao CC, Sun X, Chen J, Geng BD. NAT10-mediated mRNA N4-acetylcytidine modification of MDR1 and BCRP promotes breast cancer progression. Thorac Cancer. 2024; 15(10): 820-829.

[118]

Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018; 15(1): 13-30.

[119]

Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012; 12(9): 587-598.

[120]

Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res. 2019; 47(16): 8502-8520.

[121]

Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012; 12(12): 801-817.

[122]

Wu J, Zhu H, Wu J, Chen W, Guan X. Inhibition of N-acetyltransferase 10 using remodelin attenuates doxorubicin resistance by reversing the epithelial-mesenchymal transition in breast cancer. Am J Transl Res. 2018; 10(1): 256-264.

[123]

Tan B, Tang Q, Zhong Y, et al. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration. Int J Oral Sci. 2021; 13(1): 9.

[124]

Qin H, Ni H, Liu Y, et al. RNA-binding proteins in tumor progression. J Hematol Oncol. 2020; 13(1): 90.

[125]

Long Y, Ren Y, Wei Q, et al. NAT10-mediated RNA acetylation enhances HNRNPUL1 mRNA stability to contribute cervical cancer progression. Int J Med Sci. 2023; 20(8): 1079-1090.

[126]

Zheng X, Wang Q, Zhou Y, et al. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun (Lond). 2022; 42(12): 1347-1366.

[127]

Zhang H, Shan W, Yang Z, et al. NAT10 mediated mRNA acetylation modification patterns associated with colon cancer progression and microsatellite status. Epigenetics. 2023; 18(1): 2188667.

[128]

Zhang H, Hou W, Wang HL, et al. GSK-3β–regulated N-acetyltransferase 10 is involved in colorectal cancer invasion. Clin Cancer Res. 2014; 20(17): 4717-4729.

[129]

Liao L, He Y, Li SJ, et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res. 2023; 33(5): 355-371.

[130]

Wei W, Zhang S, Han H, et al. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer. Cell Rep. 2023; 42(7): 112810.

[131]

Yang Q, Lei X, He J, et al. N4-Acetylcytidine drives glycolysis addiction in gastric cancer via NAT10/SEPT9/HIF-1α positive feedback loop. Adv Sci (Weinh). 2023; 10(23): e2300898.

[132]

Liu D, Yang X, Wang X. Neutrophil extracellular traps promote gastric cancer cell metastasis via the NAT10-mediated N4-acetylcytidine modification of SMYD2. Cell Signal. 2024; 116: 111014.

[133]

Liu D, Yang X, Wang X. Neutrophil extracellular traps promote gastric cancer cell metastasis via the NAT10-mediated N4-acetylcytidine modification of SMYD2. Cell Signal. 2023:111014. Published online December 17.

[134]

Du C, Han X, Zhang Y, et al. DARS-AS1 modulates cell proliferation and migration of gastric cancer cells by regulating miR-330-3p/NAT10 axis. Open Med (Wars). 2022; 17(1): 2036-2045.

[135]

Shu J, Xia K, Luo H, Wang Y. DARS-AS1: A vital oncogenic LncRNA regulator with potential for cancer prognosis and therapy. Int J Med Sci. 2024; 21(3): 571-582.

[136]

Fan Y, Sheng W, Meng Y, Cao Y, Li R. LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artif Cells Nanomed Biotechnol. 2020; 48(1): 393-407.

[137]

Liu S, Lin C, Lin X, et al. NAT10 phase separation regulates YTHDF1 splicing to promote gastric cancer progression. Cancer Res. 2024. Published online July 18, .

[138]

Li Z, Li D, Yang T, Yao C. NAT10 promotes the tumorigenesis and progression of laryngeal squamous cell carcinoma through ac4C modification of FOXM1 mRNA. Cancer Biol Ther. 2023; 24(1): 2274143.

[139]

Shang X, Peng Y, Wang Y, et al. Profile analysis of N4-acetylcytidine (ac4C) on mRNA of human lung adenocarcinoma and paired adjacent non-tumor tissues. Biochim Biophys Acta Gen Subj. 2023; 1867(12): 130498.

[140]

Wang Z, Huang Y, Lu W, et al. c-myc-mediated upregulation of NAT10 facilitates tumor development via cell cycle regulation in non-small cell lung cancer. Med Oncol. 2022; 39(10): 140.

[141]

Ma R, Chen J, Jiang S, Lin S, Zhang X, Liang X. Up regulation of NAT10 promotes metastasis of hepatocellular carcinoma cells through epithelial-to-mesenchymal transition. Am J Transl Res. 2016; 8(10): 4215-4223.

[142]

Xu N, Zhuo J, Chen Y, et al. Downregulation of N4-acetylcytidine modification in myeloid cells attenuates immunotherapy and exacerbates hepatocellular carcinoma progression. Br J Cancer. 2024; 130(2): 201-212.

[143]

Pan Z, Bao Y, Hu M, et al. Role of NAT10-mediated ac4C-modified HSP90AA1 RNA acetylation in ER stress-mediated metastasis and lenvatinib resistance in hepatocellular carcinoma. Cell Death Discov. 2023; 9(1): 56.

[144]

Oh TI, Lee YM, Lim BO, Lim JH. Inhibition of NAT10 suppresses melanogenesis and melanoma growth by attenuating microphthalmia-associated transcription factor (MITF) expression. Int J Mol Sci. 2017; 18(9): 1924.

[145]

Mei Z, Shen Z, Pu J, et al. NAT10 mediated ac4C acetylation driven m6A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun Signal. 2024; 22(1): 51.

[146]

Zhang W, Gao J, Fan L, et al. ac4C acetylation regulates mRNA stability and translation efficiency in osteosarcoma. Heliyon. 2023; 9(6): e17103.

[147]

Gao J, Xu P, Wang F, et al. Revealing the pharmacological effects of Remodelin against osteosarcoma based on network pharmacology, acRIP-seq and experimental validation. Sci Rep. 2024; 14(1): 3577.

[148]

Xu D, Huang K, Chen Y, Yang F, Xia C, Yang H. Immune response and drug therapy based on ac4C-modified gene in pancreatic cancer typing. Front Immunol. 2023; 14: 1133166.

[149]

Cai Z, Jiang Z, Li S, et al. RNA modification Regulators’ Co-Expression Score (RMRCoeS) predicts biochemical recurrence and therapy response in prostate cancer: a multi-omics and experimental validation study. Int Immunopharmacol. 2024; 139: 112723.

[150]

Schmidt JM, Yang R, Kumar A, Hunker O, Seebacher J, Bleichert F. A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6. Nat Commun. 2022; 13(1): 1059.

[151]

Wang LH, Cao B, Li YL, Qiao BP. Potential prognostic and therapeutic value of ANXA8 in renal cell carcinoma: based on the comprehensive analysis of annexins family. BMC Cancer. 2023; 23(1): 674.

[152]

Walton J, Ng ASN, Arevalo K, et al. PRMT1 inhibition perturbs RNA metabolism and induces DNA damage in clear cell renal cell carcinoma. Nat Commun. 2024; 15(1): 8232.

[153]

Li F, Liang J, Wei X. Epigenetic modification of Castor zinc finger 1 (CASZ1) is associated with tumor microenvironments and prognosis of clear cell renal cell carcinoma. Int J Surg. 2024. Published online September 4.

[154]

Barisic S, Brahmbhatt EM, Cherkasova E, et al. Regression of renal cell carcinoma by T cell receptor-engineered T cells targeting a human endogenous retrovirus. J Immunother Cancer. 2024; 12(9): e009147.

[155]

Miao D, Shi J, Lv Q, et al. NAT10-mediated ac4 C-modified ANKZF1 promotes tumor progression and lymphangiogenesis in clear-cell renal cell carcinoma by attenuating YWHAE-driven cytoplasmic retention of YAP1. Cancer Commun (Lond). 2024. Published online February 26, .

[156]

Fu M, Gao Q, Xiao M, Sun XY, Li SL, Ge XY. NAT10/CEBPB/vimentin signalling axis promotes adenoid cystic carcinoma malignant phenotypes in vitro. Oral Dis. 2024. Published online January 29, .

[157]

Liu HY, Liu YY, Zhang YL, Ning Y, Zhang FL, Li DQ. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal. 2022; 20(1): 127.

[158]

Zhang Y, Jing Y, Wang Y, et al. NAT10 promotes gastric cancer metastasis via N4-acetylated COL5A1. Signal Transduct Target Ther. 2021; 6(1): 173.

[159]

Zhang X, Chen J, Jiang S, et al. N-Acetyltransferase 10 enhances doxorubicin resistance in human hepatocellular carcinoma cell lines by promoting the epithelial-to-mesenchymal transition. Oxid Med Cell Longev. 2019; 2019: e7561879.

[160]

Zong G, Wang X, Guo X, et al. NAT10-mediated AXL mRNA N4-acetylcytidine modification promotes pancreatic carcinoma progression. Exp Cell Res. 2023; 428(2): 113620.

[161]

Kudrin P, Singh A, Meierhofer D, Kuśnierczyk A, Ørom UAV. N4-acetylcytidine (ac4C) promotes mRNA localization to stress granules. EMBO Rep. 2024; 25(4): 1814-1834.

[162]

Kudrin P, Meierhofer D, Vågbø CB, Ørom UAV, Nuclear RNA-acetylation can be erased by the deacetylase SIRT7. Published online April 6, 2021:2021.04.06.438707.

[163]

Shrimp JH, Jing Y, Gamage ST, et al. Remodelin is a cryptic assay interference chemotype that does not inhibit NAT10-dependent cytidine acetylation. ACS Med Chem Lett. 2021; 12(6): 887-892.

[164]

Demidenko R, Daniunaite K, Bakavicius A, et al. Decreased expression of MT1E is a potential biomarker of prostate cancer progression. Oncotarget. 2017; 8(37): 61709-61718.

[165]

Fang J, Wang H, Liu Y, Ding F, Ni Y, Shao S. High KRT8 expression promotes tumor progression and metastasis of gastric cancer. Cancer Sci. 2017; 108(2): 178-186.

[166]

Chen H, Chen X, Pan B, Zheng C, Hong L, Han W. KRT8 serves as a novel biomarker for LUAD and promotes metastasis and EMT via NF-κB signaling. Front Oncol. 2022; 12: 875146.

[167]

Fortier AM, Asselin E, Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem. 2013; 288(16): 11555-11571.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/