Bioinspired micro- and nanostructured systems for cancer therapy

Rui Yang , Bing Zhang , Xiawei Fei , Shanshan Cong , Shaojie Zhao , Tao Zhou , Yanting Shen

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70025

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70025 DOI: 10.1002/mco2.70025
REVIEW

Bioinspired micro- and nanostructured systems for cancer therapy

Author information +
History +
PDF

Abstract

Numerous organisms in nature have demonstrated enhanced biocompatibility, precise tumor targeting capabilities, and efficient tissue traversal within the human body. Drawing inspiration from these organisms, researchers have employed bioengineering, bioconjugation, and micro- or nanotechnology to fabricate bioinspired micro- and nanostructured systems. These systems play a crucial role in addressing the limitations of conventional anticancer drugs and nanomaterials concerning biocompatibility, effective penetration of physiological barriers, as well as selective tumor targeting, thereby leading to improved therapeutic efficacy while minimizing nonspecific adverse effects on healthy cells. Consequently, extensive exploration of these bioinspired micro- and nanostructured systems has been undertaken across various cancer treatment modalities with some progressing into preclinical or clinical stages. However, our understanding of this field remains limited which may impede research progress, clinical translation efforts, and practical applications. Therefore, this study presents a systematic classification of bioinspired micro- and nanostructured systems for cancer therapy that comprehensively elucidates their sources of inspiration and design principles. Furthermore, it extensively discusses the current status of clinical translation efforts while identifying prevailing challenges and exploring future prospects. This work will establish a robust theoretical framework and serve as a valuable reference to facilitate advancements in research and clinical application within this field.

Keywords

biocompatibility / bioinspired micro- and nanostructured systems / cancer therapy / traverse physiological barriers

Cite this article

Download citation ▾
Rui Yang, Bing Zhang, Xiawei Fei, Shanshan Cong, Shaojie Zhao, Tao Zhou, Yanting Shen. Bioinspired micro- and nanostructured systems for cancer therapy. MedComm, 2024, 5(12): e70025 DOI:10.1002/mco2.70025

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-263.

[2]

Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023; 8(1): 293.

[3]

Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020; 19(9): 635-652.

[4]

Banstola A, Jeong JH, Yook S. Immunoadjuvants for cancer immunotherapy: a review of recent developments. Acta Biomater. 2020; 114: 16-30.

[5]

Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021; 14(1): 45.

[6]

Brouillard A, Deshpande N, Kulkarni AA. Engineered multifunctional nano-and biological materials for cancer immunotherapy. Adv Healthc Mater. 2021; 10(6): e2001680.

[7]

Letocha A, Miastkowska M, Sikora E. Preparation and characteristics of alginate microparticles for food, pharmaceutical and cosmetic applications. Polymers. 2022; 14(18): 3834.

[8]

Chen S, Su Y, Zhang M, et al. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J Nanobiotechnology. 2023; 21(1): 140.

[9]

Phillips MC, Mousa SA. Clinical application of nano-targeting for enhancing chemotherapeutic efficacy and safety in cancer management. Nanomedicine. 2022; 17(6): 405-421.

[10]

Wang Y, Sun S, Zhang Z, Shi D. Nanomaterials for cancer precision medicine. Adv Mater. 2018; 30(17): e1705660.

[11]

Mohsen MO, Heath M, Kramer MF, et al. In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma. J Immunother Cancer. 2022; 10(9): e004643.

[12]

Bale S, Khurana A, Reddy AS, Singh M, Godugu C. Overview on therapeutic applications of microparticulate drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2016; 33(4): 309-361.

[13]

Singh N, Kim J, Kim J, et al. Covalent organic framework nanomedicines: biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater. 2023; 21: 358-380.

[14]

Bavli Y, Winkler I, Chen BM, et al. Doxebo (doxorubicin-free Doxil-like liposomes) is safe to use as a pre-treatment to prevent infusion reactions to PEGylated nanodrugs. J Control Release. 2019; 306: 138-148.

[15]

Zhang P, Xiao Y, Sun X, et al. Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med. 2023; 4(3): 147-167.

[16]

Souri M, Soltani M, Moradi Kashkooli F, et al. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio. 2022; 13: 100208.

[17]

Lammers T. Nanomedicine tumor targeting. Adv Mater. 2024; 36(26): e2312169.

[18]

Johnson AP, Sabu C, Nivitha KP, et al. Bioinspired and biomimetic micro-and nanostructures in biomedicine. J Control Release. 2022; 343: 724-754.

[19]

Zeng YY, Gu Q, Li D, et al. Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin. 2024.

[20]

Desai N, Rana D, Pande S, et al. “Bioinspired” membrane-coated nanosystems in cancer theranostics: a comprehensive review. Pharmaceutics. 2023; 15(6): 1677.

[21]

Shen H, Aggarwal N, Wun KS, Lee YS, Hwang IY, Chang MW. Engineered microbial systems for advanced drug delivery. Adv Drug Deliv Rev. 2022; 187: 114364.

[22]

Xu X. Bioinspired and biomimetic nanomedicines for targeted cancer therapy. Pharmaceutics. 2022; 14(5): 1109.

[23]

Chen X, Yang R, Shen J, Huang Q, Wu Z. Research progress of bioinspired nanostructured systems for the treatment of ocular disorders. Pharmaceuticals (Basel). 2023; 16(1): 96.

[24]

Italo Rennan Sousa V, Carlos Adam C-J. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr. 2024; 64(2): 381-406.

[25]

Rahimian N, Miraei HR, Amiri A, et al. Plant-based vaccines and cancer therapy: where are we now and where are we going?. Pharmacol Res. 2021; 169: 105655.

[26]

Wen Jing Z, Ying Yi L, Zhen Hang X, et al. Emerging evidence on the effects of plant-derived microRNAs in colorectal cancer: a review. Food Funct. 2023; 14(2): 691-702.

[27]

Hao S, Yang H, Hu J, Luo L, Yuan Y, Liu L. Bioactive compounds and biological functions of medicinal plant-derived extracellular vesicles. Pharmacol Res. 2024; 200: 107062.

[28]

Liu Y, Wei C, Huang L, et al. Loquat-inspired janus drug delivery system for flexible and robust tumor targeting therapy. ACS Biomater Sci Eng. 2019; 5(2): 740-747.

[29]

Harmatys KM, Overchuk M, Zheng G. Rational design of photosynthesis-inspired nanomedicines. Acc Chem Res. 2019; 52(5): 1265-1274.

[30]

Ly NP, Han HS, Kim M, Park JH, Choi KY. Plant-derived nanovesicles: current understanding and applications for cancer therapy. Bioact Mater. 2023; 22: 365-383.

[31]

Fang Z, Liu K. Plant-derived extracellular vesicles as oral drug delivery carriers. J Control Release. 2022; 350: 389-400.

[32]

Corvigno S, Liu Y, Bayraktar E, et al. Enhanced plant-derived vesicles for nucleotide delivery for cancer therapy. NPJ Precis Oncol. 2024; 8(1): 86.

[33]

Garaeva L, Kamyshinsky R, Kil Y, et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021; 11(1): 6489.

[34]

Chen Q, Zu M, Gong H, et al. Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation. J Nanobiotechnology. 2023; 21(1): 6

[35]

Qiang W, Li J, Ruan R, et al. Plant-derived extracellular vesicles as a promising anti-tumor approach: a comprehensive assessment of effectiveness, safety, and mechanisms. Phytomedicine. 2024; 130: 155750.

[36]

Kim J, Zhu Y, Chen S, et al. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation. J Nanobiotechnology. 2023; 21(1): 253.

[37]

Del Pozo-Acebo L, López de Las Hazas MC, Tomé-Carneiro J, et al. Therapeutic potential of broccoli-derived extracellular vesicles as nanocarriers of exogenous miRNAs. Pharmacol Res. 2022; 185: 106472.

[38]

López de Las Hazas MC, Tomé-Carneiro J, Del Pozo-Acebo L, et al. Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous miRNAs. Pharmacol Res. 2023; 198: 106999.

[39]

Huang H, Yi X, Wei Q, et al. Edible and cation-free kiwi fruit derived vesicles mediated EGFR-targeted siRNA delivery to inhibit multidrug resistant lung cancer. J Nanobiotechnology. 2023; 21(1): 41.

[40]

Lu X, Han Q, Chen J, et al. Exosome-like nanovesicles as a new-generation chemotherapy drug delivery platform against tumor proliferation. J Agric Food Chem. 2023; 71(22): 8413-8424.

[41]

Sewelam N, Jaspert N, Van Der Kelen K, et al. Spatial H2O2 signaling specificity: h2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol Plant. 2014; 7(7): 1191-1210.

[42]

Alexeree S, ElZorkany HE, Abdel-Salam Z, Harith MA. A novel synthesis of a chlorophyll b-gold nanoconjugate used for enhancing photodynamic therapy: in vitro study. Photodiagnosis Photodyn Ther. 2021; 35: 102444.

[43]

Ouyang J, Wang L, Chen W, et al. Biomimetic nanothylakoids for efficient imaging-guided photodynamic therapy for cancer. Chem Commun. 2018; 54(28): 3468-3471.

[44]

Guo Z, Zhou X, Hou C, et al. A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy. Biomater Sci. 2019; 7(9): 3886-3897.

[45]

Balasubramaniam V, Gunasegavan RD-N, Mustar S, Lee JC, Mohd Noh MF. Isolation of industrial important bioactive compounds from microalgae. Molecules. 2021; 26(4): 943.

[46]

Zhou M, Yin Y, Zhao J, Zhou M, Bai Y, Zhang P. Applications of microalga-powered microrobots in targeted drug delivery. Biomater Sci. 2023; 11(23): 7512-7530.

[47]

Zhang D, Zhong D, Ouyang J, et al. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat Commun. 2022; 13(1): 1413.

[48]

Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023; 8(1): 70.

[49]

Huo M, Wang L, Zhang L, Wei C, Chen Y, Shi J. Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy. Angew Chem Int Ed Engl. 2020; 59(5): 1906-1913.

[50]

Qiao Y, Yang F, Xie T, et al. Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer. Sci Adv. 2020; 6(21): eaba5996.

[51]

Lee C, Lim K, Kim SS, et al. Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer. J Control Release. 2019; 294: 77-90.

[52]

Hua S, Zhao J, Li L, et al. Photosynthetic bacteria-based whole-cell inorganic-biohybrid system for multimodal enhanced tumor radiotherapy. J Nanobiotechnology. 2024; 22(1): 379.

[53]

Wang W, Zheng H, Jiang J, et al. Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat Commun. 2022; 13(1): 4495.

[54]

Jiang T, Yang T, Chen Y, et al. Emulating interactions between microorganisms and tumor microenvironment to develop cancer theranostics. Theranostics. 2022; 12(6): 2833-2859.

[55]

Jia J, Wang X, Lin X, Zhao Y. Engineered microorganisms for advancing tumor therapy. Adv Mater. 2024; 36(24): e2313389.

[56]

Lina G, Jinsong D, Wenhu Z. Harnessing bacteria for tumor therapy: current advances and challenges. Chin Chem Lett. 2024; 35(02): 108557.

[57]

Liu Y, Niu L, Li N, et al. Bacterial-mediated tumor therapy: old treatment in a new context. Adv Sci (Weinh). 2023; 10(12): e2302957.

[58]

Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018; 18(12): 727-743.

[59]

Roe JM, Seely K, Bussard CJ, et al. Hacking the immune response to solid tumors: harnessing the anti-cancer capacities of oncolytic bacteria. Pharmaceutics. 2023; 15(7): 2004.

[60]

Mi Z, Yao Q, Qi Y, et al. Salmonella-mediated blood–brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy. Acta Pharm Sin B. 2023; 13(2): 819-833.

[61]

Shi L, Liu X, Li Y, et al. Living bacteria-based immuno-photodynamic therapy: metabolic labeling of clostridium butyricum for eradicating malignant melanoma. Adv Sci. 2022; 9(14): e2105807.

[62]

Liu Y, Lu Y, Ning B, et al. Intravenous delivery of living listeria monocytogenes elicits gasdmermin-dependent tumor pyroptosis and motivates anti-tumor immune response. Acs Nano. 2022; 16(3): 4102-4115.

[63]

Vidya S, Thiruneelakandan G, Krishnamoorthy R, et al. Exploring marine lactobacillus and its protein for probiotic-based oral cancer therapy. Int J Biol Macromol. 2024; 254(Pt):127652.

[64]

Reghu S, Miyako E. Nanoengineered bifidobacterium bifidum with optical activity for photothermal cancer immunotheranostics. Nano Lett. 2022; 22(5): 1880-1888.

[65]

Zhang H, Yao M, Feng L, et al. Escherichia coli-based in situ triggerable probe as an amplifier for sensitive diagnosis and penetrated therapy of cancer. Anal Chem. 2023; 95(35): 13073-13081.

[66]

Wang P, Chen C, Wang Q, et al. Tumor inhibition via magneto-mechanical oscillation by magnetotactic bacteria under a swing MF. J Control Release. 2022; 351: 941-953.

[67]

Zhou Y, Li Q, Wu Y, et al. Synergistic brilliance: engineered bacteria and nanomedicine unite in cancer therapy. Adv Mater. 2024; 36(21): e2313953.

[68]

Chen Q, Qiao J, Liu X, Zhang C, Zhang X. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev. 2021; 50(22): 12576-12615.

[69]

Cao Z, Liu J. Surface nanocoating of bacteria as a versatile platform to develop living therapeutics. Nat Protoc. 2024.

[70]

Ma X, Liang X, Li Y, et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat Commun. 2023; 14(1): 1606.

[71]

Gwisai T, Mirkhani N, Christiansen MG, Nguyen TT, Ling V, Schuerle S. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci Robot. 2022; 7(71): eabo0665.

[72]

Akolpoglu MB, Alapan Y, Dogan NO, et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci Adv. 2022; 8(28): eabo6163.

[73]

Wu W, Pu Y, Gao S, et al. Bacterial metabolism-initiated nanocatalytic tumor immunotherapy. Nanomicro Lett. 2022; 14(1): 220.

[74]

Kim JS, Park JE, Choi SH, et al. ECM-targeting bacteria enhance chemotherapeutic drug efficacy by lowering IFP in tumor mouse models. J Control Release. 2023; 355: 199-210.

[75]

Goto Y, Iwata S, Miyahara M, Miyako E. Discovery of intratumoral oncolytic bacteria toward targeted anticancer theranostics. Adv Sci. 2023; 10(20): e2301679.

[76]

Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019; 565(7741): 600-605.

[77]

Wang M, Rousseau B, Qiu K, et al. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat Biotechnol. 2023; 42(8): 1263-1274.

[78]

Song W, Zheng D, Zeng S, Zeng X, Zhang X. Targeting to tumor-harbored bacteria for precision tumor therapy. Acs Nano. 2022; 16(10): 17402-17413.

[79]

Kwon S-Y, Ngo HT-T, Son J, Hong Y, Min J-J. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol. 2024; 21(8): 569-589.

[80]

Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: an update. J Control Release. 2020; 323: 253-268.

[81]

Zheng K, Feng Y, Li L, Kong F, Gao J, Kong X. Engineered bacterial outer membrane vesicles: a versatile bacteria-based weapon against gastrointestinal tumors. Theranostics. 2024; 14(2): 761-787.

[82]

Chen X, Li P, Luo B, et al. Surface mineralization of engineered bacterial outer membrane vesicles to enhance tumor photothermal/immunotherapy. Acs Nano. 2024; 18(2): 1357-1370.

[83]

Bai Z, Wang X, Liang T, et al. Harnessing bacterial membrane components for tumor vaccines: strategies and perspectives. Adv Healthc Mater. 2024:e2401615.

[84]

Chen H, Ji H, Kong X, et al. Bacterial ghosts-based vaccine and drug delivery systems. Pharmaceutics. 2021; 13(11): 1892.

[85]

Chen L, Kang Z, Shen J, et al. An emerging antibacterial nanovaccine for enhanced chemotherapy by selectively eliminating tumor-colonizing bacteria. Sci Bull (Beijing). 2024; 69(16): 2565-2579.

[86]

Zheng C, Sun L, Zhao H, et al. A biomimetic spore nanoplatform for boosting chemodynamic therapy and bacteria-mediated antitumor immunity for synergistic cancer treatment. Asian J Pharm Sci. 2024; 19(3): 100912.

[87]

Ren G, Zhou X, Long R, et al. Biomedical applications of magnetosomes: state of the art and perspectives. Bioact Mater. 2023; 28: 27-49.

[88]

Zhan Y, Zhang Y, Mao C, et al. Improved tumor infiltration and immunomodulation for tumor therapy: a pathway based on tetrahedral framework nucleic acids coupled bacterial nanocells. Nano Lett. 2023; 23(1): 353-362.

[89]

Chen J, Qiao Y, Chen G, et al. Salmonella flagella confer anti-tumor immunological effect via activating flagellin/TLR5 signalling within tumor microenvironment. Acta Pharm Sin B. 2021; 11(10): 3165-3177.

[90]

Ciacci-Woolwine F, Blomfield IC, Richardson SH, Mizel SB. Salmonella flagellin induces tumor necrosis factor alpha in a human promonocytic cell line. Infect Immun. 1998; 66(3): 1127-1134.

[91]

Xu H, Xiong S, Chen Y, et al. Flagella of tumor-targeting bacteria trigger local hemorrhage to reprogram tumor-associated macrophages for improved antitumor therapy. Adv Mater. 2023; 35(38): e2303357.

[92]

Martel S, Felfoul O, Mohammadi M, Mathieu JB. Interventional procedure based on nanorobots propelled and steered by flagellated magnetotactic bacteria for direct targeting of tumors in the human body. Annu Int Conf IEEE Eng Med Biol Soc. 2008: 2497-2500.

[93]

Zhu JY, Zhang MK, Ding XG, et al. Virus-inspired nanogenes free from man-made materials for host-specific transfection and bio-aided MR imaging. Adv Mater. 2018; 30(22): e1707459.

[94]

Shalhout SZ, Miller DM, Emerick KS, Kaufman HL. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol. 2023; 20(3): 160-177.

[95]

Martinez-Quintanilla J, Seah I, Chua M, Shah K. Oncolytic viruses: overcoming translational challenges. J Clin Invest. 2019; 129(4): 1407-1418.

[96]

Wang P, Zhang J, Zhang Q, Liu F. Mesenchymal stem cells loaded with Ad5-Ki67/IL-15 enhance oncolytic adenovirotherapy in experimental glioblastoma. Biomed Pharmacother. 2023; 157: 114035.

[97]

Webb MJ, Sangsuwannukul T, van Vloten J, et al. Expression of tumor antigens within an oncolytic virus enhances the anti-tumor T cell response. Nat Commun. 2024; 15(1): 5442.

[98]

Novaes GM, Lima C, Longo C, et al. Genetically modified ZIKA virus as a microRNA-sensitive oncolytic virus against central nervous system tumors. Mol Ther. 2024; 32(2): 440-456.

[99]

Ban W, Guan J, Huang H, et al. Emerging systemic delivery strategies of oncolytic viruses: a key step toward cancer immunotherapy. Nano Res. 2022; 15(5): 4137-4153.

[100]

Ou J, Zhu M, Ju X, et al. One-dimensional rod-like tobacco mosaic virus promotes macrophage polarization for a tumor-suppressive microenvironment. Nano Lett. 2023; 23(5): 2056-2064.

[101]

Nunez-Rivera A, Fournier PGJ, Arellano DL, Rodriguez-Hernandez AG, Vazquez-Duhalti R, RD Cadena-Nava. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein J Nanotechnol. 2020; 11: 372-382.

[102]

Chen YL, Bao CJ, Duan JL, Xie Y, Lu WL. Overcoming biological barriers by virus-like drug particles for drug delivery. Adv Drug Deliv Rev. 2023; 203: 115134.

[103]

Cheng K, Ma N, Liang J, et al. Site-specific modification of virus-like particles for exogenous tumor antigen display and minimizing preexisting immunity. Small. 2023; 19(23): e2300125.

[104]

Feng X, Liu H, Chu X, et al. Recombinant virus-like particles presenting IL-33 successfully modify the tumor microenvironment and facilitate antitumor immunity in a model of breast cancer. Acta Biomater. 2019; 100: 316-325.

[105]

Serradell MC, Rupil LL, Martino RA, et al. Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat Commun. 2019; 10(1): 361.

[106]

Li W, Jing Z, Wang S, et al. P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials. 2021; 271: 120726.

[107]

Kines RC, Thompson CD, Spring S, et al. Virus-like particle-drug conjugates induce protective, long-lasting adaptive antitumor immunity in the absence of specifically targeted tumor antigens. Cancer Immunol Res. 2021; 9(6): 693-706.

[108]

Hartzell EJ, Lieser RM, Sullivan MO, Chen W. Modular hepatitis B virus-like particle platform for biosensing and drug delivery. Acs Nano. 2020; 14(10): 12642-12651.

[109]

Panasiuk M, Zimmer K, Czarnota A, et al. Chimeric virus-like particles presenting tumour-associated MUC1 epitope result in high titers of specific IgG antibodies in the presence of squalene oil-in-water adjuvant: towards safe cancer immunotherapy. J Nanobiotechnology. 2022; 20(1): 160.

[110]

Wang C, Xiao C, Chen Y, et al. Sequential administration of virus-like particle-based nanomedicine to elicit enhanced tumor chemotherapy. J Mater Chem B. 2023; 11(12): 2674-2683.

[111]

Barajas A, Amengual-Rigo P, Pons-Grifols A, et al. Virus-like particle-mediated delivery of structure-selected neoantigens demonstrates immunogenicity and antitumoral activity in mice. J Transl Med. 2024; 22(1): 14.

[112]

Somiya M, Kuroda S. Development of a virus-mimicking nanocarrier for drug delivery systems: the bio-nanocapsule. Adv Drug Deliv Rev. 2015; 95: 77-89.

[113]

Liu H, Li X, Wang Z, Liu S. Virus-mimicking nanosystems: from design to biomedical applications. Chemical Society Reviews. 2023; 52(24): 8481-8499.

[114]

Zhu H, Wang Y, Wang Z, Pang D, Liu S-L. Regulation of protein conformation enables cell-selective targeting of virus-mimicking nanoparticles for siRNA therapy of glioblastoma. Adv Mater. 2024; 36(29): e2401640.

[115]

Ma G, Li F, Wang X, et al. A bionic yeast tumor vaccine using the co-loading strategy to prevent post-operative tumor recurrence. Acs Nano. 2023; 17(21): 21394-21410.

[116]

Zhang Y, Zheng DW, Li CX, et al. Temulence therapy to orthotopic colorectal tumor via oral administration of fungi-based acetaldehyde generator. Small Methods. 2022; 6(1): e2100951.

[117]

Li F, Chu Q, Hu Z, et al. An inter-cooperative biohybrid platform to enable tumor ablation and immune activation. Adv Sci. 2023; 10(23): e2207194.

[118]

Fei Z, Fan Q, Dai H, et al. Physiologically triggered injectable red blood cell-based gel for tumor photoablation and enhanced cancer immunotherapy. Biomaterials. 2021; 271: 120724.

[119]

Su L, Hao Y, Li R, et al. Red blood cell-based vaccines for ameliorating cancer chemoimmunotherapy. Acta Biomater. 2022; 154: 401-411.

[120]

Takayama Y, Kusamori K, Tsukimori C, et al. Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. J Control Release. 2021; 329: 1090-1101.

[121]

Xu H, Medina-Sanchez M, Zhang W, et al. Human spermbots for patient-representative 3D ovarian cancer cell treatment. Nanoscale. 2020; 12(39): 20467-20481.

[122]

Li P, Gong Z, Shultz LD, Ren G. Mesenchymal stem cells: from regeneration to cancer. Pharmacol Ther. 2019; 200: 42-54.

[123]

Liu Y, Luo J, Chen X, Liu W, Chen T. Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett. 2019; 11(1): 100.

[124]

Zhao X, Yuan C, Wangmo D, Subramanian S. Tumor-secreted extracellular vesicles regulate T-cell costimulation and can be manipulated to induce tumor-specific T-cell responses. Gastroenterology. 2021; 161(2): 560-574.e11.

[125]

Hu J, Liu Y, Du Y, Peng X, Liu Z. Cellular organelles as drug carriers for disease treatment. J Control Release. 2023; 363: 114-135.

[126]

Ovais M, Mukherjee S, Pramanik A, et al. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment. Adv Mater. 2020; 32(22): e2000055.

[127]

Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020; 10(10): 4557-4588.

[128]

Yu W, Lin R, He X, et al. Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharm Sin B. 2021; 11(9): 2924-2936.

[129]

Zhang Z, Ding C, Sun T, Wang L, Chen C. Tumor therapy strategies based on microenvironment-specific responsive nanomaterials. Adv Healthc Mater. 2023; 12(20): e2300153.

[130]

Zhou L, Zhao L, Wang M, et al. Dendritic cell-hitchhiking in vivo for vaccine delivery to lymph nodes. Adv Sci. 2024:e2402199.

[131]

Sun D, Chen J, Wang Y, et al. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics. 2019; 9(23): 6885-6900.

[132]

Wang Y, Li W, Li Z, et al. Active recruitment of anti-PD-1-conjugated platelets through tumor-selective thrombosis for enhanced anticancer immunotherapy. Sci Adv. 2023; 9(13): eadf6854.

[133]

Lu Q, Ye H, Wang K, et al. Bioengineered platelets combining chemotherapy and immunotherapy for postsurgical melanoma treatment: internal core-loaded doxorubicin and external surface-anchored anti-PD-L1 antibody backpacks. Nano Lett. 2022; 22(7): 3141-3150.

[134]

Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011; 20(5): 576-590.

[135]

Irvine DJ, Maus MV, Mooney DJ, Wong WW. The future of engineered immune cell therapies. Science. 2022; 378(6622): 853-858.

[136]

Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan C-x, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022; 41(1): 119.

[137]

Zhang Y, Liu Z, Wei W, Li Y. TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol. 2022; 11(1): 38.

[138]

Lee SH, Park OK, Kim J, et al. Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy. J Am Chem Soc. 2019; 141(35): 13829-13840.

[139]

Siriwon N, Kim YJ, Siegler E, et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol Res. 2018; 6(7): 812-824.

[140]

Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 2021; 14(1): 195.

[141]

Liang W, Chen X, Zhang S, et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett. 2021; 26(1): 3.

[142]

Li A, Zhang T, Huang T, et al. Iron oxide nanoparticles promote Cx43-overexpression of mesenchymal stem cells for efficient suicide gene therapy during glioma treatment. Theranostics. 2021; 11(17): 8254-8269.

[143]

Mohme M, Maire CL, Geumann U, et al. Local intracerebral immunomodulation using interleukin-expressing mesenchymal stem cells in glioblastoma. Clin Cancer Res. 2020; 26(11): 2626-2639.

[144]

Suryaprakash S, Lao Y-H, Cho H-Y, et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett. 2019; 19(3): 1701-1705.

[145]

Moreno R. Mesenchymal stem cells and oncolytic viruses: joining forces against cancer. J Immunother Cancer. 2021; 9(2).

[146]

Zhang J, Chen H, Chen C, et al. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying IL-24/endostatin enhances glioma therapy. Cancer Lett. 2021; 509: 26-38.

[147]

Chen M, Li H, Zang J, et al. Potentiating cancer vaccination by adjuvant-loaded cryo-shocked tumor cells. Biomaterials. 2023; 302: 122319.

[148]

Liu F, Xin M, Feng H, et al. Cryo-shocked tumor cells deliver CRISPR-Cas9 for lung cancer regression by synthetic lethality. Sci Adv. 2024; 10(13): eadk8264.

[149]

Liu X, Xu J, Yao T, et al. Cryo-shocked cancer cells as an oncolytic adenovirus reservoir for glioblastoma immunotherapy. ACS Appl Mater Interfaces. 2023; 15(1): 67-76.

[150]

Kuang G, Zhang Q, Yu Y, Shang L, Zhao Y. Cryo-shocked cancer cell microgels for tumor postoperative combination immunotherapy and tissue regeneration. Bioact Mater. 2023; 28: 326-336.

[151]

Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun. 2020; 11(1): 5618.

[152]

Zhang Y, Wang M, Zhang T, et al. Spermbots and their applications in assisted reproduction: current progress and future perspectives. Int J Nanomedicine. 2024; 19: 5095-5108.

[153]

Xu H, Medina-Sanchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG. Sperm-hybrid micromotor for targeted drug delivery. Acs Nano. 2018; 12(1): 327-337.

[154]

Krinsky N, Kaduri M, Zinger A, et al. Synthetic cells synthesize therapeutic proteins inside tumors. Adv Healthc Mater. 2018; 7(9): e1701163.

[155]

Zhu L, Zhong Y, Wu S, et al. Cell membrane camouflaged biomimetic nanoparticles: focusing on tumor theranostics. Mater Today Bio. 2022; 14: 100228.

[156]

Zeng S, Tang Q, Xiao M, et al. Cell membrane-coated nanomaterials for cancer therapy. Mater Today Bio. 2023;20:100633.

[157]

Yang Y, Liu Q, Wang M, et al. Genetically programmable cell membrane-camouflaged nanoparticles for targeted combination therapy of colorectal cancer. Signal Transduct Target Ther. 2024; 9(1): 158.

[158]

Wu W, Li H, Chen W, et al. CAR T cell membrane camouflaged nanocatalyst augments CAR T cell therapy efficacy against solid tumor. Small. 2024:e2401299.

[159]

Fu L, Zhang W, Zhou X, Fu J, He C. Tumor cell membrane-camouflaged responsive nanoparticles enable MRI-guided immuno-chemodynamic therapy of orthotopic osteosarcoma. Bioact Mater. 2022; 17: 221-233.

[160]

Ji P, Deng X-C, Jin X-K, et al. Fused cytomembrane-camouflaged nanoparticles for tumor-specific immunotherapy. Adv Healthc Mater. 2023; 12(23): e2300323.

[161]

Tianqi W, Yanan F, Shengjie S, et al. Exosome-based drug delivery systems in cancer therapy. Chin Chem Lett. 2023; 34(02): 107508.

[162]

Du S, Guan Y, Xie A, et al. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology. 2023; 21(1): 231.

[163]

Ghodasara A, Raza A, Wolfram J, Salomon C, Popat A. Clinical translation of extracellular vesicles. Adv Healthc Mater. 2023; 12(28): e2301010.

[164]

Richter M, Vader P, Fuhrmann G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev. 2021; 173: 416-426.

[165]

Choi D, Montermini L, Jeong H, Sharma S, Meehan B, Rak J. Mapping subpopulations of cancer cell-derived extracellular vesicles and particles by nano-flow cytometry. Acs Nano. 2019; 13(9): 10499-10511.

[166]

Zhou M, Li YJ, Tang YC, et al. Apoptotic bodies for advanced drug delivery and therapy. J Control Release. 2022; 351: 394-406.

[167]

Zhao D, Tao W, Li S, et al. Apoptotic body-mediated intercellular delivery for enhanced drug penetration and whole tumor destruction. Sci Adv. 2021; 7(16): eabg0880.

[168]

Wang Y, Pang J, Wang Q, et al. Delivering antisense oligonucleotides across the blood-brain barrier by tumor cell-derived small apoptotic bodies. Adv Sci. 2021; 8(13): 2004929.

[169]

Liu Y, Hu D, Gao D, et al. Engineered apoptotic bodies hitchhiking across the blood-brain barrier achieved a combined photothermal-chemotherapeutic effect against glioma. Theranostics. 2023; 13(9): 2966-2978.

[170]

Erickson HL, Taniguchi S, Raman A, Leitenberger JJ, Malhotra SV, Oshimori N. Cancer stem cells release interleukin-33 within large oncosomes to promote immunosuppressive differentiation of macrophage precursors. Immunity. 2024; 57(8): 1908-1922.e6.

[171]

Al-Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008; 10(5): 619-624.

[172]

Li WQ, Wang Z, Hao S, et al. Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug. Nanoscale. 2018; 10(8): 3744-3752.

[173]

Zou Y, Sun Y, Wang Y, et al. Cancer cell-mitochondria hybrid membrane coated gboxin loaded nanomedicines for glioblastoma treatment. Nat Commun. 2023; 14(1): 4557.

[174]

Xu Y, Fei J, Li G, Yuan T, Xu X, Li J. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angu Chem Int Ed NGL. 2019; 58(17): 5572-5576.

[175]

Chamoto K, Chowdhury PS, Kumar A, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA. 2017; 114(5): E761-e770.

[176]

Liang T, Wen D, Chen G, et al. Adipocyte-derived anticancer lipid droplets. Adv Mater. 2021; 33(26): e2100629.

[177]

Nagahama K, Sano Y, Inui M, Aoyama S, Katayama T, Ono K. Bioinspired cell nuclear nanotransporters generated by self-assembly of amphiphilic polysaccharide-amino acid derivatives conjugates. Adv Biosyst. 2020; 4(1): e1900189.

[178]

Gao P, Duan Z, Xu G, et al. Harnessing and mimicking bacterial features to combat cancer: from living entities to artificial mimicking systems. Adv Mater. 2024; 36(35): e2405075.

[179]

Hahn NM, O’Donnell MA, Efstathiou JA, et al. A phase 1 trial of durvalumab in combination with bacillus calmette-guerin (BCG) or external beam radiation therapy in patients with BCG-unresponsive non-muscle-invasive bladder cancer: the hoosier cancer research network GU16-243 adapt-bladder study. Eur Urol. 2023; 83(6): 486-494.

[180]

Kamat AM, Sylvester RJ, Böhle A, et al. Definitions, end points, and clinical trial designs for non-muscle-invasive bladder cancer: recommendations from the international bladder cancer group. J Clin Oncol. 2016; 34(16): 1935-1944.

[181]

Necchi A, Roumiguié M, Kamat AM, et al. Pembrolizumab monotherapy for high-risk non-muscle-invasive bladder cancer without carcinoma in situ and unresponsive to BCG (KEYNOTE-057): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 2024; 25(6): 720-730.

[182]

Boorjian SA, Alemozaffar M, Konety BR, et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 2021; 22(1): 107-117.

[183]

Li R, Sexton WJ, Dhillon J, et al. A phase II study of durvalumab for bacillus calmette-guerin (BCG) unresponsive urothelial carcinoma in situ of the bladder. Clin Cancer Res. 2023; 29(19): 3875-3881.

[184]

Martinez-Lopez MF, de Almeida CR, Fontes M, Mendes RV, Kaufmann SHE, Fior R. Macrophages directly kill bladder cancer cells through TNF signaling as an early response to BCG therapy. Dis Model Mech. 2024; 17(8): dmm050693.

[185]

Tsuji S, Reil K, Nelson K, Proclivo VH, McGuire KL, Giacalone MJ. Intravesical VAX014 synergizes with PD-L1 blockade to enhance local and systemic control of bladder cancer. Cancer Immunol Res. 2022; 10(8): 978-995.

[186]

Tseha ST. Role of adenoviruses in cancer therapy. Front Oncol. 2022; 12: 772659.

[187]

Larocca CA, LeBoeuf NR, Silk AW, Kaufman HL. An update on the role of talimogene laherparepvec (T-VEC) in the treatment of melanoma: best practices and future directions. Am J Clin Dermatol. 2020; 21(6): 821-832.

[188]

Li R, Shah PH, Stewart TF, et al. Oncolytic adenoviral therapy plus pembrolizumab in BCG-unresponsive non-muscle-invasive bladder cancer: the phase 2 CORE-001 trial. Nat Med. 2024; 30(6): 2216-2223.

[189]

Rahal Z, Kadara H. Beyond bacteria: how the intratumor mycobiome modulates lung adenocarcinoma progression. Cancer Cell. 2023; 41(11): 1846-1848.

[190]

Liu NN, Yi CX, Wei LQ, et al. The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells. Cancer Cell. 2023; 41(11): 1927-1944.e9.

[191]

Dohlman AB, Klug J, Mesko M, et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 2022; 185(20): 3807-3822.e12.

[192]

Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The progress and prospects of immune cell therapy for the treatment of cancer. Cell Transplant. 2024; 33: 9636897241231892.

[193]

Chen L, Qin H, Zhao R, et al. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci Transl Med. 2021; 13(601): eabc2816.

[194]

Kamerkar S, Leng C, Burenkova O, et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci Adv. 2022; 8(7): eabj7002.

[195]

Zhou C, Li C, Luo L, et al. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer. Cancer Cell. 2024; 42(7): 1286-1300.e8.

[196]

Gurbatri CR, Arpaia N, Danino T. Engineering bacteria as interactive cancer therapies. Science. 2022; 378(6622): 858-863.

[197]

Tan X, Letendre JH, Collins JJ, Wong WW. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell. 2021; 184(4): 881-898.

[198]

Cubillos-Ruiz A, Guo T, Sokolovska A, et al. Engineering living therapeutics with synthetic biology. Nat Rev Drug Discov. 2021; 20(12): 941-960.

[199]

Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 2019; 37(1): 100-115.

[200]

Cabral H, Li J, Miyata K, Kataoka K. Controlling the biodistribution and clearance of nanomedicines. Nat Rev Bioeng. 2024; 2(3): 214-232.

[201]

Gawne PJ, Ferreira M, Papaluca M, Grimm J, Decuzzi P. New opportunities and old challenges in the clinical translation of nanotheranostics. Nat Rev Mater. 2023; 8(12): 783-798.

[202]

Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022; 181: 114083.

[203]

Saini KS, Svane IM, Juan M, Barlesi F, André F. Manufacture of adoptive cell therapies at academic cancer centers: scientific, safety and regulatory challenges. Ann Oncol. 2022; 33(1): 6-12.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

246

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/