Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets

Shen’er Qian , Yao Long , Guolin Tan , Xiaoguang Li , Bo Xiang , Yongguang Tao , Zuozhong Xie , Xiaowei Zhang

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70024

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70024 DOI: 10.1002/mco2.70024
REVIEW

Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets

Author information +
History +
PDF

Abstract

Programmed cell death represents a precisely regulated and active cellular demise, governed by a complex network of specific genes and proteins. The identification of multiple forms of programmed cell death has significantly advanced the understanding of its intricate mechanisms, as demonstrated in recent studies. A thorough grasp of these processes is essential across various biological disciplines and in the study of diseases. Nonetheless, despite notable progress, the exploration of the relationship between programmed cell death and disease, as well as its clinical application, are still in a nascent stage. Therefore, further exploration of programmed cell death and the development of corresponding therapeutic methods and strategies holds substantial potential. Our review provides a detailed examination of the primary mechanisms behind apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Following this, the discussion delves into biological functions and diseases associated dysregulated programmed cell death. Finally, we highlight existing and potential therapeutic targets and strategies focused on cancers and neurodegenerative diseases. This review aims to summarize the latest insights on programmed cell death from mechanisms to diseases and provides a more reliable approach for clinical transformation.

Keywords

cancers / cell homeostasis / clinical transformation / neurodegenerative disorders / programmed cell death

Cite this article

Download citation ▾
Shen’er Qian, Yao Long, Guolin Tan, Xiaoguang Li, Bo Xiang, Yongguang Tao, Zuozhong Xie, Xiaowei Zhang. Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm, 2024, 5(12): e70024 DOI:10.1002/mco2.70024

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan J, Ofengeim D. A guide to cell death pathways. Nat Rev Mol Cell Biol. 2024; 25(5): 379-395.

[2]

Lockshin RA, Williams CM. Programmed cell death–I. cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965; 11: 123-133.

[3]

Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019; 29(5): 347-364.

[4]

Peng F, Liao M, Qin R, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022; 7(1): 286.

[5]

Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020; 21(11): 678-695.

[6]

Lockshin RA. Programmed cell death 50 (and beyond). Cell Death Differ. 2016; 23(1): 10-17.

[7]

Eichhorst B, Niemann CU, Kater AP, et al. First-line venetoclax combinations in chronic lymphocytic leukemia. N Engl J Med. 2023; 388(19): 1739-1754.

[8]

Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26(4): 239-257.

[9]

Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000; 45(3): 528-537.

[10]

Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000; 301(1): 5-17.

[11]

Johnson L, Sarosiek KA. Role of intrinsic apoptosis in environmental exposure health outcomes. Trends Mol Med. 2024; 30(1): 56-73.

[12]

Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis. 2023; 28(1-2): 20-38.

[13]

Li J, Chen CH, O’Neill KL, et al. Combined inhibition of aurora kinases and Bcl-xL induces apoptosis through select BH3-only proteins. J Biol Chem. 2023; 299(2): 102875.

[14]

Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020; 21(2): 85-100.

[15]

Sever AIM, Alderson TR, Rennella E, et al. Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Proc Natl Acad Sci USA. 2023; 120(51): e2310944120.

[16]

Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017; 24(8): 1380-1389.

[17]

Larsen BD, Sørensen CS. The caspase-activated DNase: apoptosis and beyond. Febs j. 2017; 284(8): 1160-1170.

[18]

Shahar N, Larisch S. Inhibiting the inhibitors: targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat. 2020; 52: 100712.

[19]

Jost PJ, Vucic D. Regulation of Cell Death and Immunity by XIAP. Cold Spring Harb Perspect Biol. 2020; 12(8): a036426.

[20]

Lakhani SA, Masud A, Kuida K, et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science. 2006; 311(5762): 847-851.

[21]

Green DR. The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol. 2022; 14(2): a041053.

[22]

Nagata S. Apoptosis by death factor. Cell. 1997; 88(3): 355-365.

[23]

Sessler T, Healy S, Samali A, Szegezdi E. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther. 2013; 140(2): 186-199.

[24]

Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol. 2023; 44(8): 628-643.

[25]

Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996; 14: 649-683.

[26]

Darding M, Meier P. IAPs: guardians of RIPK1. Cell Death Differ. 2012; 19(1): 58-66.

[27]

Rodriguez DA, Tummers B, Shaw JJP, et al. The interaction between RIPK1 and FADD controls perinatal lethality and inflammation. Cell Rep. 2024; 43(6): 114335.

[28]

Mandal R, Barrón JC, Kostova I, Becker S, Strebhardt K. Caspase-8: the double-edged sword. Biochim Biophys Acta Rev Cancer. 2020; 1873(2): 188357.

[29]

Wang Y, Tjandra N. Structural insights of tBid, the caspase-8-activated Bid, and its BH3 domain. J Biol Chem. 2013; 288(50): 35840-35851.

[30]

Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: regulator of cell death. Cell Death Dis. 2023; 14(10): 648.

[31]

Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010; 22(2): 124-131.

[32]

Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018; 19(6): 365-381.

[33]

Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol. 2023; 24(3): 186-203.

[34]

Yao R, Shen J. Chaperone-mediated autophagy: molecular mechanisms, biological functions, and diseases. Med Comm (2020). 2023; 4(5): e347.

[35]

Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019; 134: 116-137.

[36]

Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020; 19(1): 12.

[37]

Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009; 20(7): 1981-1991.

[38]

Park JM, Lee DH, Kim DH. Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun. 2023; 14(1): 2994.

[39]

Ye J, Zhang J, Zhu Y, et al. Targeting autophagy and beyond: deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B. 2023; 13(12): 4688-4714.

[40]

Tran S, Fairlie WD, Lee EF. BECLIN1: protein structure, function and regulation. Cells. 2021; 10(6): 1522.

[41]

Mercer TJ, Gubas A, Tooze SA. A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem. 2018; 293(15): 5386-5395.

[42]

Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014; 24(1): 24-41.

[43]

Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011; 27: 107-132.

[44]

Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. 2016; 354(6315): 1036-1041.

[45]

Iriondo MN, Etxaniz A, Varela YR, et al. Effect of ATG12-ATG5-ATG16L1 autophagy E3-like complex on the ability of LC3/GABARAP proteins to induce vesicle tethering and fusion. Cell Mol Life Sci. 2023; 80(2): 56.

[46]

Ballabio A, Bonifacino JS. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 2020; 21(2): 101-118.

[47]

Tian X, Teng J, Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy. 2021; 17(10): 2680-2688.

[48]

Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023; 24(8): 560-575.

[49]

Bishop E, Bradshaw TD. Autophagy modulation: a prudent approach in cancer treatment?. Cancer Chemother Pharmacol. 2018; 82(6): 913-922.

[50]

Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev. 2011; 25(19): 1999-2010.

[51]

Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014; 370(5): 455-465.

[52]

Kolbrink B, von Samson-Himmelstjerna FA, Murphy JM, Krautwald S. Role of necroptosis in kidney health and disease. Nat Rev Nephrol. 2023; 19(5): 300-314.

[53]

Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015; 517(7534): 311-320.

[54]

Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol. 2017; 12: 103-130.

[55]

Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008; 133(4): 693-703.

[56]

Fritsch M, Günther SD, Schwarzer R, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019; 575(7784): 683-687.

[57]

Lawlor KE, Murphy JM, Vince JE. Gasdermin and MLKL necrotic cell death effectors: signaling and diseases. Immunity. 2024; 57(3): 429-445.

[58]

Hildebrand JM, Tanzer MC, Lucet IS, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA. 2014; 111(42): 15072-15077.

[59]

Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019; 9: 406.

[60]

Jiang M, Qi L, Li L, Wu Y, Song D, Li Y. Caspase-8: a key protein of cross-talk signal way in “PANoptosis” in cancer. Int J Cancer. 2021; 149(7): 1408-1420.

[61]

Wu W, Wang X, Sun Y, et al. TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy. 2021; 17(12): 3992-4009.

[62]

Elias EE, Lyons B, Muruve DA. Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol. 2023; 19(5): 337-350.

[63]

Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016; 535(7610): 153-158.

[64]

Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015; 526(7575): 660-665.

[65]

Miao R, Jiang C, Chang WY, et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity. 2023; 56(11): 2523-2541. e8.

[66]

Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021; 6(1): 128.

[67]

Rathinam VA, Jiang Z, Waggoner SN, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol. 2010; 11(5): 395-402.

[68]

Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011; 477(7366): 596-600.

[69]

Fu J, Wu H. Structural Mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023; 41: 301-316.

[70]

Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021; 18(9): 2114-2127.

[71]

Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014; 513(7517): 237-241.

[72]

Chavarría-Smith J, Vance RE. The NLRP1 inflammasomes. Immunol Rev. 2015; 265(1): 22-34.

[73]

Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015; 526(7575): 666-671.

[74]

Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020; 20(3): 143-157.

[75]

Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017; 547(7661): 99-103.

[76]

Zhang JY, Zhou B, Sun RY, et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021; 31(9): 980-997.

[77]

Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060-1072.

[78]

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021; 31(2): 107-125.

[79]

Zeng F, Nijiati S, Tang L, Ye J, Zhou Z, Chen X. Ferroptosis detection: from approaches to applications. Angew Chem Int Ed Engl. 2023; 62(35): e202300379.

[80]

Dixon SJ, Olzmann JA. The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 2024; 25(6): 424-442.

[81]

Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020; 8: 590226.

[82]

Gan B. ACSL4, PUFA, and ferroptosis: new arsenal in anti-tumor immunity. Signal Transduct Target Ther. 2022; 7(1): 128.

[83]

Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. Febs j. 2022; 289(22): 7038-7050.

[84]

Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019; 133: 144-152.

[85]

Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020; 152: 175-185.

[86]

Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021; 12(8): 599-620.

[87]

Costa I, Barbosa DJ, Benfeito S, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther. 2023; 244: 108373.

[88]

Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019; 575(7784): 688-692.

[89]

Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019; 575(7784): 693-698.

[90]

Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021; 593(7860): 586-590.

[91]

Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2020; 6(1): 41-53.

[92]

Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020; 11(2): 88.

[93]

Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022; 375(6586): 1254-1261.

[94]

Tsang T, Davis CI, Brady DC. Copper biology. Curr Biol. 2021; 31(9): R421-R427.

[95]

Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022; 7(1): 378.

[96]

Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011; 147(4): 742-758.

[97]

Guerin DJ, Kha CX, Tseng KA. From cell death to regeneration: rebuilding after injury. Front Cell Dev Biol. 2021; 9: 655048.

[98]

Hengartner MO. Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Exp Gerontol. 1997; 32(4-5): 363-374.

[99]

Fawthrop DJ, Boobis AR, Davies DS. Mechanisms of cell death. Arch Toxicol. 1991; 65(6): 437-444.

[100]

Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature. 1992; 356(6369): 494-499.

[101]

Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun. 2020; 11(1): 2958.

[102]

Nakashima A, Tanaka N, Tamai K, et al. Survival of parvovirus B19-infected cells by cellular autophagy. Virology. 2006; 349(2): 254-263.

[103]

Delorme-Axford E, Donker RB, Mouillet JF, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA. 2013; 110(29): 12048-12053.

[104]

Lindsten T, Ross AJ, King A, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000; 6(6): 1389-1399.

[105]

Abdelwahid E, Pelliniemi LJ, Jokinen E. Cell death and differentiation in the development of the endocardial cushion of the embryonic heart. Microsc Res Tech. 2002; 58(5): 395-403.

[106]

Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997; 88(3): 347-354.

[107]

Estabel J, Mercer A, König N, Exbrayat JM. Programmed cell death in Xenopus laevis spinal cord, tail and other tissues, prior to, and during, metamorphosis. Life Sci. 2003; 73(25): 3297-3306.

[108]

Vogg MC, Buzgariu W, Suknovic NS, Galliot B. Cellular, metabolic, and developmental dimensions of whole-body regeneration in hydra. Cold Spring Harb Perspect Biol. 2021; 13(12): a040725.

[109]

Bergmann A, Steller H. Apoptosis, stem cells, and tissue regeneration. Sci Signal. 2010; 3(145): re8.

[110]

Huang Q, Li F, Liu X, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 2011; 17(7): 860-866.

[111]

Ryoo HD, Gorenc T, Steller H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell. 2004; 7(4): 491-501.

[112]

Wells BS, Yoshida E, Johnston LA. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol. 2006; 16(16): 1606-1615.

[113]

Li Z, Wu M, Liu S, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol Ther. 2022; 30(10): 3193-3208.

[114]

de Alborán IM, Robles MS, Bras A, Baena E, Martínez AC. Cell death during lymphocyte development and activation. Semin Immunol. 2003; 15(3): 125-133.

[115]

Cohen JJ. Programmed cell death and apoptosis in lymphocyte development and function. Chest. 1993; 103(2): 99s-101s. Suppl.

[116]

Swat W, Ignatowicz L, von Boehmer H, Kisielow P. Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature. 1991; 351(6322): 150-153.

[117]

Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell. 2002; 109: S97-S107. Suppl.

[118]

Jameson SC, Hogquist KA, Bevan MJ. Positive selection of thymocytes. Annu Rev Immunol. 1995; 13: 93-126.

[119]

Strasser A, Bouillet P. The control of apoptosis in lymphocyte selection. Immunol Rev. 2003; 193: 82-92.

[120]

Baird AM, Gerstein RM, Berg LJ. The role of cytokine receptor signaling in lymphocyte development. Curr Opin Immunol. 1999; 11(2): 157-166.

[121]

Baird AM, Lucas JA, Berg LJ. A profound deficiency in thymic progenitor cells in mice lacking Jak3. J Immunol. 2000; 165(7): 3680-3688.

[122]

Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell. 1997; 89(7): 1033-1041.

[123]

Burr JS, Savage ND, Messah GE, et al. Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL. J Immunol. 2001; 166(9): 5331-5335.

[124]

June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol. 1987; 7(12): 4472-4481.

[125]

Boise LH, Minn AJ, Noel PJ, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity. 1995; 3(1): 87-98.

[126]

Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995; 81(6): 935-946.

[127]

Krammer PH. CD95’s deadly mission in the immune system. Nature. 2000; 407(6805): 789-795.

[128]

Majumder S, Jain A. Osmotic stress triggers phase separation. Mol Cell. 2020; 79(6): 876-877.

[129]

Zhang W, Fan W, Guo J, Wang X. Osmotic stress activates RIPK3/MLKL-mediated necroptosis by increasing cytosolic pH through a plasma membrane Na(+)/H(+) exchanger. Sci Signal. 2022; 15(734): eabn5881.

[130]

Yuan F, Cai J, Wu J, et al. Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science. 2022; 376(6593): 609-615.

[131]

Peng C, Zhao F, Li H, Li L, Yang Y, Liu F. HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis. 2022; 13(11): 929.

[132]

Yin L, Yang Y, Zhu W, et al. Heat shock protein 90 triggers multi-drug resistance of ovarian cancer via AKT/GSK3β/β-catenin signaling. Front Oncol. 2021; 11: 620907.

[133]

Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013; 87(7): 1157-1180.

[134]

Lin Y, Zhang J, Lu D, et al. Uqcr11 alleviates oxidative stress and apoptosis after traumatic brain injury. Exp Neurol. 2023; 370: 114582.

[135]

He R, Cui M, Lin H, et al. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells. Life Sci. 2018; 199: 122-130.

[136]

Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018; 19(11): 731-745.

[137]

Roberts AW, Lee BL, Deguine J, John S, Shlomchik MJ, Barton GM. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells. Immunity. 2017; 47(5): 913-927. e6.

[138]

Costa-Mattioli M, Walter P. The integrated stress response: from mechanism to disease. Science. 2020; 368(6489): eaat5314.

[139]

Lamichhane PP, Samir P. Cellular stress: modulator of regulated cell death. Biology (Basel). 2023; 12(9): 1172.

[140]

Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin. 2024; 45(6): 1095-1114.

[141]

Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol. 2020; 21(7): 398-414.

[142]

Doran AC, Yurdagul A Jr, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020; 20(4): 254-267.

[143]

Segawa K, Nagata S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol. 2015; 25(11): 639-650.

[144]

Nagata S. Apoptosis and clearance of apoptotic cells. Annu Rev Immunol. 2018; 36: 489-517.

[145]

Maruoka M, Zhang P, Mori H, et al. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Mol Cell. 2021; 81(7): 1397-1410. e9.

[146]

Robinson KS, Aw R. The commonalities in bacterial effector inhibition of apoptosis. Trends Microbiol. 2016; 24(8): 665-680.

[147]

Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017; 17(3): 151-164.

[148]

Pinkoski MJ, Waterhouse NJ, Heibein JA, et al. Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J Biol Chem. 2001; 276(15): 12060-12067.

[149]

Halle S, Keyser KA, Stahl FR, et al. In vivo killing capacity of cytotoxic T cells is limited and involves dynamic interactions and T cell cooperativity. Immunity. 2016; 44(2): 233-245.

[150]

Badley AD, Pilon AA, Landay A, Lynch DH. Mechanisms of HIV-associated lymphocyte apoptosis. Blood. 2000; 96(9): 2951-2964.

[151]

Heegaard ED, Brown KE. Human parvovirus B19. Clin Microbiol Rev. 2002; 15(3): 485-505.

[152]

Ashida H, Mimuro H, Ogawa M, et al. Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol. 2011; 195(6): 931-942.

[153]

Kotelkin A, Prikhod’ko EA, Cohen JI, Collins PL, Bukreyev A. Respiratory syncytial virus infection sensitizes cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Virol. 2003; 77(17): 9156-9172.

[154]

Imre G. Cell death signalling in virus infection. Cell Signal. 2020; 76: 109772.

[155]

Dufour F, Sasseville AM, Chabaud S, Massie B, Siegel RM, Langelier Y. The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFα-and FasL-induced apoptosis by interacting with caspase-8. Apoptosis. 2011; 16(3): 256-271.

[156]

Langelier Y, Bergeron S, Chabaud S, et al. The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol. 2002; 83(11): 2779-2789. Pt.

[157]

Ebermann L, Ruzsics Z, Guzmán CA, et al. Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts. PLoS Pathog. 2012; 8(12): e1003062.

[158]

Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011; 30(1): 87.

[159]

Klanova M, Klener P. BCL-2 proteins in pathogenesis and therapy of B-cell non-Hodgkin lymphomas. Cancers (Basel). 2020; 12(4): 938.

[160]

Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the Bcl-2 family in B cell lymphoma. Front Oncol. 2018; 8: 636.

[161]

Ramesh P, Lannagan TRM, Jackstadt R, et al. BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer. Cell Death Differ. 2021; 28(12): 3282-3296.

[162]

Sinicrope FA, Rego RL, Okumura K, et al. Prognostic impact of bim, puma, and noxa expression in human colon carcinomas. Clin Cancer Res. 2008; 14(18): 5810-5818.

[163]

Richter-Larrea JA, Robles EF, Fresquet V, et al. Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma. Blood. 2010; 116(14): 2531-2542.

[164]

Miquel C, Borrini F, Grandjouan S, et al. Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol. 2005; 123(4): 562-570.

[165]

Sakuragi N, Salah-eldin AE, Watari H, et al. Bax, Bcl-2, and p53 expression in endometrial cancer. Gynecol Oncol. 2002; 86(3): 288-296.

[166]

García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 inhibition to overcome resistance to chemo-and immunotherapy. Int J Mol Sci. 2018; 19(12): 3950.

[167]

Cremona M, Vandenberg CJ, Farrelly AM, et al. BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis (IAP) family inhibitors. Br J Cancer. 2022; 127(3): 488-499.

[168]

Shen XG, Wang C, Li Y, et al. Downregulation of caspase-9 is a frequent event in patients with stage II colorectal cancer and correlates with poor clinical outcome. Colorectal Dis. 2010; 12(12): 1213-1218.

[169]

Devarajan E, Sahin AA, Chen JS, et al. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002; 21(57): 8843-8851.

[170]

Fianco G, Contadini C, Ferri A, Cirotti C, Stagni V, Barilà D. Caspase-8: a novel target to overcome resistance to chemotherapy in glioblastoma. Int J Mol Sci. 2018; 19(12): 3798.

[171]

Ho SY, Guo HR, Chen HH, Hsiao JR, Jin YT, Tsai ST. Prognostic implications of Fas-ligand expression in nasopharyngeal carcinoma. Head Neck. 2004; 26(11): 977-983.

[172]

Reesink-Peters N, Hougardy BM, van den Heuvel FA, et al. Death receptors and ligands in cervical carcinogenesis: an immunohistochemical study. Gynecol Oncol. 2005; 96(3): 705-713.

[173]

Zhang Y, Jin T, Dou Z, Wei B, Zhang B, Sun C. The dual role of the CD95 and CD95L signaling pathway in glioblastoma. Front Immunol. 2022; 13: 1029737.

[174]

Martens S, Hofmans S, Declercq W, Augustyns K, Vandenabeele P. Inhibitors targeting RIPK1/RIPK3: old and new drugs. Trends Pharmacol Sci. 2020; 41(3): 209-224.

[175]

Hou X, Yang C, Zhang L, et al. Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials. 2017; 124: 195-210.

[176]

Saddoughi SA, Gencer S, Peterson YK, et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med. 2013; 5(1): 105-121.

[177]

Newton K, Manning G. Necroptosis and inflammation. Annu Rev Biochem. 2016; 85: 743-763.

[178]

Liu X, Zhang Y, Gao H, et al. Induction of an MLKL mediated non-canonical necroptosis through reactive oxygen species by tanshinol A in lung cancer cells. Biochem Pharmacol. 2020; 171: 113684.

[179]

Zhou H, Zhou L, Guan Q, et al. Skp2-mediated MLKL degradation confers cisplatin-resistant in non-small cell lung cancer cells. Commun Biol. 2023; 6(1): 805.

[180]

Wang L, Li K, Lin X, et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 2019; 450: 22-31.

[181]

Zheng Z, Bian Y, Zhang Y, Ren G, Li G. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle. 2020; 19(10): 1089-1104.

[182]

Zhou JC, Wu B, Zhang JJ, Zhang W. Lupeol triggers oxidative stress, ferroptosis, apoptosis and restrains inflammation in nasopharyngeal carcinoma via AMPK/NF-κB pathway. Immunopharmacol Immunotoxicol. 2022; 44(4): 621-631.

[183]

Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022; 15(1): 174.

[184]

Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife. 2014; 3: e02523.

[185]

Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 2023; 33(12): 1062-1076.

[186]

Jiang X, Ke J, Jia L, et al. A novel cuproptosis-related gene signature of prognosis and immune microenvironment in head and neck squamous cell carcinoma cancer. J Cancer Res Clin Oncol. 2023; 149(1): 203-218.

[187]

Wang W, Lu K, Jiang X, et al. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 2023; 42(1): 142.

[188]

Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017; 93(5): 1015-1034.

[189]

Fleming A, Bourdenx M, Fujimaki M, et al. The different autophagy degradation pathways and neurodegeneration. Neuron. 2022; 110(6): 935-966.

[190]

Creekmore BC, Watanabe R, Lee EB. Neurodegenerative Disease Tauopathies. Annu Rev Pathol. 2024; 19: 345-370.

[191]

Liu H, Dai C, Fan Y, et al. From autophagy to mitophagy: the roles of P62 in neurodegenerative diseases. J Bioenerg Biomembr. 2017; 49(5): 413-422.

[192]

Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis. 2021; 154: 105360.

[193]

Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016; 4: 22.

[194]

Bourdenx M, Martín-Segura A, Scrivo A, et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell. 2021; 184(10): 2696-2714. e25.

[195]

Caballero B, Bourdenx M, Luengo E, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun. 2021; 12(1): 2238.

[196]

Reddy PH, Oliver DM. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells. 2019; 8(5): 488.

[197]

Choi I, Wang M, Yoo S, et al. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat Cell Biol. 2023; 25(7): 963-974.

[198]

Lee JH, Yang DS, Goulbourne CN, et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat Neurosci. 2022; 25(6): 688-701.

[199]

Wang X, Hu W, Qu L, et al. Tricin promoted ATG-7 dependent autophagic degradation of α-synuclein and dopamine release for improving cognitive and motor deficits in Parkinson’s disease. Pharmacol Res. 2023; 196: 106874.

[200]

Khan MR, Yin X, Kang SU, et al. Enhanced mTORC1 signaling and protein synthesis in pathologic α-synuclein cellular and animal models of Parkinson’s disease. Sci Transl Med. 2023; 15(724): eadd0499.

[201]

Wong YC, Holzbaur EL. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Autophagy. 2015; 11(2): 422-424.

[202]

Winslow AR, Chen CW, Corrochano S, et al. α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010; 190(6): 1023-1037.

[203]

Kaushik S, Tasset I, Arias E, et al. Autophagy and the hallmarks of aging. Ageing Res Rev. 2021; 72: 101468.

[204]

Okouchi M, Ekshyyan O, Maracine M, Aw TY. Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal. 2007; 9(8): 1059-1096.

[205]

Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013; 138(2): 155-175.

[206]

Zhang JT, Xie LY, Shen Q, et al. Platycodin D stimulates AMPK activity to inhibit the neurodegeneration caused by reactive oxygen species-induced inflammation and apoptosis. J Ethnopharmacol. 2023; 308: 116294.

[207]

Tsang AH, Lee YI, Ko HS, et al. S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci USA. 2009; 106(12): 4900-4905.

[208]

Dang X, Huan X, Du X, et al. Correlation of ferroptosis and other types of cell death in neurodegenerative diseases. Neurosci Bull. 2022; 38(8): 938-952.

[209]

Yan N, Zhang J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front Neurosci. 2019; 13: 1443.

[210]

Weiland A, Wang Y, Wu W, et al. Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 2019; 56(7): 4880-4893.

[211]

Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv Sci (Weinh). 2023; 10(24): e2300325.

[212]

Gwon AR, Park JS, Park JH, et al. Selenium attenuates A beta production and A beta-induced neuronal death. Neurosci Lett. 2010; 469(3): 391-395.

[213]

Caccamo A, Branca C, Piras IS, et al. Necroptosis activation in Alzheimer’s disease. Nat Neurosci. 2017; 20(9): 1236-1246.

[214]

Qinli Z, Meiqing L, Xia J, et al. Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure. Restor Neurol Neurosci. 2013; 31(5): 543-555.

[215]

Motawi TMK, Abdel-Nasser ZM, Shahin NN. Ameliorative effect of necrosulfonamide in a rat model of Alzheimer’s disease: targeting mixed lineage kinase domain-like protein-mediated necroptosis. ACS Chem Neurosci. 2020; 11(20): 3386-3397.

[216]

Paskiewicz A, Niu J, Chang C. Autoimmune lymphoproliferative syndrome: a disorder of immune dysregulation. Autoimmun Rev. 2023; 22(11): 103442.

[217]

Meynier S, Rieux-Laucat F. FAS and RAS related Apoptosis defects: from autoimmunity to leukemia. Immunol Rev. 2019; 287(1): 50-61.

[218]

Abdolmaleki F, Farahani N, Gheibi Hayat SM, et al. The role of efferocytosis in autoimmune diseases. Front Immunol. 2018; 9: 1645.

[219]

Gravano DM, Hoyer KK. Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun. 2013; 45: 68-79.

[220]

Blanco P, Pitard V, Viallard JF, Taupin JL, Pellegrin JL, Moreau JF. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2005; 52(1): 201-211.

[221]

Rashedi I, Panigrahi S, Ezzati P, Ghavami S, Los M. Autoimmunity and apoptosis–therapeutic implications. Curr Med Chem. 2007; 14(29): 3139-3151.

[222]

Peng Y, Elkon KB. Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. J Clin Invest. 2011; 121(6): 2221-2241.

[223]

Cohen PL, Caricchio R, Abraham V, et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med. 2002; 196(1): 135-140.

[224]

Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol. 2017; 176: 55-62.

[225]

You R, He X, Zeng Z, Zhan Y, Xiao Y, Xiao R. Pyroptosis and its role in autoimmune disease: a potential therapeutic target. Front Immunol. 2022; 13: 841732.

[226]

Peng X, Yang T, Liu G, Liu H, Peng Y, He L. Piperine ameliorated lupus nephritis by targeting AMPK-mediated activation of NLRP3 inflammasome. Int Immunopharmacol. 2018; 65: 448-457.

[227]

Wu XY, Li KT, Yang HX, et al. Complement C1q synergizes with PTX3 in promoting NLRP3 inflammasome over-activation and pyroptosis in rheumatoid arthritis. J Autoimmun. 2020; 106: 102336.

[228]

Wang Y, Zhou X, Zou K, et al. Monocarboxylate transporter 4 triggered cell pyroptosis to aggravate intestinal inflammation in inflammatory bowel disease. Front Immunol. 2021; 12: 644862.

[229]

Lai B, Wu CH, Wu CY, Luo SF, Lai JH. Ferroptosis and autoimmune diseases. Front Immunol. 2022; 13: 916664.

[230]

Hu CL, Nydes M, Shanley KL, Morales Pantoja IE, Howard TA, Bizzozero OA. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurochem. 2019; 148(3): 426-439.

[231]

Huang W, Quach TD, Dascalu C, et al. Belimumab promotes negative selection of activated autoreactive B cells in systemic lupus erythematosus patients. JCI Insight. 2018; 3(17): e122525.

[232]

Chisari CG, Sgarlata E, Arena S, Toscano S, Luca M, Patti F. Rituximab for the treatment of multiple sclerosis: a review. J Neurol. 2022; 269(1): 159-183.

[233]

Ahmed AR, Kaveri S. Reversing autoimmunity combination of rituximab and intravenous immunoglobulin. Front Immunol. 2018; 9: 1189.

[234]

Yao Q, Glorioso JC, Evans CH, et al. Adenoviral mediated delivery of FAS ligand to arthritic joints causes extensive apoptosis in the synovial lining. J Gene Med. 2000; 2(3): 210-219.

[235]

Oblimersen: augmerosen, BCL-2 antisense oligonucleotide—Genta, G 3139, GC 3139, oblimersen sodium. Drugs R D. 2007; 8(5): 321-334.

[236]

Joudeh J, Claxton D. Obatoclax mesylate : pharmacology and potential for therapy of hematological neoplasms. Expert Opin Investig Drugs. 2012; 21(3): 363-373.

[237]

Mohamad Anuar NN, Nor Hisam NS, Liew SL, Ugusman A. Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. Front Pharmacol. 2020; 11: 564108.

[238]

Lakhani NJ, Rasco D, Wang H, et al. First-in-human study with preclinical data of BCL-2/BCL-xL inhibitor pelcitoclax in locally advanced or metastatic solid tumors. Clin Cancer Res. 2024; 30(3): 506-521.

[239]

Kehr S, Vogler M. It’s time to die: bH3 mimetics in solid tumors. Biochim Biophys Acta Mol Cell Res. 2021; 1868(5): 118987.

[240]

Chen L, Fletcher S. Mcl-1 inhibitors: a patent review. Expert Opin Ther Pat. 2017; 27(2): 163-178.

[241]

Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 2023; 8(1): 92.

[242]

Wiman KG. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene. 2010; 29(30): 4245-4252.

[243]

Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene. 2003; 22(51): 8233-8245.

[244]

Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004; 303(5659): 844-848.

[245]

Morrish E, Brumatti G, Silke J. Future therapeutic directions for Smac-mimetics. Cells. 2020; 9(2): 406.

[246]

Nakahara T, Kita A, Yamanaka K, et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res. 2007; 67(17): 8014-8021.

[247]

Ling X, Cao S, Cheng Q, Keefe JT, Rustum YM, Li F. A novel small molecule FL118 that selectively inhibits survivin, Mcl-1, XIAP and cIAP2 in a p53-independent manner, shows superior antitumor activity. PLoS One. 2012; 7(9): e45571.

[248]

Albadari N, Li W. Survivin small molecules inhibitors: recent advances and challenges. Molecules. 2023; 28(3): 1376.

[249]

Petherick KJ, Conway OJ, Mpamhanga C, et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem. 2015; 290(18): 11376-11383.

[250]

Egan DF, Chun MG, Vamos M, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell. 2015; 59(2): 285-297.

[251]

Martin KR, Celano SL, Solitro AR, et al. A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient stress. iScience. 2018; 8: 74-84.

[252]

Wu YT, Tan HL, Shui G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010; 285(14): 10850-10861.

[253]

Ui M, Okada T, Hazeki K, Hazeki O. Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem Sci. 1995; 20(8): 303-307.

[254]

Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017; 16(7): 487-511.

[255]

Liu J, Xia H, Kim M, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 2011; 147(1): 223-234.

[256]

Pasquier B. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy. 2015; 11(4): 725-726.

[257]

Kocak M, Ezazi Erdi S, Jorba G, et al. Targeting autophagy in disease: established and new strategies. Autophagy. 2022; 18(3): 473-495.

[258]

Akin D, Wang SK, Habibzadegah-Tari P, et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy. 2014; 10(11): 2021-2035.

[259]

Fu Y, Hong L, Xu J, et al. Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy. 2019; 15(2): 295-311.

[260]

Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, pH and the anti-malarial action of chloroquine. Nature. 1972; 235(5332): 50-52.

[261]

McAfee Q, Zhang Z, Samanta A, et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA. 2012; 109(21): 8253-8258.

[262]

Rebecca VW, Nicastri MC, Fennelly C, et al. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 2019; 9(2): 220-229.

[263]

Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes?. Autophagy. 2008; 4(7): 849-850.

[264]

Herbst RS, Frankel SR. Oblimersen sodium (Genasense bcl-2 antisense oligonucleotide): a rational therapeutic to enhance apoptosis in therapy of lung cancer. Clin Cancer Res. 2004; 10(12 Pt 2): 4245s-4248s.

[265]

Garciaz S, Miller T, Collette Y, Vey N. Targeting regulated cell death pathways in acute myeloid leukemia. Cancer Drug Resist. 2023; 6(1): 151-168.

[266]

Yi X, Sarkar A, Kismali G, et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia. Clin Cancer Res. 2020; 26(14): 3856-3867.

[267]

Caenepeel S, Brown SP, Belmontes B, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018; 8(12): 1582-1597.

[268]

Tao H, Xu H, Zuo L, et al. Exosomes-coated bcl-2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo. Int J Biol Macromol. 2020; 161: 470-480.

[269]

Sun W, Liu XY, Ma LL, Lu ZL. Tumor targeting gene vector for visual tracking of Bcl-2 siRNA transfection and anti-tumor therapy. ACS Appl Mater Interfaces. 2020; 12(9): 10193-10201.

[270]

Song B, Yang P, Zhang S. Cell fate regulation governed by p53: friends or reversible foes in cancer therapy. Cancer Commun (Lond). 2024; 44(3): 297-360.

[271]

Di Y, Jing X, Hu K, et al. The c-MYC-WDR43 signalling axis promotes chemoresistance and tumour growth in colorectal cancer by inhibiting p53 activity. Drug Resist Updat. 2023; 66: 100909.

[272]

Chen Y, Zhou S, Wan K, et al. RIOK1 mediates p53 degradation and radioresistance in colorectal cancer through phosphorylation of G3BP2. Oncogene. 2022; 41(25): 3433-3444.

[273]

Hu J, Cao J, Topatana W, et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol. 2021; 14(1): 157.

[274]

Kansal V, Kinney BLC, Uppada S, et al. The expanding role of IAP antagonists for the treatment of head and neck cancer. Cancer Med. 2023; 12(13): 13958-13965.

[275]

Li N, Feng L, Han HQ, et al. A novel Smac mimetic APG-1387 demonstrates potent antitumor activity in nasopharyngeal carcinoma cells by inducing apoptosis. Cancer Lett. 2016; 381(1): 14-22.

[276]

Chen Z, Chen J, Liu H, et al. The SMAC mimetic APG-1387 sensitizes immune-mediated cell apoptosis in hepatocellular carcinoma. Front Pharmacol. 2018; 9: 1298.

[277]

Runckel K, Barth MJ, Mavis C, Gu JJ, Hernandez-Ilizaliturri FJ. The SMAC mimetic LCL-161 displays antitumor activity in preclinical models of rituximab-resistant B-cell lymphoma. Blood Adv. 2018; 2(23): 3516-3525.

[278]

Hu Y, Cherton-Horvat G, Dragowska V, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res. 2003; 9(7): 2826-2836.

[279]

Yang D, Song X, Zhang J, et al. Therapeutic potential of siRNA-mediated combined knockdown of the IAP genes (Livin, XIAP, and Survivin) on human bladder cancer T24 cells. Acta Biochim Biophys Sin (Shanghai). 2010; 42(2): 137-144.

[280]

Zhao W, Tang L, Gao S, Xin L, Zhang H, Li Y. Junduqing extractive promotes the apoptosis of nasopharyngeal carcinoma cells through down-regulating Mcl-1 and Bcl-xL and up-regulating Caspase-3, Caspase-8 and Caspase-9. Artif Cells Nanomed Biotechnol. 2019; 47(1): 3904-3912.

[281]

Rohn JL, Noteborn MH. The viral death effector Apoptin reveals tumor-specific processes. Apoptosis. 2004; 9(3): 315-322.

[282]

Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. Molecules. 2022; 27(16): 5295.

[283]

Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015; 125(1): 25-32.

[284]

Brown RA, Voit A, Srikanth MP, et al. mTOR hyperactivity mediates lysosomal dysfunction in Gaucher’s disease iPSC-neuronal cells. Dis Model Mech. 2019; 12(10): dmm038596.

[285]

Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener. 2021; 16(1): 44.

[286]

DeBosch BJ, Heitmeier MR, Mayer AL, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal. 2016; 9(416): ra21.

[287]

Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide trehalose in experimental therapies for neurodegenerative disorders: molecular targets and translational potential. Pharmacol Res. 2022; 183: 106373.

[288]

Rusmini P, Cortese K, Crippa V, et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy. 2019; 15(4): 631-651.

[289]

Korolenko TA, Dubrovina NI, Ovsyukova MV, et al. Treatment with autophagy inducer trehalose alleviates memory and behavioral impairments and neuroinflammatory brain processes in db/db mice. Cells. 2021; 10(10): 2557.

[290]

Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Metformin and trehalose-modulated autophagy exerts a neurotherapeutic effect on Parkinson’s disease. Mol Neurobiol. 2023; 60(12): 7253-7273.

[291]

Wani A, Al Rihani SB, Sharma A, et al. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy. 2021; 17(11): 3813-3832.

[292]

Jiang W, Li S, Li X. Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci. 2015; 58(6): 564-569.

[293]

Tucker D, Lu Y, Zhang Q. From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol Neurobiol. 2018; 55(6): 5137-5153.

[294]

Nobili A, La Barbera L, D’Amelio M. Targeting autophagy as a therapeutic strategy to prevent dopamine neuron loss in early stages of Alzheimer disease. Autophagy. 2021; 17(5): 1278-1280.

[295]

Bourdenx M, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. Autophagy. 2021; 17(8): 2040-2042.

[296]

Cui H, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase acts as a link between chaperone-mediated autophagy and macroautophagy. Biochem Pharmacol. 2022; 197: 114899.

[297]

Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E, Cuervo AM. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat Chem Biol. 2013; 9(6): 374-382.

[298]

Sato M, Ohta T, Morikawa Y, et al. Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperone-mediated autophagy in cerebellar neurons. Neuropathol Appl Neurobiol. 2021; 47(2): 198-209.

[299]

Xilouri M, Brekk OR, Landeck N, et al. Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain. 2013; 136(7): 2130-2146. Pt.

[300]

Francelle L, Outeiro TF, Rappold GA. Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Sci Rep. 2020; 10(1): 6064.

[301]

Dou J, Su P, Xu C, Wen Z, Mao Z, Li W. Targeting Hsc70-based autophagy to eliminate amyloid β oligomers. Biochem Biophys Res Commun. 2020; 524(4): 923-928.

[302]

Li X, Zhang P, Yin Z, et al. Caspase-1 and gasdermin D afford the optimal targets with distinct switching strategies in NLRP1b inflammasome-induced cell death. Research (Wash D C). 2022; 2022: 9838341.

[303]

Deng W, Bai Y, Deng F, et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. 2022; 602(7897): 496-502.

[304]

Rana N, Privitera G, Kondolf HC, et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell. 2022; 185(2): 283-298. e17.

[305]

Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020; 368(6494): eaaz7548.

[306]

Wang S, Chang CW, Huang J, et al. Gasdermin C sensitizes tumor cells to PARP inhibitor therapy in cancer models. J Clin Invest. 2024; 134(1): e166841.

[307]

Qi Y, Yao Q, Li X, Li X, Zhang W, Qu P. Cuproptosis-related gene SLC31A1: prognosis values and potential biological functions in cancer. Sci Rep. 2023; 13(1): 17790.

[308]

Sun L, Zhang Y, Yang B, et al. Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 2023; 14(1): 6523.

[309]

Li Y, Xu B, Zhang J, Liu X, Ganesan K, Shi G. Exploring the role of LIAS-related cuproptosis in systemic lupus erythematosus. Lupus. 2023; 32(14): 1598-1609.

[310]

Shou H, Wu J, Tang N, Wang B. Calcification-based cancer diagnosis and therapy. ChemMedChem. 2022; 17(4): e202100339.

[311]

Bhosale G, Sharpe JA, Sundier SY, Duchen MR. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann N Y Acad Sci. 2015; 1350(1): 107-116.

[312]

Guo D, Dai X, Liu K, et al. A self-reinforcing nanoplatform for highly effective synergistic targeted combinatary calcium-overload and photodynamic therapy of cancer. Adv Healthc Mater. 2023; 12(12): e2202424.

[313]

Guo L, Jin Y, Yang Y, et al. Calcicoptosis induced by purple sweet potato anthocyanins through the nonosmotic regulation of the NFAT5/S100A4-S100A9 pathway in acute lymphoblastic leukemia. Chem Biodivers. 2022; 19(9): e202200447.

[314]

Bai S, Lan Y, Fu S, Cheng H, Lu Z, Liu G. Connecting calcium-based nanomaterials and cancer: from diagnosis to therapy. Nanomicro Lett. 2022; 14(1): 145.

[315]

Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 2020; 34(5-6): 360-394.

[316]

Wang Y, An R, Umanah GK, et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. 2016; 354(6308): aad6872.

[317]

Hong T, Lei G, Chen X, et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 2021; 42: 101928.

[318]

Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017; 20(7): 1692-1704.

[319]

Wang S, Wang R, Hu D, Zhang C, Cao P, Huang J. Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy. NPJ Precis Oncol. 2024; 8(1): 49.

[320]

Liu H, Tang L, Li Y, et al. Nasopharyngeal carcinoma: current views on the tumor microenvironment’s impact on drug resistance and clinical outcomes. Mol Cancer. 2024; 23(1): 20.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

287

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/