Ocular immune-related diseases: molecular mechanisms and therapy

Yakun Wang , Shangze Gao , Fan Cao , Hui Yang , Fengyang Lei , Shengping Hou

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70021

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70021 DOI: 10.1002/mco2.70021
REVIEW

Ocular immune-related diseases: molecular mechanisms and therapy

Author information +
History +
PDF

Abstract

Ocular immune-related diseases, represent a spectrum of conditions driven by immune system dysregulation, include but not limit to uveitis, diabetic retinopathy, age-related macular degeneration, Graves’ ophthalmopathy, etc. The molecular and cellular mechanisms underlying these diseases are typically dysfunctioned immune responses targeting ocular tissues, resulting in inflammation and tissue damage. Recent advances have further elucidated the pivotal role of different immune responses in the development, progression, as well as management of various ocular immune diseases. However, there is currently a relative lack of connection between the cellular mechanisms and treatments of several immune-related ocular diseases. In this review, we discuss recent findings related to the immunopathogenesis of above-mentioned diseases. In particular, we summarize the different types of immune cells, inflammatory mediators, and associated signaling pathways that are involved in the pathophysiology of above-mentioned ophthalmopathies. Furthermore, we also discuss the future directions of utilizing anti-inflammatory regime in the management of these diseases. This will facilitate a better understanding of the pathogenesis of immune-related ocular diseases and provide new insights for future treatment approaches.

Keywords

age-related macular degeneration / diabetic retinopathy / Graves’ ophthalmopathy / immune / uveitis

Cite this article

Download citation ▾
Yakun Wang, Shangze Gao, Fan Cao, Hui Yang, Fengyang Lei, Shengping Hou. Ocular immune-related diseases: molecular mechanisms and therapy. MedComm, 2024, 5(12): e70021 DOI:10.1002/mco2.70021

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nieto-Aristizábal I, Mera JJ, Giraldo JD, Lopez-Arevalo H, Tobón GJ. From ocular immune privilege to primary autoimmune diseases of the eye. Autoimmun Rev. 2022; 21(8): 103122.

[2]

Sugita S. Role of ocular pigment epithelial cells in immune privilege. Arch Immunol Ther Exp (Warsz). 2009; 57(4): 263-268.

[3]

Wang X, Wang T, Kaneko S, et al. Photoreceptors inhibit pathological retinal angiogenesis through transcriptional regulation of Adam17 via c-Fos. Angiogenesis. 2024; 27(3): 379-395.

[4]

Morohoshi K, Goodwin AM, Ohbayashi M, Ono SJ. Autoimmunity in retinal degeneration: autoimmune retinopathy and age-related macular degeneration. J Autoimmun. 2009; 33(3-4): 247-254.

[5]

Prete M, Dammacco R, Fatone MC, Racanelli V. Autoimmune uveitis: clinical, pathogenetic, and therapeutic features. Clin Exp Med. 2016; 16(2): 125-136.

[6]

Davis JS, Ferreira D, Paige E, Gedye C, Boyle M. Infectious complications of biological and small molecule targeted immunomodulatory therapies. Clin Microbiol Rev. 2020; 33(3): e00035-e00119.

[7]

Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017; 17(12): 761-773.

[8]

Egwuagu CE, Alhakeem SA, Mbanefo EC. Uveitis: molecular pathogenesis and emerging therapies. Front Immunol. 2021; 12: 623725.

[9]

Glover K, Mishra D, Singh TRR. Epidemiology of ocular manifestations in autoimmune disease. Front Immunol. 2021; 12: 744396.

[10]

Reddy A, Liu SH, Brady CJ, Sieving PC, Palestine AG. Corticosteroid implants for chronic non-infectious uveitis. Cochrane Database Syst Rev. 2023; 8(8): CD010469.

[11]

Ahmed CM, Johnson HM, Lewin AS. Corneal application of SOCS1/3 peptides for the treatment of eye diseases mediated by inflammation and oxidative stress. Front Immunol. 2024; 15: 1416181.

[12]

Rao NA. Uveitis in developing countries. Indian J Ophthalmol. 2013; 61(6): 253-254.

[13]

Rothova A, Suttorp-van Schulten MS, Frits Treffers W, Kijlstra A. Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol. 1996; 80(4): 332-336.

[14]

Sève P, Cacoub P, Bodaghi B, et al. Uveitis: diagnostic work-up. A literature review and recommendations from an expert committee. Autoimmun Rev. 2017; 16(12): 1254-1264.

[15]

Huang Y, Fang S, Li D, Zhou H, Li B, Fan X. The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy. Eye (Lond). 2019; 33(2): 176-182.

[16]

Chong WP, Horai R, Mattapallil MJ, et al. IL-27p28 inhibits central nervous system autoimmunity by concurrently antagonizing Th1 and Th17 responses. J Autoimmun. 2014; 50: 12-22.

[17]

Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity. 2015; 43(2): 343-353.

[18]

Gholijani N, Ataollahi MR, Samiei A, Aflaki E, Shenavandeh S, Kamali-Sarvestani E. An elevated pro-inflammatory cytokines profile in Behcet’s disease: a multiplex analysis. Immunol Lett. 2017; 186: 46-51.

[19]

Kaufmann U, Diedrichs-Möhring M, Wildner G. Dynamics of intraocular IFN-γ IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis. PLoS One. 2012; 7(11): e49008.

[20]

Weinstein JE, Pepple KL. Cytokines in uveitis. Curr Opin Ophthalmol. 2018; 29(3): 267-274.

[21]

Peng Y, Han G, Shao H, Wang Y, Kaplan HJ, Sun D. Characterization of IL-17+ interphotoreceptor retinoid-binding protein-specific T cells in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2007; 48(9): 4153-41561.

[22]

Fan NW, Li J, Mittal SK, et al. Characterization of clinical and immune responses in an experimental chronic autoimmune uveitis model. Am J Pathol. 2021; 191(3): 425-437.

[23]

Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res. 2021; 80: 100866.

[24]

Liang L, Peng XY, Wang H. Th lymphocyte subsets in patients with Vogt–Koyanagi–Harada disease. Int J Ophthalmol. 2019; 12(2): 207-211.

[25]

Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008; 205(4): 799-810.

[26]

Sun D, Liang D, Kaplan HJ, Shao H. The role of Th17-associated cytokines in the pathogenesis of experimental autoimmune uveitis (EAU). Cytokine. 2015; 74(1): 76-80.

[27]

Li H, Zhu L, Wang R, et al. Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein Cell. 2022; 13(6): 422-445.

[28]

Yang P, Foster CS. Interleukin 21, interleukin 23, and transforming growth factor β1 in HLA-A29-associated birdshot retinochoroidopathy. Am J Ophthalmol. 2013; 156(2): 400-406.e2.

[29]

Przepiera-Będzak H, Fischer K, Brzosko M. Extra-articular symptoms in constellation with selected serum cytokines and disease activity in spondyloarthritis. Mediators Inflamm. 2016; 2016: 7617954.

[30]

Hou S, Liao D, Zhang J, et al. Genetic variations of IL17F and IL23A show associations with Behçet’s disease and Vogt–Koyanagi–Harada syndrome. Ophthalmology. 2015; 122(3): 518-523.

[31]

Fan W, Wang X, Zeng S, et al. Global lactylome reveals lactylation-dependent mechanisms underlying T(H)17 differentiation in experimental autoimmune uveitis. Sci Adv. 2023; 9(42): eadh4655.

[32]

Lopez Krol A, Nehring HP, Krause FF, et al. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells. EMBO Rep. 2022; 23(12): e54685.

[33]

Sun M, Yang P, Du L, Zhou H, Ren X, Kijlstra A. Contribution of CD4+CD25+ T cells to the regression phase of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2010; 51(1): 383-389.

[34]

Zhang L, Wan F, Song J, et al. Imbalance between Th17 cells and regulatory T cells during monophasic experimental autoimmune uveitis. Inflammation. 2016; 39(1): 113-122.

[35]

Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol. 2008; 18(4): 354-358.

[36]

Gilbert RM, Zhang X, Sampson RD, et al. Clinical remission of sight-threatening non-infectious uveitis is characterized by an upregulation of peripheral T-regulatory cell polarized towards T-bet and TIGIT. Front Immunol. 2018; 9: 907.

[37]

Zhuang Z, Wang Y, Zhu G, et al. Imbalance of Th17/Treg cells in pathogenesis of patients with human leukocyte antigen B27 associated acute anterior uveitis. Sci Rep. 2017; 7: 40414.

[38]

Yin X, Liu B, Wei H, et al. Activation of the Notch signaling pathway disturbs the CD4(+)/CD8(+), Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm Res. 2019; 68(9): 761-774.

[39]

Yin X, Liu B, Wei H, et al. Activation of the Notch signaling pathway disturbs the CD4+/CD8+, Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm Res. 2019; 68(9): 761-774.

[40]

LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008; 112(5): 1570-1580.

[41]

Xu H, Chen M. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. Eur J Pharmacol. 2016; 787: 94-104.

[42]

John S, Rolnick K, Wilson L, Wong S, Van Gelder RN, Pepple KL. Bioluminescence for in vivo detection of cell-type-specific inflammation in a mouse model of uveitis. Sci Rep. 2020; 10(1): 11377.

[43]

Zhang Z, Xu Q, Huang L. B cell depletion therapies in autoimmune diseases: monoclonal antibodies or chimeric antigen receptor-based therapy? Front Immunol. 2023; 14: 1126421.

[44]

Haruta H, Ohguro N, Fujimoto M, et al. Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2011; 52(6): 3264-3271.

[45]

Zhao Y, Luan H, Jiang H, et al. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine. 2021; 84: 153519.

[46]

Liu R, Zhao P, Zhang Q, et al. Adiponectin promotes fibroblast-like synoviocytes producing IL-6 to enhance T follicular helper cells response in rheumatoid arthritis. Clin Exp Rheumatol. 2020; 38(1): 11-18.

[47]

Parikh JG, Tawansy KA, Rao NA. Immunohistochemical study of chronic nongranulomatous anterior uveitis in juvenile idiopathic arthritis. Ophthalmology. 2008; 115(10): 1833-1836.

[48]

Aziz HA, Flynn HW Jr, Young RC, Davis JL, Dubovy SR. Sympathetic ophthalmia: clinicopathologic correlation in a consecutive case series. Retina. 2015; 35(8): 1696-1703.

[49]

Wildschütz L, Ackermann D, Witten A, et al. Transcriptomic and proteomic analysis of iris tissue and aqueous humor in juvenile idiopathic arthritis-associated uveitis. J Autoimmun. 2019; 100: 75-83.

[50]

Gheita TA, Raafat H, Khalil H, Hussein H. Serum level of APRIL/BLyS in Behçet’s disease patients: clinical significance in uveitis and disease activity. Mod Rheumatol. 2013; 23(3): 542-546.

[51]

Shaker OG, Tawfic SO, El-Tawdy AM, El-Komy MH, El Menyawi M, Heikal AA. Expression of TNF-α APRIL and BCMA in Behcet’s disease. J Immunol Res. 2014; 2014: 380405.

[52]

Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: functions and diseases. Immunology. 2022; 166(3): 268-286.

[53]

Silverman SM, Wong WT. Microglia in the retina: roles in development, maturity, and disease. Annu Rev Vis Sci. 2018; 4: 45-77.

[54]

Lauro C, Limatola C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front Immunol. 2020; 11: 493.

[55]

Cheray M, Joseph B. Epigenetics control microglia plasticity. Front Cell Neurosci. 2018; 12: 243.

[56]

Bhat SA, Sood A, Shukla R, Hanif K. AT2R activation prevents microglia pro-inflammatory activation in a NOX-dependent manner: inhibition of PKC activation and p47(phox) phosphorylation by PP2A. Mol Neurobiol. 2019; 56(4): 3005-3023.

[57]

Perea JR, Ávila J, Bolós M. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp Neurol. 2018; 310: 14-21.

[58]

Liu J, Liao X, Li N, et al. Single-cell RNA sequencing reveals inflammatory retinal microglia in experimental autoimmune uveitis. MedComm. 2024; 5(4): e534.

[59]

Wang X, Fan W, Li N, et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 2023; 24(1): 87.

[60]

Huang J, Wang X, Li N, et al. YY1 lactylation aggravates autoimmune uveitis by enhancing microglial functions via inflammatory genes. Adv Sci (Weinh). 2024; 11(19): e2308031.

[61]

Li W, He S, Tan J, et al. Transcription factor EGR2 alleviates autoimmune uveitis via activation of GDF15 to modulate the retinal microglial phenotype. Proc Natl Acad Sci U S A. 2024; 121(39): e2316161121.

[62]

Liu Y, Zhao C, Meng J, et al. Galectin-3 regulates microglial activation and promotes inflammation through TLR4/MyD88/NF-kB in experimental autoimmune uveitis. Clin Immunol. 2022; 236: 108939.

[63]

Huang Y, He J, Liang H, et al. Aryl hydrocarbon receptor regulates apoptosis and inflammation in a murine model of experimental autoimmune uveitis. Front Immunol. 2018; 9: 1713.

[64]

He S, Li W, Wang G, et al. FTO-mediated m6A modification alleviates autoimmune uveitis by regulating microglia phenotypes via the GPC4/TLR4/NF-κB signaling axis. Genes Dis. 2023; 10(5): 2179-2193.

[65]

Wang G, Li X, Li N, et al. Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization. Redox Biol. 2022; 52: 102297.

[66]

Shu N, Zhang Z, Wang X, et al. Apigenin alleviates autoimmune uveitis by inhibiting microglia M1 pro-inflammatory polarization. Invest Ophthalmol Vis Sci. 2023; 64(5): 21.

[67]

Huang Y, Xue Q, Chang J, et al. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics. Arthritis Res Ther. 2023; 25(1): 189.

[68]

Zhou L, Ho BM, Chan HYE, et al. Emerging roles of cGAS-STING signaling in mediating ocular inflammation. J Innate Immun. 2023; 15(1): 739-750.

[69]

Zhu L, Chen B, Su W. A review of the various roles and participation levels of B-cells in non-infectious uveitis. Front Immunol. 2021; 12: 676046.

[70]

Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res. 2020; 74: 100778.

[71]

Cutolo M, Campitiello R, Gotelli E, Soldano S. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front Immunol. 2022; 13: 867260.

[72]

Wang C, Ma C, Gong L, et al. Macrophage polarization and its role in liver disease. Front Immunol. 2021; 12: 803037.

[73]

Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015; 2015: 816460.

[74]

Ha H, Debnath B, Neamati N. Role of the CXCL8–CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017; 7(6): 1543-1588.

[75]

Wang C, Ren L, Chen S, et al. Longdan Xiegan Tang attenuates liver injury and hepatic insulin resistance by regulating the angiotensin-converting enzyme 2/Ang (1-7)/Mas axis-mediated anti-inflammatory pathway in rats. J Ethnopharmacol. 2021; 274: 114072.

[76]

Qu R, Peng Y, Zhou M, et al. MiR-223-3p attenuates M1 macrophage polarization via suppressing the Notch signaling pathway and NLRP3-mediated pyroptosis in experimental autoimmune uveitis. Eur J Pharmacol. 2023; 960: 176139.

[77]

Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother. 2020; 130: 110542.

[78]

Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021; 18(9): 2114-2127.

[79]

Meng J, Li N, Liu X, et al. NLRP3 attenuates intraocular inflammation by inhibiting AIM2-mediated pyroptosis through the phosphorylated salt-inducible kinase 1/sterol regulatory element binding transcription factor 1 pathway. Arthritis Rheumatol. 2023; 75(5): 842-855.

[80]

Thorne JE, Woreta FA, Dunn JP, Jabs DA. Risk of cataract development among children with juvenile idiopathic arthritis-related uveitis treated with topical corticosteroids. Ophthalmology. 2010; 117(7): 1436-1441.

[81]

Jabs DA. Immunosuppression for the uveitides. Ophthalmology. 2018; 125(2): 193-202.

[82]

Gangaputra S, Newcomb CW, Liesegang TL, et al. Methotrexate for ocular inflammatory diseases. Ophthalmology. 2009; 116(11): 2188-2198.e1.

[83]

Busto-Iglesias M, Rodríguez-Martínez L, Rodríguez-Fernández CA, et al. Perspectives of therapeutic drug monitoring of biological agents in non-infectious uveitis treatment: a review. Pharmaceutics. 2023; 15(3): 766.

[84]

Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010; 376(9735): 124-136.

[85]

Chaudhary S, Zaveri J, Becker N. Proliferative diabetic retinopathy (PDR). Dis Mon. 2021; 67(5): 101140.

[86]

Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020; 37: 101799.

[87]

ValdezGuerrero AS, Quintana-Pérez JC, Arellano-Mendoza MG, Castañeda-Ibarra FJ, Tamay-Cach F, Alemán-González-Duhart D. Diabetic retinopathy: important biochemical alterations and the main treatment strategies. Can J Diabetes. 2021; 45(6): 504-511.

[88]

Tang Q, Buonfiglio F, Böhm EW, et al. Diabetic retinopathy: new treatment approaches targeting redox and immune mechanisms. Antioxidants (Basel). 2024; 13(5): 594.

[89]

Bunte K, Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int J Mol Sci. 2019; 20(14): 3394.

[90]

Taguchi M, Someya H, Inada M, et al. Retinal changes in mice spontaneously developing diabetes by Th17-cell deviation. Exp Eye Res. 2020; 198: 108155.

[91]

Takeuchi M, Sato T, Sakurai Y, et al. Association between aqueous humor and vitreous fluid levels of Th17 cell-related cytokines in patients with proliferative diabetic retinopathy. PLoS One. 2017; 12(5): e0178230.

[92]

Li X, Fang P, Yang WY, Wang H, Yang X. IL-35, as a newly proposed homeostasis-associated molecular pattern, plays three major functions including anti-inflammatory initiator, effector, and blocker in cardiovascular diseases. Cytokine. 2019; 122: 154076.

[93]

Yan A, You H, Zhang X. Levels of interleukin 27 and interleukin 35 in the serum and vitreous of patients with proliferative diabetic retinopathy. Ocul Immunol Inflamm. 2018; 26(2): 273-279.

[94]

Wang Y, Mao Y, Zhang J, et al. IL-35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells. J Cell Mol Med. 2018; 22(2): 1014-1025.

[95]

Yan A, Zhang Y, Wang X, Cui Y, Tan W. Interleukin 35 regulates interleukin 17 expression and T helper 17 in patients with proliferative diabetic retinopathy. Bioengineered. 2022; 13(5): 13293-13299.

[96]

Li X, Yu ZW, Li HY, Yuan Y, Gao XY, Kuang HY. Retinal microglia polarization in diabetic retinopathy. Vis Neurosci. 2021; 38: E006.

[97]

Fouda AY, Xu Z, Suwanpradid J, et al. Targeting proliferative retinopathy: arginase 1 limits vitreoretinal neovascularization and promotes angiogenic repair. Cell Death Dis. 2022; 13(8): 745.

[98]

Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res. 2019; 69: 159-172.

[99]

Brockmann C, Dege S, Crespo-Garcia S, et al. Spatial distribution of CD115(+) and CD11b(+) cells and their temporal activation during oxygen-induced retinopathy in mice. Graefes Arch Clin Exp Ophthalmol. 2018; 256(2): 313-323.

[100]

Zhao C, Liu Y, Meng J, et al. LGALS3BP in microglia promotes retinal angiogenesis through PI3K/AKT pathway during hypoxia. Invest Ophthalmol Vis Sci. 2022; 63(8): 25.

[101]

Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020; 11: 564077.

[102]

Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005; 54(5): 1559-1565.

[103]

Liou GI. Diabetic retinopathy: role of inflammation and potential therapies for anti-inflammation. World J Diabetes. 2010; 1(1): 12-18.

[104]

Zorena K, Myśliwska J, Myśliwiec M, et al. Serum TNF-alpha level predicts nonproliferative diabetic retinopathy in children. Mediators Inflamm. 2007; 2007: 92196.

[105]

Feng S, Yu H, Yu Y, et al. Levels of inflammatory cytokines IL-1β IL-6, IL-8, IL-17A, and TNF-α in aqueous humour of patients with diabetic retinopathy. J Diabetes Res. 2018; 2018: 8546423.

[106]

Wu F, Phone A, Lamy R, et al. Correlation of aqueous, vitreous, and plasma cytokine levels in patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2020; 61(2): 26.

[107]

Doganay S, Evereklioglu C, Er H, et al. Comparison of serum NO, TNF-alpha, IL-1beta, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye (Lond). 2002; 16(2): 163-170.

[108]

Csősz É, Boross P, Csutak A, et al. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteomics. 2012; 75(7): 2196-2204.

[109]

Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. Diabetes Care. 2014; 37(4): 900-905.

[110]

Uemura A, Fruttiger M, D’Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021; 84: 100954.

[111]

Peach CJ, Mignone VW, Arruda MA, et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci. 2018; 19(4): 1264.

[112]

Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature. 2018; 557(7707): 724-728.

[113]

Ogura S, Kurata K, Hattori Y, et al. Sustained inflammation after pericyte depletion induces irreversible blood–retina barrier breakdown. JCI Insight. 2017; 2(3): e90905.

[114]

Wang J, Xu X, Elliott MH, Zhu M, Le YZ. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes. 2010; 59(9): 2297-2305.

[115]

Cardona SM, Mendiola AS, Yang YC, Adkins SL, Torres V, Cardona AE. Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina. ASN Neuro. 2015; 7(5).

[116]

Wang X, Wang G, Wang Y. Intravitreous vascular endothelial growth factor and hypoxia-inducible factor 1a in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2009; 148(6): 883-889.

[117]

Blot G, Karadayi R, Przegralek L, et al. Perilipin 2-positive mononuclear phagocytes accumulate in the diabetic retina and promote PPARγ-dependent vasodegeneration. J Clin Invest. 2023; 133(19): e161348.

[118]

Shen T, Lin R, Hu C, et al. Succinate-induced macrophage polarization and RBP4 secretion promote vascular sprouting in ocular neovascularization. J Neuroinflammation. 2023; 20(1): 308.

[119]

Yamaguchi M, Nakao S, Wada I, et al. Identifying hyperreflective foci in diabetic retinopathy via VEGF-induced local self-renewal of CX3CR1+ vitreous resident macrophages. Diabetes. 2022; 71(12): 2685-2701.

[120]

Vagaja NN, Chinnery HR, Binz N, Kezic JM, Rakoczy EP, McMenamin PG. Changes in murine hyalocytes are valuable early indicators of ocular disease. Invest Ophthalmol Vis Sci. 2012; 53(3): 1445-1451.

[121]

Zhu M, Penfold PL, Madigan MC, Billson FA. Effect of human vitreous and hyalocyte-derived factors on vascular endothelial cell growth. Aust N Z J Ophthalmol. 1997; 25(1): S57-60.

[122]

Mendes-Jorge L, Ramos D, Luppo M, et al. Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood–retinal barrier. Invest Ophthalmol Vis Sci. 2009; 50(12): 5997-6005.

[123]

Mato M, Ookawara S, Sakamoto A, et al. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc Natl Acad Sci U S A. 1996; 93(8): 3269-3274.

[124]

Zhang NT, Nesper PL, Ong JX, Wang JM, Fawzi AA, Lavine JA. Macrophage-like cells are increased in patients with vision-threatening diabetic retinopathy and correlate with macular edema. Diagnostics (Basel). 2022; 12(11): 2793.

[125]

Moutray T, Evans JR, Lois N, Armstrong DJ, Peto T, Azuara-Blanco A. Different lasers and techniques for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2018; 3(3): CD012314.

[126]

Vergmann AS, Nguyen TT, Lee Torp T, et al. Efficacy and side effects of individualized panretinal photocoagulation. Ophthalmol Retina. 2020; 4(6): 642-644.

[127]

Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy. Ann Med. 2022; 54(1): 1089-1111.

[128]

Bressler NM, Beaulieu WT, Glassman AR, et al. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2018; 136(3): 257-269.

[129]

Ehlers JP, Yeh S, Maguire MG, et al. Intravitreal pharmacotherapies for diabetic macular edema: a report by the American Academy of Ophthalmology. Ophthalmology. 2022; 129(1): 88-99.

[130]

Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res. 2023; 18(5): 976-982.

[131]

Cai L, Xia M, Zhang F. Redox regulation of immunometabolism in microglia underpinning diabetic retinopathy. Antioxidants (Basel). 2024; 13(4): 423.

[132]

Yao Y, Li J, Zhou Y, et al. Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol (Lausanne). 2023; 14: 1276225.

[133]

Arroba AI, Valverde ÁM. Modulation of microglia in the retina: new insights into diabetic retinopathy. Acta Diabetol. 2017; 54(6): 527-533.

[134]

Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α–VEGF pathway in oxygen-induced retinopathy mice. J Pineal Res. 2018; 64(4): e12473.

[135]

Wang JH, Lin FL, Chen J, et al. TAK1 blockade as a therapy for retinal neovascularization. Pharmacol Res. 2023; 187: 106617.

[136]

Zhao F, Gao X, Ge X, Cui J, Liu X. Cyanidin-3-o-glucoside (C3G) inhibits vascular leakage regulated by microglial activation in early diabetic retinopathy and neovascularization in advanced diabetic retinopathy. Bioengineered. 2021; 12(2): 9266-9278.

[137]

Yang B, Xu Y, Yu S, Huang Y, Lu L, Liang X. Anti-angiogenic and anti-inflammatory effect of Magnolol in the oxygen-induced retinopathy model. Inflamm Res. 2016; 65(1): 81-93.

[138]

Tang X, Cui K, Lu X, et al. A novel hypoxia-inducible factor 1α inhibitor KC7F2 attenuates oxygen-induced retinal neovascularization. Invest Ophthalmol Vis Sci. 2022; 63(6): 13.

[139]

Zhou Y, Yoshida S, Nakao S, et al. M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2015; 56(8): 4767-4777.

[140]

Sun X, Ma L, Li X, Wang J, Li Y, Huang Z. Ferulic acid alleviates retinal neovascularization by modulating microglia/macrophage polarization through the ROS/NF-κB axis. Front Immunol. 2022; 13: 976729.

[141]

Mei X, Zhou L, Zhang T, Lu B, Sheng Y, Ji L. Corrigendum to “Chlorogenic acid attenuates diabetic retinopathy by reducing VEGF expression and inhibiting VEGF-mediated retinal neoangiogenesis” [Vascul Pharmacol. 101(2018) 29-37]. Vascul Pharmacol. 2020; 130: 106698.

[142]

Yu Z, Zhang T, Gong C, et al. Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α–VEGF/VEGFR2 signaling pathway. Sci Rep. 2016; 6: 34306.

[143]

Connor KM, SanGiovanni JP, Lofqvist C, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007; 13(7): 868-873.

[144]

Wang S, Zhang J, Chen J, et al. ω-3PUFAs inhibit hypoxia-induced retinal neovascularization via regulating microglial pyroptosis through METTL14-mediated m6A modification of IFNB1 mRNA. Appl Biochem Biotechnol. 2024.

[145]

Yang Y, Wen Z, Zhang Y, et al. Berberine alleviates diabetic retinopathy by regulating the Th17/Treg ratio. Immunol Lett. 2024; 267: 106862.

[146]

Zapadka TE, Lindstrom SI, Batoki JC, et al. Aryl hydrocarbon receptor agonist VAF347 impedes retinal pathogenesis in diabetic mice. Int J Mol Sci. 2021; 22(9): 4335.

[147]

Flaxel CJ, Adelman RA, Bailey ST, et al. Age-related macular degeneration preferred practice pattern. Ophthalmology. 2020; 127(1): p1-p65.

[148]

Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014; 2(2): e106-e116.

[149]

Ferris FL 3rd, Wilkinson CP, Bird A, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013; 120(4): 844-851.

[150]

Mogi M, Ikegawa Y, Haga S, Hoshide S, Kario K. Hypertension facilitates age-related diseases. Is hypertension associated with a wide variety of diseases? Hypertens Res. 2024; 47(5): 1246-1259.

[151]

Hogg RE, Woodside JV, McGrath A, et al. Mediterranean diet score and its association with age-related macular degeneration: the European Eye Study. Ophthalmology. 2017; 124(1): 82-89.

[152]

Basyal D, Lee S, Kim HJ. Antioxidants and mechanistic insights for managing dry age-related macular degeneration. Antioxidants (Basel). 2024; 13(5): 568.

[153]

Li C, Zhou L, Sun H, Yang MM. Age-related macular degeneration: a disease of cellular senescence and dysregulated immune homeostasis. Clin Interv Aging. 2024; 19: 939-951.

[154]

Thirunavukarasu AJ, Ross AC, Gilbert RM. Vitamin A, systemic T-cells, and the eye: focus on degenerative retinal disease. Front Nutr. 2022; 9: 914457.

[155]

Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The role of inflammation in age-related macular degeneration. Int J Biol Sci. 2020; 16(15): 2989-3001.

[156]

Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration. Nat Rev Immunol. 2013; 13(6): 438-451.

[157]

Singh A, Subhi Y, Krogh Nielsen M, et al. Systemic frequencies of T helper 1 and T helper 17 cells in patients with age-related macular degeneration: a case–control study. Sci Rep. 2017; 7(1): 605.

[158]

Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015; 74(1): 5-17.

[159]

Falk M, Singh A, Faber C, Nissen M, Hviid T, Sørensen T. Dysregulation of CXCR3 expression on peripheral blood leukocytes in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014; 55: 4050-4056.

[160]

Fletcher EL. Contribution of microglia and monocytes to the development and progression of age related macular degeneration. Ophthalmic Physiol Opt. 2020; 40(2): 128-139.

[161]

Kumaramanickavel G. Age-related macular degeneration: genetics and biology. Asia Pac J Ophthalmol (Phila). 2016; 5(4): 229-235.

[162]

Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res. 2001; 20(6): 705-732.

[163]

Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res. 2001; 73(6): 887-896.

[164]

Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol. 2018; 46(6): 670-686.

[165]

Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. Prog Retin Eye Res. 2013; 33: 10-27.

[166]

Parmeggiani F, Sorrentino FS, Romano MR, et al. Mechanism of inflammation in age-related macular degeneration: an up-to-date on genetic landmarks. Mediators Inflamm. 2013; 2013: 435607.

[167]

Zhang M, Jiang N, Chu Y, et al. Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep. 2020; 10(1): 2464.

[168]

Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res. 2024; 239: 109770.

[169]

Yang Y, Liu F, Tang M, et al. Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep. 2016; 6: 30933.

[170]

Zhou Y, Yoshida S, Kubo Y, et al. Different distributions of M1 and M2 macrophages in a mouse model of laser-induced choroidal neovascularization. Mol Med Rep. 2017; 15(6): 3949-3956.

[171]

Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH. Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol. 2010; 94(7): 918-925.

[172]

Zandi S, Nakao S, Chun KH, et al. ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep. 2015; 10(7): 1173-1186.

[173]

Liew PX, Kubes P. The neutrophil’s role during health and disease. Physiol Rev. 2019; 99(2): 1223-1248.

[174]

Lechner J, Chen M, Hogg RE, et al. Alterations in circulating immune cells in neovascular age-related macular degeneration. Sci Rep. 2015; 5: 16754.

[175]

Ghosh S, Shang P, Yazdankhah M, et al. Activating the AKT2-nuclear factor-κB–lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration. J Pathol. 2017; 241(5): 583-588.

[176]

Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016; 48(2): 134-143.

[177]

Wang Y, Wang VM, Chan CC. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye (Lond). 2011; 25(2): 127-139.

[178]

Heesterbeek TJ, Lechanteur YTE, Lorés-Motta L, et al. Complement activation levels are related to disease stage in AMD. Invest Ophthalmol Vis Sci. 2020; 61(3): 18.

[179]

Reynolds R, Hartnett ME, Atkinson JP, Giclas PC, Rosner B, Seddon JM. Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes. Invest Ophthalmol Vis Sci. 2009; 50(12): 5818-5827.

[180]

Liu B, Wei L, Meyerle C, et al. Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J Transl Med. 2011; 9: 1-12.

[181]

Ricklin D, Lambris JD. Complement-targeted therapeutics. Nat Biotechnol. 2007; 25(11): 1265-1275.

[182]

Jermak CM, Dellacroce JT, Heffez J, Peyman GA. Triamcinolone acetonide in ocular therapeutics. Surv Ophthalmol. 2007; 52(5): 503-522.

[183]

Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A. 1992; 89(21): 9991-9995.

[184]

Wang Y-S, Friedrichs U, Eichler W, Hoffmann S, Wiedemann P. Inhibitory effects of triamcinolone acetonide on bFGF-induced migration and tube formation in choroidal microvascular endothelial cells. Graefe’s Arch Clin Exp Ophthalmol. 2002; 240(1): 42-48.

[185]

Kim SJ, Flach AJ, Jampol LM. Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv Ophthalmol. 2010; 55(2): 108-133.

[186]

Nussenblatt RB, Byrnes G, Sen HN, et al. A randomized pilot study of systemic immunosuppression in the treatment of age-related macular degeneration with choroidal neovascularization. Retina. 2010; 30(10): 1579-1587.

[187]

Sfikakis PP. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr Dir Autoimmun. 2010; 11: 180-210.

[188]

De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016; 388(10047): 906-918.

[189]

Taylor PN, Albrecht D, Scholz A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018; 14(5): 301-316.

[190]

Wiersinga W, Žarković M, Bartalena L, et al. Predictive score for the development or progression of Graves’ orbitopathy in patients with newly diagnosed Graves’ hyperthyroidism. Eur J Endocrinol. 2018; 178(6): 635-643.

[191]

Bartalena L, Baldeschi L, Dickinson A, et al. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008; 158(3): 273-285.

[192]

Hwang CJ, Afifiyan N, Sand D, et al. Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD40: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest Ophthalmol Vis Sci. 2009; 50(5): 2262-2268.

[193]

Cao HJ, Wang H-S, Zhang Y, Lin H-Y, Phipps RP, Smith TJ. Activation of human orbital fibroblasts through CD40 engagement results in a dramatic induction of hyaluronan synthesis and prostaglandin endoperoxide H synthase-2 expression: insights into potential pathogenic mechanisms of thyroid-associated ophthalmopathy. J Biol Chem. 1998; 273(45): 29615-29625.

[194]

Zhao L-Q, Wei R-L, Cheng J-W, Cai J-P, Li Y. The expression of intercellular adhesion molecule-1 induced by CD40-CD40L ligand signaling in orbital fibroblasts in patients with Graves’ ophthalmopathy. Invest Ophthalmol Vis Sci. 2010; 51(9): 4652-4660.

[195]

Lehmann GM, Feldon SE, Smith TJ, Phipps RP. Immune mechanisms in thyroid eye disease. Thyroid. 2008; 18(9): 959-965.

[196]

Fang S, Huang Y, Wang S, et al. IL-17A exacerbates fibrosis by promoting the proinflammatory and profibrotic function of orbital fibroblasts in TAO. J Clin Endocrinol Metab. 2016; 101(8): 2955-2965.

[197]

Fang S, Huang Y, Zhong S, et al. IL-17A promotes RANTES expression, but not IL-16, in orbital fibroblasts via CD40-CD40L combination in thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2016; 57(14): 6123-6133.

[198]

Han R, Smith TJ. T helper type 1 and type 2 cytokines exert divergent influence on the induction of prostaglandin E2 and hyaluronan synthesis by interleukin-1beta in orbital fibroblasts: implications for the pathogenesis of thyroid-associated ophthalmopathy. Endocrinology. 2006; 147(1): 13-19.

[199]

Fang S, Lu Y, Huang Y, Zhou H, Fan X. Mechanisms that underly T cell immunity in Graves’ orbitopathy. Front Endocrinol (Lausanne). 2021; 12: 648732.

[200]

Fang S, Huang Y, Zhong S, et al. Regulation of orbital fibrosis and adipogenesis by pathogenic Th17 cells in Graves orbitopathy. J Clin Endocrinol Metab. 2017; 102(11): 4273-4283.

[201]

Fang S, Huang Y, Liu X, et al. Interaction between CCR6+ Th17 cells and CD34+ fibrocytes promotes inflammation: implications in Graves’ orbitopathy in Chinese population. Invest Ophthalmol Vis Sci. 2018; 59(6): 2604-2614.

[202]

Fang S, Zhang S, Huang Y, et al. Evidence for associations between Th1/Th17 “hybrid” phenotype and altered lipometabolism in very severe Graves orbitopathy. J Clin Endocrinol Metab. 2020; 105(6): dgaa124.

[203]

Kim SE, Yoon JS, Kim KH, Lee SY. Increased serum interleukin-17 in Graves’ ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 2012; 250(10): 1521-1526.

[204]

Dik WA, Virakul S, van Steensel L. Current perspectives on the role of orbital fibroblasts in the pathogenesis of Graves’ ophthalmopathy. Exp Eye Res. 2016; 142: 83-91.

[205]

Kotwal A, Stan M. Thyrotropin receptor antibodies—an overview. Ophthalmic Plast Reconstr Surg. 2018; 34(4S suppl 1): S20-S27.

[206]

Diana T, Ponto KA, Kahaly GJ. Thyrotropin receptor antibodies and Graves’ orbitopathy. J Endocrinol Invest. 2021; 44(4): 703-712.

[207]

Mizutori Y, Saitoh O, Eguchi K, Nagayama Y. Lack of effect of methimazole on dendritic cell (DC) function and DC-induced Graves’ hyperthyroidism in mice. Autoimmunity. 2007; 40(5): 397-402.

[208]

Armengol M-P, Cardoso-Schmidt CB, Fernández M, Ferrer X, Pujol-Borrell R, Juan M. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol. 2003; 170(12): 6320-6328.

[209]

Neag EJ, Smith TJ. 2021 update on thyroid-associated ophthalmopathy. J Endocrinol Invest. 2022; 45(2): 235-259.

[210]

Zhang L, Ji QH, Ruge F, et al. Reversal of pathological features of Graves’ orbitopathy by activation of Forkhead transcription factors, FOXOs. J Clin Endocrinol Metab. 2016; 101(1): 114-122.

[211]

Krieger CC, Neumann S, Place RF, Marcus-Samuels B, Gershengorn MC. Bidirectional TSH and IGF-1 receptor cross talk mediates stimulation of hyaluronan secretion by Graves’ disease immunoglobins. J Clin Endocrinol Metab. 2015; 100(3): 1071-1077.

[212]

Längericht J, Krämer I, Kahaly GJ. Glucocorticoids in Graves’ orbitopathy: mechanisms of action and clinical application. Ther Adv Endocrinol Metab. 2020; 11: 2042018820958335.

[213]

Zang S, Ponto KA, Kahaly GJ. Clinical review: intravenous glucocorticoids for Graves’ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab. 2011; 96(2): 320-332.

[214]

Kahaly GJ, Rösler HP, Pitz S, Hommel G. Low-versus high-dose radiotherapy for Graves’ ophthalmopathy: a randomized, single blind trial. J Clin Endocrinol Metab. 2000; 85(1): 102-108.

[215]

Bartalena L, Baldeschi L, Boboridis K, et al. The 2016 European Thyroid Association/European Group on Graves’ orbitopathy guidelines for the management of graves’ orbitopathy. Eur Thyroid J. 2016; 5(1): 9-26.

[216]

Paridaens D, van den Bosch WA, van der Loos TL, Krenning EP, van Hagen PM. The effect of etanercept on Graves’ ophthalmopathy: a pilot study. Eye (Lond). 2005; 19(12): 1286-1289.

[217]

Wang Y, Zhou H, Fan X. The effect of orbital radiation therapy on thyroid-associated orbitopathy complicated with dysthyroid optic neuropathy. Front Med. 2017; 11(3): 359-364.

[218]

Pérez-Moreiras JV, Alvarez-López A, Gómez EC. Treatment of active corticosteroid-resistant graves’ orbitopathy. Ophthalmic Plast Reconstr Surg. 2014; 30(2): 162-167.

[219]

Bartalena L. Diagnosis and management of Graves’ disease: a global overview. Nat Rev Endocrinol. 2013; 9(12): 724-734.

[220]

Turcu AF, Kumar S, Neumann S, et al. A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin Endocrinol Metab. 2013; 98(5): 2153-2159.

[221]

Chen H, Mester T, Raychaudhuri N, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014; 99(9): E1635-E1640.

[222]

Campi I, Tosi D, Rossi S, et al. B cell activating factor (BAFF) and BAFF receptor expression in autoimmune and nonautoimmune thyroid diseases. Thyroid. 2015; 25(9): 1043-1049.

[223]

Ayabe R, Rootman DB, Hwang CJ, Ben-Artzi A, Goldberg R. Adalimumab as steroid-sparing treatment of inflammatory-stage thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2014; 30(5): 415-419.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/