Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review

Rajan Thapa , Anjana Thapa Magar , Jesus Shrestha , Nisha Panth , Sobia Idrees , Tayyaba Sadaf , Saroj Bashyal , Bassma H. Elwakil , Vrashabh V. Sugandhi , Satish Rojekar , Ram Nikhate , Gaurav Gupta , Sachin Kumar Singh , Kamal Dua , Philip MHansbro , Keshav Raj Paudel

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70018

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70018 DOI: 10.1002/mco2.70018
REVIEW

Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review

Author information +
History +
PDF

Abstract

Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut–lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.

Keywords

dysbiosis / gut microbiome / lung cancer / lung microbiome / probiotics

Cite this article

Download citation ▾
Rajan Thapa, Anjana Thapa Magar, Jesus Shrestha, Nisha Panth, Sobia Idrees, Tayyaba Sadaf, Saroj Bashyal, Bassma H. Elwakil, Vrashabh V. Sugandhi, Satish Rojekar, Ram Nikhate, Gaurav Gupta, Sachin Kumar Singh, Kamal Dua, Philip MHansbro, Keshav Raj Paudel. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm, 2024, 5(12): e70018 DOI:10.1002/mco2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Organization WH. Global cancer burden growing, amidst mounting need for services. World Health Organization. Accessed February 1, 2024 https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing–amidst-mounting-need-for-services

[2]

Malyla V, Paudel KR, Shukla SD, et al. Recent advances in experimental animal models of lung cancer. Future Med Chem. 2020; 12(7): 567-570.

[3]

Bhatt S, Eri RE, Goh B-H, Paudel KR, TdJA Pinto, Dua K. Immunotherapy Against Lung Cancer Emerging Opportunities and Challenges. Springer; 2024.

[4]

Paudel KR, Panth N, Pangeni R, et al. Targeting Lung Cancer using Advanced Drug Delivery Systems. Elsevier; 2020: 493-516.

[5]

Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021; 9: 20503121211034366.

[6]

Seegobin K, Majeed U, Wiest N, Manochakian R, Lou YY, Zhao YJ. Immunotherapy in non-small cell lung cancer with actionable mutations other than EGFR. Front Oncol. 2021; 11: 750657.

[7]

Lahiri A, Maji A, Potdar PD, et al. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. 2023; 22(1): 40.

[8]

Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021; 27(8): 1345-1356.

[9]

Paudel KR, Jha SK, Allam VSRR, et al. Recent advances in chronotherapy targeting respiratory diseases. Pharmaceutics. 2021; 13(12): 2008.

[10]

Chavda VP, Sugandhi VV, Pardeshi CV, et al. Engineered exosomes for cancer theranostics: next-generation tumor targeting. J Drug Deliv Sci Technol. 2023:104579.

[11]

Girase ML, Sugandhi VV, Ige PP, Jain PD, Nangare SN. Design of surface tailored carboxymethyl dextran-protein based nanoconjugates for paclitaxel: spectroscopical characterizations and cytotoxicity assay. Int J Biol Macromol. 2022; 222(Pt B): 1818-1829.

[12]

Wadhwa R, Paudel KR, Chin LH, et al. Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. J Food Biochem. 2021; 45(1): e13572.

[13]

Khursheed R, Dua K, Vishwas S, et al. Biomedical applications of metallic nanoparticles in cancer: current status and future perspectives. Biomed Pharmacother. 2022; 150: 112951.

[14]

Paudel KR, Wadhwa R, Tew XN, et al. Rutin loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. Life Sci. 2021; 276: 119436.

[15]

Paudel KR, Mehta M, Yin GHS, et al. Berberine-loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. Environ Sci Pollut Res. 2022; 29(31): 46830-46847.

[16]

Imran M, Jha LA, Hasan N, et al. “Nanodecoys”—Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm. 2022; 621: 121790.

[17]

Kannaujiya VK, De Rubis G, Paudel KR, et al. Anticancer activity of NFκB decoy oligonucleotide-loaded nanoparticles against human lung cancer. J Drug Deliv Sci Technol. 2023; 82: 104328.

[18]

Mehta M, Paudel KR, Shukla SD, et al. Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. J Control Release. 2021; 337: 629-644.

[19]

Datsyuk JK, Paudel KR, Rajput R, et al. Emerging applications and prospects of NFκB decoy oligodeoxynucleotides in managing respiratory diseases. Chem Biol Interact. 2023:110737.

[20]

Mehta M, Satija S, Paudel KR, et al. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: current status and future perspectives. Nanomed Nanotechnol Biol Med. 2021; 31: 102303.

[21]

Imran M, Insaf A, Hasan N, et al. Exploring the remarkable chemotherapeutic potential of polyphenolic antioxidants in battling various forms of cancer. Molecules. 2023; 28(8): 3475.

[22]

Mayekar MK, Bivona TG. Current landscape of targeted therapy in lung cancer. Clin Pharmacol Ther. 2017; 102(5): 757-764.

[23]

Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016; 16(5): 275-287.

[24]

Pardoll D. Does the immune system see tumors as foreign or self?. Annu Rev Immunol. 2003; 21(1): 807-839.

[25]

Lategahn J, Keul M, Rauh D. Lessons to be learned: the molecular basis of kinase-targeted therapies and drug resistance in non-small cell lung cancer. Angew Chem Int Ed Engl. 2018; 57(9): 2307-2313.

[26]

Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020; 383(7): 640-649.

[27]

Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500(7463): 415-421.

[28]

Araghi M, Mannani R, Heidarnejad Maleki A, et al. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int. 2023; 23(1): 162.

[29]

Wu J, Feng J, Zhang Q, et al. Epigenetic regulation of stem cells in lung cancer oncogenesis and therapy resistance. Front Genet. 2023; 14: 1120815.

[30]

Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023; 20(9): 624-639.

[31]

Organization WH. Lung Cancer. World Health Organization. Accessed June 26, 2023. https://www.who.int/news-room/fact-sheets/detail/lung-cancer

[32]

Capurso G, Lahner E. The interaction between smoking, alcohol and the gut microbiome. Best Pract Res Clin Gastroenterol. 2017; 31(5): 579-588.

[33]

Ogino S, Nowak JA, Hamada T, et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut. 2018; 67(6): 1168-1180.

[34]

Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019; 12(4): 843-850.

[35]

Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med. 2019; 7(10): 907-920.

[36]

Healey GR, Murphy R, Brough L, Butts CA, Coad J. Interindividual variability in gut microbiota and host response to dietary interventions. Nutr Rev. 2017; 75(12): 1059-1080.

[37]

Thomas S, Izard J, Walsh E, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 2017; 77(8): 1783-1812.

[38]

Lagier JC, Armougom F, Million M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012; 18(12): 1185-1193.

[39]

Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012; 149(7): 1578-1593.

[40]

Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome—an integral part of the tumor microenvironment. Front Oncol. 2022; 12: 1063100.

[41]

Wei MY, Shi S, Liang C, et al. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol Cancer. 2019; 18: 97.

[42]

Wang G, He X, Wang Q. Intratumoral bacteria are an important “accomplice” in tumor development and metastasis. Biochim Biophys Acta Rev Cancer. 2023; 1878(1): 188846.

[43]

de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020; 8(2): e180-e190.

[44]

Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020; 368(6494): 973-980.

[45]

Nougayrede JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006; 313(5788): 848-851.

[46]

Putze J, Hennequin C, Nougayrede JP, et al. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun. 2009; 77(11): 4696-4703.

[47]

zur Hausen H. The search for infectious causes of human cancers: where and why (Nobel lecture). Angew Chem Int Ed Engl. 2009; 48(32): 5798-5808.

[48]

Zeng XT, Xia LY, Zhang YG, Li S, Leng WD, Kwong JS. Periodontal disease and incident lung cancer risk: a meta-analysis of cohort studies. J Periodontol. 2016; 87(10): 1158-1164.

[49]

Yang J, Mu X, Wang Y, et al. Dysbiosis of the salivary microbiome is associated with non-smoking female lung cancer and correlated with immunocytochemistry markers. Front Oncol. 2018; 8: 520.

[50]

Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer. 2016; 102: 89-95.

[51]

Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell. 2021; 12(5): 426-435.

[52]

Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. 2021; 371(6536): eabc4552.

[53]

Dzutsev A, Badger JH, Perez-Chanona E, et al. Microbes and cancer. Annu Rev Immunol. 2017; 35: 199-228.

[54]

Friedlaender A, Drilon A, Weiss GJ, Banna GL, Addeo A. KRAS as a druggable target in NSCLC: rising like a phoenix after decades of development failures. Cancer Treat Rev. 2020; 85: 101978.

[55]

Laimer K, Spizzo G, Gastl G, et al. High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncol. 2007; 43(2): 193-198.

[56]

Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L, Schmid-Bindert G. KRAS-Mutant non-small cell lung cancer: from biology to therapy. Lung Cancer. 2018; 124: 53-64.

[57]

Wahane SD, Hellbach N, Prentzell MT, et al. PI3K-p110-alpha-subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of mTORC2. J Neurochem. 2014; 130(2): 255-267.

[58]

Makohon-Moore A, Iacobuzio-Donahue CA. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer. 2016; 16(9): 553-565.

[59]

Ilango S, Paital B, Jayachandran P, Padma PR, Nirmaladevi R. Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 2020; 25(6): 1058-1109.

[60]

Jia M, Yu S, Cao L, Sun PL, Gao H. Clinicopathologic features and genetic alterations in adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung: long-term follow-up study of 121 Asian patients. Ann Surg Oncol. 2020; 27(8): 3052-3063.

[61]

Barta JA, McMahon SB. Lung-enriched mutations in the p53 tumor suppressor: a paradigm for tissue-specific gain of oncogenic function. Mol Cancer Res. 2019; 17(1): 3-9.

[62]

Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol. 2004; 66: 625-645.

[63]

Li C, Zhang Y, Lu Y, et al. Evidence of the cross talk between Wnt and Notch signaling pathways in non-small-cell lung cancer (NSCLC): notch3-siRNA weakens the effect of LiCl on the cell cycle of NSCLC cell lines. J Cancer Res Clin Oncol. 2011; 137(5): 771-778.

[64]

Pacheco-Pinedo EC, Durham AC, Stewart KM, et al. Wnt/beta-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Invest. 2011; 121(5): 1935-1945.

[65]

Zhang Z, Stiegler AL, Boggon TJ, Kobayashi S, Halmos B. EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget. 2010; 1(7): 497-514.

[66]

Mitsudomi T. Molecular epidemiology of lung cancer and geographic variations with special reference to EGFR mutations. Transl Lung Cancer Res. 2014; 3(4): 205-211.

[67]

Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350(21): 2129-2139.

[68]

Tang X, Liu D, Shishodia S, et al. Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006; 107(11): 2637-2646.

[69]

Mishra A, Bharti AC, Varghese P, Saluja D, Das BC. Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: role of high risk human papillomavirus infection. Int J Cancer. 2006; 119(12): 2840-2850.

[70]

Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005; 4(12): 988-1004.

[71]

Jin J, Jin L, Lim SW, Yang CW. Klotho deficiency aggravates tacrolimus-induced renal injury via the phosphatidylinositol 3-kinase-Akt-forkhead box protein O pathway. Am J Nephrol. 2016; 43(5): 357-365.

[72]

Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004; 23(16): 2934-2949.

[73]

Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem. 2016; 109: 314-341.

[74]

Ali S, Alam M, Hassan MI. Kinase inhibitors: an overview. Protein Kinase Inhibitors. 2022: 1-22.

[75]

Yousuf M, Alam M, Shamsi A, et al. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: a review on therapeutic implications. Int J Biol Macromol. 2022; 218: 394-408.

[76]

Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015; 21(6): 560-562.

[77]

To C, Beyett TS, Jang J, et al. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat Cancer. 2022; 3(4): 402-417.

[78]

Wan T, Ping Y. Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv Drug Deliv Rev. 2021; 168: 196-216.

[79]

Park S-Y, Hwang B-O, Lim M, et al. Oral–gut microbiome axis in gastrointestinal disease and cancer. Cancers. 2021; 13(9): 2124.

[80]

Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 2015; 11(7): e1004923.

[81]

Cresci GA, Bawden E. Gut microbiome: what we do and don’t know. Nutr Clin Pract. 2015; 30(6): 734-746.

[82]

Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022; 7(1): 135.

[83]

Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999; 28(1): 19-25.

[84]

Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell. 2014; 159(4): 789-799.

[85]

Bibbo S, Ianiro G, Giorgio V, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016; 20(22): 4742-4749.

[86]

Bibbo S, Lopetuso LR, Ianiro G, Di Rienzo T, Gasbarrini A, Cammarota G. Role of microbiota and innate immunity in recurrent Clostridium difficile infection. J Immunol Res. 2014; 2014: 462740.

[87]

Kang DW, Adams JB, Gregory AC, et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017; 5(1): 10.

[88]

Reyes A, Haynes M, Hanson N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010; 466(7304): 334-U81.

[89]

Minot S, Sinha R, Chen J, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011; 21(10): 1616-1625.

[90]

Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013; 8(6): e66019.

[91]

Rajoka MSR, Shi JL, Mehwish HM, et al. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci Hum Wellness. 2017; 6(3): 121-130.

[92]

Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019; 76(3): 473-493.

[93]

Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57(1): 1-24.

[94]

Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021; 6(1): 291.

[95]

Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol. 2007; 102(5): 1197-1208.

[96]

Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Nat Acad Sci USA. 2011; 108: 4659-4665.

[97]

Tan J, McKenzie C, Vuillermin PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016; 15(12): 2809-2824.

[98]

Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015; 6: 6734.

[99]

Yao J, Chen Y, Xu M. The critical role of short-chain fatty acids in health and disease: a subtle focus on cardiovascular disease-NLRP3 inflammasome-angiogenesis axis. Clin Immunol. 2022; 238: 109013.

[100]

Budden KF, Shukla SD, Bowerman KL, et al. Faecal microbial transfer and complex carbohydrates mediate protection against COPD. Gut. 2024; 73(5): 751-769.

[101]

Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013; 11(4): 227-238.

[102]

Aleti G, Troyer EA, Hong S. G protein-coupled receptors: a target for microbial metabolites and a mechanistic link to microbiome-immune-brain interactions. Brain Behav Immun Health. 2023; 32: 100671.

[103]

De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014; 156(1-2): 84-96.

[104]

Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003; 361(9356): 512-519.

[105]

Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017; 18(1): 2.

[106]

Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013; 145(2): 396-406 .

[107]

Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008; 8(6): 411-420.

[108]

Arvans DL, Vavricka SR, Ren H, et al. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol Gastrointest Liver Physiol. 2005; 288(4): G696-G704.

[109]

Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe. 2022; 3(12): E969-E983.

[110]

Valitutti F, Cucchiara S, Fasano A. Celiac disease and the microbiome. Nutrients. 2019; 11(10).

[111]

Thornton CS, Mellett M, Jarand J, Barss L, Field SK, Fisher DA. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev. 2021; 30(160): 200299.

[112]

Perrone F, Belluomini L, Mazzotta M, et al. Exploring the role of respiratory microbiome in lung cancer: a systematic review. Crit Rev Oncol Hematol. 2021; 164: 103404.

[113]

Stokholm J, Blaser MJ, Thorsen J, et al. Publisher Correction: maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018; 9(1): 704.

[114]

Chua HH, Chou HC, Tung YL, et al. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology. 2018; 154(1): 154-167.

[115]

Levan SR, Stamnes KA, Lin DL, et al. Elevated faecal 12, 13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance (vol 4, pg 1851, 2019). Nat Microbiol. 2019; 4(11): 2020-2020.

[116]

Hu Y, Feng Y, Wu J, et al. The gut microbiome signatures discriminate healthy from pulmonary tuberculosis patients. Front Cell Infect Microbiol. 2019; 9: 90.

[117]

Li W, Zhu Y, Liao Q, Wang Z, Wan C. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr. 2019; 19(1): 445.

[118]

Trompette A, Gollwitzer ES, Pattaroni C, et al. Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism. Immunity. 2018; 48(5): 992-1005.

[119]

Landsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol. 2007; 178(4): 2000-2007.

[120]

Khan FH, Bhat BA, Sheikh BA, et al. Microbiome dysbiosis and epigenetic modulations in lung cancer: from pathogenesis to therapy. Semin Cancer Biol. 2022; 86(Pt 3): 732-742.

[121]

Enaud R, Prevel R, Ciarlo E, et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020; 10: 9.

[122]

Bingula R, Filaire M, Radosevic-Robin N, et al. Desired turbulence? gut-lung axis, immunity, and lung cancer. J Oncol. 2017; 2017: 5035371.

[123]

Ramirez-Labrada AG, Isla D, Artal A, et al. The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends Cancer. 2020; 6(2): 86-97.

[124]

Gaudino SJ, Kumar P. Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Front Immunol. 2019; 10: 360.

[125]

Sadowitz B, Roy S, Gatto LA, Habashi N, Nieman G. Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment. Expert Rev Anti Infect Ther. 2011; 9(12): 1169-1178.

[126]

Li X, Jamal M, Guo P, et al. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed Pharmacother. 2019; 118: 109363.

[127]

Yoseph BP, Klingensmith NJ, Liang Z, et al. Mechanisms of intestinal barrier dysfunction in sepsis. Shock. 2016; 46(1): 52-59.

[128]

Zhou X, Liao Y. Gut-lung crosstalk in sepsis-induced acute lung injury. Front Microbiol. 2021; 12: 779620.

[129]

Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Micro. 2021; 19(2): 77-94.

[130]

Tang Q, Liu R, Chu G, et al. A comprehensive analysis of microflora and metabolites in the development of ulcerative colitis into colorectal cancer based on the lung-gut correlation theory. Molecules. 2022; 27(18): 5838.

[131]

Hakozaki T, Nolin-Lapalme A, Kogawa M, et al. Cancer cachexia among patients with advanced non-small-cell lung cancer on immunotherapy: an observational study with exploratory gut microbiota analysis. Cancers. 2022; 14(21): 5405.

[132]

Park EM, Chelvanambi M, Bhutiani N, Kroemer G, Zitvogel L, Wargo JA. Targeting the gut and tumor microbiota in cancer. Nat Med. 2022; 28(4): 690-703.

[133]

de Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012; 13(6): 607-615.

[134]

Hsiao Y-C, Liu C-W, Yang Y, Feng J, Zhao H, Lu K. DNA damage and the gut microbiome: from mechanisms to disease outcomes. DNA. 2023; 3(1): 13-32.

[135]

Ramesh V, Gollavilli PN, Pinna L, et al. Propionate reinforces epithelial identity and reduces aggressiveness of non-small cell lung carcinoma via chromatin remodelling. Biorxiv. 2023. 2023.01. 19.524677.

[136]

Karim MR, Iqbal S, Mohammad S, et al. Butyrate’s (a short-chain fatty acid) microbial synthesis, absorption, and preventive roles against colorectal and lung cancer. Arch Microbiol. 2024; 206(4): 137.

[137]

Levan SR, Stamnes KA, Lin DL, et al. Elevated faecal 12, 13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat Microbiol. 2019; 4(11): 1851-1861.

[138]

Conway EM, Pikor LA, Kung SH, et al. Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med. 2016; 193(2): 116-130.

[139]

Shiels MS, Katki HA, Hildesheim A, et al. Circulating inflammation markers, risk of lung cancer, and utility for risk stratification. J Natl Cancer Inst. 2015; 107(10): djv199.

[140]

Zhang WQ, Zhao SK, Luo JW, et al. Alterations of fecal bacterial communities in patients with lung cancer. Am J Transl Res. 2018; 10(10): 3171-3185.

[141]

Wedgwood S, Gerard K, Halloran K, et al. Intestinal dysbiosis and the developing lung: the role of toll-like receptor 4 in the gut-lung axis. Front Immunol. 2020; 11: 357.

[142]

Tang J, Xu L, Zeng Y, Gong F. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol. 2021; 91: 107272.

[143]

Ashley SL, Sjoding MW, Popova AP, et al. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med. 2020; 12(556): eaau9959.

[144]

Flynn S, Reen FJ, Caparros-Martin JA, et al. Bile acid signal molecules associate temporally with respiratory inflammation and microbiome signatures in clinically stable cystic fibrosis patients. Microorganisms. 2020; 8(11): 1741.

[145]

Jenkins SV, Robeson MS 2nd, Griffin RJ, et al. Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res. 2019; 79(23): 5999-6009.

[146]

Dessein R, Bauduin M, Grandjean T, et al. Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice. Crit Care. 2020; 24(1): 611.

[147]

Clay SL, Fonseca-Pereira D, Garrett WS. Colorectal cancer: the facts in the case of the microbiota. J Clin Invest. 2022; 132(4): e155101.

[148]

Ternes D, Tsenkova M, Pozdeev VI, et al. Author Correction: the gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab. 2023; 5(9): 1638.

[149]

Beck JM, Young VB, Huffnagle GB. The microbiome of the lung. Transl Res. 2012; 160(4): 258-266.

[150]

Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011; 184(8): 957-963.

[151]

Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015; 6(2): e00037.

[152]

Morris A, Beck JM, Schloss PD, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013; 187(10): 1067-1075.

[153]

Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One. 2011; 6(2): e16384.

[154]

Mathieu E, Escribano-Vazquez U, Descamps D, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol. 2018; 9: 1168.

[155]

Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol. 2019; 20(10): 1279-1290.

[156]

Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017; 10(2): 299-306.

[157]

Ingenito EP, Solway J. Indirect assessment of mucosal surface temperatures in the airways: theory and tests. J Appl Physiol (1985). 1987; 63(5): 2075-2083.

[158]

Wu H, Kuzmenko A, Wan S, et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J Clin Invest. 2003; 111(10): 1589-1602.

[159]

Pilette C, Ouadrhiri Y, Godding V, Vaerman JP, Sibille Y. Lung mucosal immunity: immunoglobulin-A revisited. Eur Respir J. 2001; 18(3): 571-588.

[160]

Budden KF, Gellatly SL, Wood DLA, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017; 15(1): 55-63.

[161]

Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014; 384(9944): 691-702.

[162]

Muhlebach MS, Zorn BT, Esther CR, et al. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathog. 2018; 14(1): e1006798.

[163]

Tunney MM, Einarsson GG, Wei L, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med. 2013; 187(10): 1118-1126.

[164]

Picardo SL, Coburn B, Hansen AR. The microbiome and cancer for clinicians. Crit Rev Oncol Hematol. 2019; 141: 1-12.

[165]

Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther. 2024; 9(1): 19.

[166]

Jin J, Gan Y, Liu H, et al. Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: a multiple comparative study design with independent validation. Lung Cancer. 2019; 136: 129-135.

[167]

Paudel KR, Dharwal V, Patel VK, et al. Role of lung microbiome in innate immune response associated with chronic lung diseases. Front Med (Lausanne). 2020; 7: 554.

[168]

Yu G, Gail MH, Consonni D, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016; 17(1): 163.

[169]

Morgan XC, Huttenhower C. Chapter 12: human microbiome analysis. PLoS Comput Biol. 2012; 8(12): e1002808.

[170]

Shiels MS, Albanes D, Virtamo J, Engels EA. Increased risk of lung cancer in men with tuberculosis in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev. 2011; 20(4): 672-678.

[171]

Kratzer TB, Bandi P, Freedman ND, et al. Lung cancer statistics, 2023. Cancer. 2024; 130(8): 1330-1348.

[172]

Huang CR, Shi GC. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med. 2019; 17: 225.

[173]

Zhang R, Chen L, Cao L, et al. Effects of smoking on the lower respiratory tract microbiome in mice. Respir Res. 2018; 19: 253.

[174]

Hosgood HD 3rd, Sapkota AR, Rothman N, et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen. 2014; 55(8): 643-651.

[175]

Huang D, Su X, Yuan M, et al. The characterization of lung microbiome in lung cancer patients with different clinicopathology. Am J Cancer Res. 2019; 9(9): 2047-2063.

[176]

Gomes S, Cavadas B, Ferreira JC, et al. Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma. Sci Rep. 2019; 9(1): 12838.

[177]

Laroumagne S, Lepage B, Hermant C, et al. Bronchial colonisation in patients with lung cancer: a prospective study. Eur Respir J. 2013; 42(1): 220-229.

[178]

Yan X, Yang M, Liu J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015; 5(10): 3111-3122.

[179]

Pilaniya V, Gera K, Kunal S, Shah A. Pulmonary tuberculosis masquerading as metastatic lung disease. Eur Respir Rev. 2016; 25(139): 97-98.

[180]

Liang HY, Li XL, Yu XS, et al. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer. 2009; 125(12): 2936-2944.

[181]

Christopoulos A, Saif MW, Sarris EG, Syrigos KN. Epidemiology of active tuberculosis in lung cancer patients: a systematic review. Clin Respir J. 2014; 8(4): 375-381.

[182]

Pallis AG, Syrigos KN. Lung cancer in never smokers: disease characteristics and risk factors. Crit Rev Oncol Hematol. 2013; 88(3): 494-503.

[183]

Brenner DR, McLaughlin JR, Hung RJ. Previous lung diseases and lung cancer risk: a systematic review and meta-analysis. PLoS One. 2011; 6(3): e17479.

[184]

Kocazeybek B. Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: a case-control study. J Med Microbiol. 2003; 52(Pt 8): 721-726.

[185]

Apostolou P, Tsantsaridou A, Papasotiriou I, Toloudi M, Chatziioannou M, Giamouzis G. Bacterial and fungal microflora in surgically removed lung cancer samples. J Cardiothorac Surg. 2011; 6: 137.

[186]

Liu HX, Tao LL, Zhang J, et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer. 2018; 142(4): 769-778.

[187]

Cameron SJS, Lewis KE, Huws SA, et al. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One. 2017; 12(5): e0177062.

[188]

Belizário JE, Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol. 2015; 6: 1050.

[189]

Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014; 16(7): 1024-1033.

[190]

Eaton K, Yang W. Reproducibility Project: cancer B. Registered report: intestinal inflammation targets cancer-inducing activity of the microbiota. eLife. 2015; 4: e04186.

[191]

Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012; 16(5): 559-564.

[192]

Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol. 2020; 16(12): 731-739.

[193]

Eaton K, Yang W, Biology RPC. Registered report: intestinal inflammation targets cancer-inducing activity of the microbiota. eLife. 2015; 4: 120-123.

[194]

Guo MZ, Balaji A, Murray JC, et al. Infectious complications in patients with non-small cell lung cancer treated with immune checkpoint inhibitors. Clin Lung Cancer. 2023; 24(7): 613-620.

[195]

Qiao D, Wang Z, Lu Y, Wen X, Li H, Zhao H. A retrospective study of risk and prognostic factors in relation to lower respiratory tract infection in elderly lung cancer patients. Am J Cancer Res. 2015; 5(1): 423-432.

[196]

Patnaik SK, Cortes EG, Kannisto ED, et al. Lower airway bacterial microbiome may influence recurrence after resection of early-stage non-small cell lung cancer. J Thorac Cardiovasc Surg. 2021; 161(2): 419-429.

[197]

Zhang H, Garcia Rodriguez LA, Hernandez-Diaz S. Antibiotic use and the risk of lung cancer. Cancer Epidemiol Biomarkers Prev. 2008; 17(6): 1308-1315.

[198]

Xu N, Wang L, Li C, et al. Microbiota dysbiosis in lung cancer: evidence of association and potential mechanisms. Transl Lung Cancer Res. 2020; 9(4): 1554-1568.

[199]

Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012; 336(6086): 1262-1267.

[200]

Liu F, Li JJ, Guan YB, et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int J Biol Sci. 2019; 15(11): 2381-2392.

[201]

Tsay JCJ, Wu BG, Badri MH, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med. 2018; 198(9): 1188-1198.

[202]

Gustafson AM, Soldi R, Anderlind C, et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med. 2010; 2(26): 26ra25.

[203]

Segal LN, Clemente JC, Tsay JCJ, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016; 1(5): 16031.

[204]

Scales BS, Dickson RP, Huffnagle GB. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukocyte Biol. 2016; 100(5): 943-950.

[205]

Lloyd CM, Marsland BJ. Lung homeostasis: influence of age, microbes, and the immune system. Immunity. 2017; 46(4): 549-561.

[206]

Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016; 164(6): 1233-1247.

[207]

Le Noci V, Guglielmetti S, Arioli S, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 2018; 24(13): 3528-3538.

[208]

Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep. 2014; 6: 97.

[209]

Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014; 20(6): 642-647.

[210]

GonzAlez I, Araya P, Rojas A. Helicobacter pylori infection and lung cancer: New insights and future challenges. Zhongguo Fei Ai Za Zhi. 2018; 21(9): 658-662.

[211]

Apopa PL, Alley L, Penney RB, et al. PARP1 is up-regulated in non-small cell lung cancer tissues in the presence of the cyanobacterial toxin microcystin. Front Microbiol. 2018; 9: 1757.

[212]

Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer (vol 19, 123, 2018). Genome Biol. 2020; 21(1): 41.

[213]

Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016; 47(4): 1082-1092.

[214]

Zhang M, Sun Y, Zhang Y, et al. Lipopolysaccharide and lipoteichoic acid regulate the PI3K/AKT pathway through osteopontin/integrin β3 to promote malignant progression of non-small cell lung cancer. J Thorac Dis. 2023; 15(1): 168.

[215]

Li N, Zhou H, Holden VK, et al. Streptococcus pneumoniae promotes lung cancer development and progression. iScience. 2023; 26(2): 105923.

[216]

Zeng W, Wang Y, Wang Z, et al. Veillonella parvula promotes the proliferation of lung adenocarcinoma through the nucleotide oligomerization domain 2/cellular communication network factor 4/nuclear factor kappa B pathway. Discov Oncol. 2023; 14(1): 129.

[217]

Ran Z, Liu J, Wang F, Xin C, Xiong B, Song Z. Pulmonary micro-ecological changes and potential microbial markers in lung cancer patients. Front Oncol. 2020; 10: 576855.

[218]

Li KJ, Chen ZL, Huang Y, et al. Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respir Res. 2019; 20(1): 272.

[219]

Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 2018; 19(1): 123.

[220]

Jungnickel C, Schnabel PA, Bohle R, et al. Nontypeable haemophilus influenzae-promoted proliferation of kras-induced early adenomatous lesions is completely dependent on toll-like receptor signaling. Am J Pathol. 2017; 187(5): 973-979.

[221]

Ju Z, Pan H, Qu C, et al. Lactobacillus rhamnosus GG ameliorates radiation-induced lung fibrosis via lncRNASNHG17/PTBP1/NICD axis modulation. Biol Direct. 2023; 18(1): 2.

[222]

Li S, Shen L, Huang L, et al. PTBP1 enhances exon11a skipping in Mena pre-mRNA to promote migration and invasion in lung carcinoma cells. Biochim Biophys Acta Gene Regul Mech. 2019; 1862(8): 858-869.

[223]

Cao S, Li J, Lu J, Zhong R, Zhong H. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death Dis. 2019; 10(2): 44.

[224]

Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. N-(2-hydroxyphenyl)-2-phenazinamine from Nocardiopsis exhalans induces p53-mediated intrinsic apoptosis signaling in lung cancer cell lines. Chem Biol Interact. 2023; 369: 110282.

[225]

Shen J, Ni Y, Guan Q, et al. Stenotrophomonas maltophilia promotes lung adenocarcinoma progression by upregulating histone deacetylase 5. Front Microbiol. 2023; 14: 1121863.

[226]

Payette PJ, Davis HL. History of vaccines and positioning of current trends. Curr Drug Targets Infect Disord. 2001; 1(3): 241-247.

[227]

McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006; 26: 154-158.

[228]

Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, MD, reviewed in the light of modern research. Cancer Res. 1946; 6(4): 205-216.

[229]

Nauts HC, McLaren JR. Coley toxins—the first century. Consensus on Hyperthermia for the1990s: Clinical Practice in Cancer Treatment. Springer; 1990: 483-500.

[230]

Mendes I, Vale N. How can the microbiome induce carcinogenesis and modulate drug resistance in cancer therapy?. Int J Mol Sci. 2023; 24(14): 11855.

[231]

Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013; 342(6161): 967-970.

[232]

Daillere R, Vetizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016; 45(4): 931-943.

[233]

Rudakova EV, Boltneva NP, Makhaeva GF. Comparative analysis of esterase activities of human, mouse, and rat blood. Bull Exp Biol Med. 2011; 152(1): 73-75.

[234]

Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991; 51(16): 4187-4191.

[235]

Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994; 54(14): 3723-3725.

[236]

Wallace BD, Roberts AB, Pollet RM, et al. Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 2015; 22(9): 1238-1249.

[237]

Cheadle EJ, Jackson AM. Bugs as drugs for cancer. Immunology. 2002; 107(1): 10-19.

[238]

Adkins I, Holubova J, Kosova M, Sadilkova L. Bacteria and their toxins tamed for immunotherapy. Curr Pharm Biotechnol. 2012; 13(8): 1446-1473.

[239]

Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut. 2022; 71(4): 734-745.

[240]

Grenda A, Iwan E, Chmielewska I, et al. Presence of Akkermansiaceae in gut microbiome and immunotherapy effectiveness in patients with advanced non-small cell lung cancer. AMB Expr. 2022; 12(1): 86.

[241]

Takada K, Shimokawa M, Takamori S, et al. Clinical impact of probiotics on the efficacy of anti-PD-1 monotherapy in patients with nonsmall cell lung cancer: a multicenter retrospective survival analysis study with inverse probability of treatment weighting. Int J Cancer. 2021; 149(2): 473-482.

[242]

Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359(6371): 91-97.

[243]

Cristiano C, Cuozzo M, Coretti L, et al. Oral sodium butyrate supplementation ameliorates paclitaxel-induced behavioral and intestinal dysfunction. Biomed Pharmacother. 2022; 153: 113528.

[244]

Xiao X, Xu Y, Chen H. Sodium butyrate-activated TRAF6-TXNIP pathway affects A549 cells proliferation and migration. Cancer Med. 2020; 9(10): 3477-3488.

[245]

Chen L, Zhou X, Wang Y, Wang D, Ke Y, Zeng X. Propionate and butyrate produced by gut microbiota after probiotic supplementation attenuate lung metastasis of melanoma cells in mice. Mol Nutr Food Res. 2021; 65(15): e2100096.

[246]

Chen Y, Zhou J, Wang L. Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 2021; 11: 625913.

[247]

Kim K, Kwon O, Ryu TY, et al. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol Med Rep. 2019; 20(2): 1569-1574.

[248]

Chen HH, Wu QJ, Zhang TN, Zhao YH. Gut microbiome and serum short-chain fatty acids are associated with responses to chemo-or targeted therapies in Chinese patients with lung cancer. Front Microbiol. 2023; 14: 1165360.

[249]

Weinberg F, Dickson RP, Nagrath D, Ramnath N. The lung microbiome: a central mediator of host inflammation and metabolism in lung cancer patients?. Cancers (Basel). 2020; 13(1): 13.

[250]

Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym. 2018; 183: 91-101.

[251]

Lu Y, Peng B, Lin Y, et al. Spirulina polysaccharide induces the metabolic shifts and gut microbiota change of lung cancer in mice. Curr Res Food Sci. 2022; 5: 1313-1319.

[252]

Gong P, Xiao X, Wang S, et al. Corrigendum to: “Hypoglycemic effect of astragaloside IV via modulating gut microbiota and regulating AMPK/SIRT1 and PI3K/AKT pathway” [J. Ethnopharmacol. 281 (2021) 114558]. J Ethnopharmacol. 2023; 313: 116629.

[253]

Wang M, Dong Y, Wu J, et al. Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis. Life Sci. 2020; 261: 118463.

[254]

Song W, Yang X, Wang W, Wang Z, Wu J, Huang F. Sinomenine ameliorates septic acute lung injury in mice by modulating gut homeostasis via aryl hydrocarbon receptor/Nrf2 pathway. Eur J Pharmacol. 2021; 912: 174581.

[255]

Shan B, Wu M, Chen T, Tang W, Li P, Chen J. Berberine attenuates hyperuricemia by regulating urate transporters and gut microbiota. Am J Chin Med. 2022; 50(8): 2199-2221.

[256]

Luo S, Zhang X, Huang S, Feng X, Zhang X, Xiang D. A monomeric polysaccharide from Polygonatum sibiricum improves cognitive functions in a model of Alzheimer’s disease by reshaping the gut microbiota. Int J Biol Macromol. 2022; 213: 404-415.

[257]

Sun SS, Wang K, Ma K, Bao L, Liu HW. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin J Nat Med. 2019; 17(1): 3-14.

[258]

Zhang M, Li A, Yang Q, et al. Beneficial effect of alkaloids from Sophora alopecuroides L. on CUMS-induced depression model mice via modulating gut microbiota. Front Cell Infect Microbiol. 2021; 11: 665159.

[259]

Liu X, Li M, Jian C, et al. Astragalus polysaccharide alleviates constipation in the elderly via modification of gut microbiota and fecal metabolism. Rejuvenation Res. 2022; 25(6): 275-290.

[260]

Ying M, Yu Q, Zheng B, et al. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr Polym. 2020; 235: 115957.

[261]

Yang L, Zou HC, Gao YC, et al. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab Rev. 2020; 52(1): 125-138.

[262]

Wu X, Wang W, Chen Y, et al. Glycyrrhizin suppresses the growth of human NSCLC cell line HCC827 by downregulating HMGB1 level. Biomed Res Int. 2018; 2018: 6916797.

[263]

Qiu M, Huang K, Liu Y, et al. Modulation of intestinal microbiota by glycyrrhizic acid prevents high-fat diet-enhanced pre-metastatic niche formation and metastasis. Mucosal Immunol. 2019; 12(4): 945-957.

[264]

Tandberg DJ, Tong BC, Ackerson BG, Kelsey CR. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: a comprehensive review. Cancer. 2018; 124(4): 667-678.

[265]

Cao C, Wang D, Chung C, et al. A systematic review and meta-analysis of stereotactic body radiation therapy versus surgery for patients with non-small cell lung cancer. J Thorac Cardiovasc Surg. 2019; 157(1): 362-373.

[266]

Tyldesley S, Boyd C, Schulze K, Walker H, Mackillop WJ. Estimating the need for radiotherapy for lung cancer: an evidence-based, epidemiologic approach. Int J Radiat Oncol Biol Phys. 2001; 49(4): 973-985.

[267]

Zhang T, Bi N, Zhou Z, et al. The impact of age on the survival outcomes and risk of radiation pneumonitis in patients with unresectable locally advanced non-small cell lung cancer receiving chemoradiotherapy. J Thorac Dis. 2020; 12(8): 4347-4356.

[268]

Do Huh H, Kim S. History of radiation therapy technology. Progress Med Phys. 2020; 31(3): 124-134.

[269]

Williams VM, Kahn JM, Thaker NG, et al. The case for brachytherapy: why it deserves a renaissance. Adv Radiat Oncol. 2021; 6(2): 100605.

[270]

Banerjee S, Kataria T, Goyal S, et al. Low dose rate permanent seed brachytherapy: tracing its evolution and current status. Precis Radiat Oncol. 2020; 4(3): 89-98.

[271]

Reis Ferreira M, Andreyev HJN, Mohammed K, et al. Microbiota-and radiotherapy-induced gastrointestinal side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy. Clin Cancer Res. 2019; 25(21): 6487-6500.

[272]

Jalili-Firoozinezhad S, Prantil-Baun R, Jiang A, et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis. 2018; 9(2): 223.

[273]

Shin E, Lee S, Kang H, et al. Organ-specific effects of low dose radiation exposure: a comprehensive review. Front Genet. 2020; 11: 566244.

[274]

Kho ZY, Lal SK. The human gut microbiome—a potential controller of wellness and disease. Front Microbiol. 2018; 9: 1835.

[275]

Laudes M, Geisler C, Rohmann N, Bouwman J, Pischon T, Schlicht K. Microbiota in health and disease-potential clinical applications. Nutrients. 2021; 13(11): 3866.

[276]

Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci USA. 2005; 102(37): 13254-13259.

[277]

Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction. Radiat Oncol. 2021; 16(1): 9.

[278]

Hollingsworth BA, Cassatt DR, DiCarlo AL, et al. Acute radiation syndrome and the microbiome: impact and review. Front Pharmacol. 2021; 12: 643283.

[279]

Gianfaldoni S, Gianfaldoni R, Wollina U, Lotti J, Tchernev G, Lotti T. An overview on radiotherapy: from its history to its current applications in dermatology. Open Access Maced J Med Sci. 2017; 5(4): 521-525.

[280]

Wang A, Ling Z, Yang Z, et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS One. 2015; 10(5): e0126312.

[281]

Kim YS, Kim J, Park SJ. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe. 2015; 33: 1-7.

[282]

Gonzalez-Mercado VJ, Henderson WA, Sarkar A, et al. Changes in gut microbiome associated with co-occurring symptoms development during chemo-radiation for rectal cancer: a proof of concept study. Biol Res Nurs. 2021; 23(1): 31-41.

[283]

Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction. Gut. 2018; 67(1): 97-107.

[284]

Wang ZQ, Wang QX, Wang X, et al. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy. J Cell Mol Med. 2019; 23(5): 3747-3756.

[285]

Chen ZY, Xiao HW, Dong JL, et al. Gut microbiota-derived PGF2α fights against radiation-induced lung toxicity through the MAPK/NF-κB pathway. Antioxidants. 2022; 11(1): 65.

[286]

Li Y, Dong J, Xiao H, et al. Gut commensal derived-valeric acid protects against radiation injuries. Gut Microbes. 2020; 11(4): 789-806.

[287]

Chen ZY, Xiao HW, Dong JL, et al. Gut microbiota-derived PGF2alpha fights against radiation-induced lung toxicity through the MAPK/NF-kappaB pathway. Antioxidants (Basel). 2021; 11(1): 65.

[288]

Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med. 2024; 30(1): 105.

[289]

Tan JY, Tang YC, Huang J. Gut microbiota and lung injury. Adv Exp Med Biol. 2020; 1238: 55-72.

[290]

Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol. 2020; 11: 301.

[291]

Xiao HW, Cui M, Li Y, et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome. 2020; 8(1): 69.

[292]

Lee SH. Chemotherapy for lung cancer in the era of personalized medicine. Tuberc Respir Dis (Seoul). 2019; 82(3): 179-189.

[293]

Brianna LeeSH. Chemotherapy: how to reduce its adverse effects while maintaining the potency?. Med Oncol. 2023; 40(3): 88.

[294]

Felip E, Rosell R, Maestre JA, et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage non-small-cell lung cancer. J Clin Oncol. 2010; 28(19): 3138-3145.

[295]

Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res. 2015; 14(2): 5642-5651.

[296]

Heshiki Y, Vazquez-Uribe R, Li J, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome. 2020; 8(1): 28.

[297]

Liu T, Xiong Q, Li L, Hu Y. Intestinal microbiota predicts lung cancer patients at risk of immune-related diarrhea. Immunotherapy. 2019; 11(5): 385-396.

[298]

Chen Z, Qian X, Chen S, Fu X, Ma G, Zhang A. Akkermansia muciniphila enhances the antitumor effect of cisplatin in lewis lung cancer mice. J Immunol Res. 2020; 2020: 2969287.

[299]

Commichau FM, Alzinger A, Sande R, et al. Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-l-threonine to pyridoxine. Metab Eng. 2015; 29: 196-207.

[300]

Olaussen KA, Postel-Vinay S. Predictors of chemotherapy efficacy in non-small-cell lung cancer: a challenging landscape. Ann Oncol. 2016; 27(11): 2004-2016.

[301]

Zhao Z, Fei K, Bai H, Wang Z, Duan J, Wang J. Metagenome association study of the gut microbiome revealed biomarkers linked to chemotherapy outcomes in locally advanced and advanced lung cancer. Thorac Cancer. 2021; 12(1): 66-78.

[302]

Zhang M, Zhou H, Xu S, et al. The gut microbiome can be used to predict the gastrointestinal response and efficacy of lung cancer patients undergoing chemotherapy. Ann Palliat Med. 2020; 9(6): 4211-4227.

[303]

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12(4): 252-264.

[304]

Bernard D, Hansen JD, Du Pasquier L, Lefranc MP, Benmansour A, Boudinot P. Costimulatory receptors in jawed vertebrates: conserved CD28, odd CTLA4 and multiple BTLAs. Dev Comp Immunol. 2007; 31(3): 255-271.

[305]

Ancel J, Dormoy V, Raby BN, et al. Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors. Front Immunol. 2023; 14: 1171649.

[306]

Wang Y, Ma R, Liu F, Lee SA, Zhang L. Modulation of gut microbiota: a novel paradigm of enhancing the efficacy of programmed death-1 and programmed death ligand-1 blockade therapy. Front Immunol. 2018; 9: 374.

[307]

Jin Y, Dong H, Xia L, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in chinese patients with NSCLC. J Thorac Oncol. 2019; 14(8): 1378-1389.

[308]

Song P, Yang D, Wang H, et al. Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac Cancer. 2020; 11(6): 1621-1632.

[309]

Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018; 29(6): 1437-1444.

[310]

Wan L, Wu C, Wu Q, Luo S, Liu J, Xie X. Impact of probiotics use on clinical outcomes of immune checkpoint inhibitors therapy in cancer patients. Cancer Med. 2023; 12(2): 1841-1849.

[311]

Xin Y, Liu CG, Zang D, Chen J. Gut microbiota and dietary intervention: affecting immunotherapy efficacy in non-small cell lung cancer. Front Immunol. 2024; 15: 1343450.

[312]

Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015; 350(6264): 1084-1089.

[313]

Zhao H, Li D, Liu J, et al. Bifidobacterium breve predicts the efficacy of anti-PD-1 immunotherapy combined with chemotherapy in Chinese NSCLC patients. Cancer Med. 2023; 12(5): 6325-6336.

[314]

Gao G, Ma T, Zhang T, et al. Adjunctive probiotic Lactobacillus rhamnosus Probio-M9 administration enhances the effect of anti-PD-1 antitumor therapy via restoring antibiotic-disrupted gut microbiota. Front Immunol. 2021; 12: 772532.

[315]

Yu J, Zhou B, Zhang S, et al. Design of a self-driven probiotic-CRISPR/Cas9 nanosystem for sono-immunometabolic cancer therapy. Nat Commun. 2022; 13(1): 7903.

[316]

Robles Alonso V, Guarner F. Linking the gut microbiota to human health. Br J Nutr. 2013; 109(Suppl 2): S21-S26.

[317]

Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012; 61(2): 160-174.

[318]

Hormannsperger G, Haller D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol. 2010; 300(1): 63-73.

[319]

Liu X, Cheng Y, Zang D, et al. The role of gut microbiota in lung cancer: from carcinogenesis to immunotherapy. Front Oncol. 2021; 11: 720842.

[320]

Juan Z, Zhao-Ling S, Ming-Hua Z, et al. Oral administration of Clostridium butyricum CGMCC0313-1 reduces ovalbumin-induced allergic airway inflammation in mice. respirol. 2017; 22(5): 898-904.

[321]

Khailova L, Baird CH, Rush AA, Barnes C, Wischmeyer PE. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia. Clin Nutr. 2017; 36(6): 1549-1557.

[322]

Berni Canani R, Di Costanzo M, Bedogni G, et al. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 2017; 139(6): 1906-1913.

[323]

Mendes E, Acetturi BG, Thomas AM, et al. Prophylactic supplementation of Bifidobacterium longum 5(1A) protects mice from ovariectomy-induced exacerbated allergic airway inflammation and airway hyperresponsiveness. Front Microbiol. 2017; 8: 1732.

[324]

Liu MY, Yang ZY, Dai WK, et al. Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and beta-lactoglobulin-induced intestinal food allergy mouse models. World J Gastroenterol. 2017; 23(12): 2149-2158.

[325]

Fonseca VMB, Milani TMS, Prado R, et al. Oral administration of Saccharomyces cerevisiae UFMG A-905 prevents allergic asthma in mice. Respirology. 2017; 22(5): 905-912.

[326]

Ouyang J, Lin J, Isnard S, et al. The bacterium Akkermansia muciniphila: a sentinel for gut permeability and its relevance to HIV-related inflammation. Front Immunol. 2020; 11: 645.

[327]

Zhang P, Huang L, Zhang E, Yuan C, Yang Q. Oral administration of Bacillus subtilis promotes homing of CD3(+) T cells and IgA-secreting cells to the respiratory tract in piglets. Res Vet Sci. 2021; 136: 310-317.

[328]

Sung SS, Fu SM, Rose CE Jr., Gaskin F, Ju ST, Beaty SR. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol. 2006; 176(4): 2161-2172.

[329]

Erdman SE, Poutahidis T. Gut microbiota modulate host immune cells in cancer development and growth. Free Radic Biol Med. 2017; 105: 28-34.

[330]

Goubet AG, Daillere R, Routy B, Derosa L, MR P, Zitvogel L. The impact of the intestinal microbiota in therapeutic responses against cancer. C R Biol. 2018; 341(5): 284-289.

[331]

Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004; 5(10): 987-995.

[332]

Mohamadzadeh M, Olson S, Kalina WV, et al. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci USA. 2005; 102(8): 2880-2885.

[333]

Hua MC, Lin TY, Lai MW, Kong MS, Chang HJ, Chen CC. Probiotic Bio-Three induces Th1 and anti-inflammatory effects in PBMC and dendritic cells. World J Gastroenterol. 2010; 16(28): 3529-3540.

[334]

Tomita Y, Ikeda T, Sakata S, et al. Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol Res. 2020; 8(10): 1236-1242.

[335]

Wei H, Yue Z, Han J, et al. Oral compound probiotic supplements can improve the quality of life for patients with lung cancer during chemotherapy: a randomized placebo-controlled study. Thorac Cancer. 2024; 15(2): 182-191.

[336]

Zhu H, Li Z, Mao S, et al. Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice. Cancer Gene Ther. 2011; 18(12): 884-896.

[337]

Riaz A, Ali A, Babar U, et al. Immunotherapeutic potential of Plasmodium against cancer by inducing immunomodulation. IJAR. 2019; 70: 8-18.

[338]

Yue T, Zhang X, Gong P, et al. Antitumor effect of invasive Lactobacillus plantarum delivering associated antigen gene sHSP between Trichinella spiralis and Lewis lung cancer cells. Int Immunopharmacol. 2023; 115: 109708.

[339]

Li Y, Xu M, Zhai H, et al. Lipopolysaccharide (LPS) extracted from Bacteroides vulgatus effectively prevents LPS extracted from Escherichia coli from inducing epithelial-mesenchymal transition. Mol Med Rep. 2023; 28(4).

[340]

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024; 74(1): 12-49.

[341]

Sommariva M, Le Noci V, Bianchi F, et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci. 2020; 77(14): 2739-2749.

[342]

Integrative HMPRNC. The integrative human microbiome project. Nature. 2019; 569(7758): 641-648.

[343]

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018; 24(4): 392-400.

[344]

Stockdale SR, Shkoporov AN, Khokhlova EV, et al. Interpersonal variability of the human gut virome confounds disease signal detection in IBD. Commun Biol. 2023; 6(1): 221.

[345]

Shkoporov AN, Ryan FJ, Draper LA, et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome. 2018; 6(1): 68.

[346]

Rai S, Singh DK, Kumar A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J Basic Microbiol. 2021; 61(4): 267-292.

[347]

Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental factors and host microbiomes shape host-pathogen dynamics. Trends Parasitol. 2020; 36(7): 616-633.

[348]

Panigrahi G, Ambs S. How comorbidities shape cancer biology and survival. Trends Cancer. 2021; 7(6): 488-495.

[349]

Bodai BI, Nakata TE. Breast cancer: lifestyle, the human gut microbiota/microbiome, and survivorship. Perm J. 2020; 24: 19.129.

[350]

Ahmed E, Hens K. Microbiome in precision psychiatry: an overview of the ethical challenges regarding microbiome big data and microbiome-based interventions. AJOB Neurosci. 2022; 13(4): 270-286.

[351]

Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med. 2010; 16(11): 1210-1214.

[352]

Turner PV. The role of the gut microbiota on animal model reproducibility. Animal Model Exp Med. 2018; 1(2): 109-115.

[353]

Afzaal M, Saeed F, Shah YA, et al. Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol. 2022; 13: 999001.

[354]

Eladham MW, Selvakumar B, Saheb Sharif-Askari N, Saheb Sharif-Askari F, Ibrahim SM, Halwani R. Unraveling the gut-Lung axis: exploring complex mechanisms in disease interplay. Heliyon. 2024; 10(1): e24032.

[355]

Marrella V, Nicchiotti F, Cassani B. Microbiota and immunity during respiratory infections: lung and gut affair. Int J Mol Sci. 2024; 25(7): 4051.

[356]

Mohseni AH, Taghinezhad SS, Casolaro V, Lv Z, Li D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis. 2023; 14(2): 154.

[357]

Zhao L-Y, Mei J-X, Yu G, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transd Target Ther. 2023; 8(1): 201.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

237

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/