Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease

Jingyi Duan , Qinmei Li , Yan Cheng , Weifeng Zhu , Hongning Liu , Fei Li

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70017

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70017 DOI: 10.1002/mco2.70017
REVIEW

Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease

Author information +
History +
PDF

Abstract

Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.

Keywords

gastrointestinal and hepatic disease / metabolic pathways / natural components / Parabacteroides distasonis

Cite this article

Download citation ▾
Jingyi Duan, Qinmei Li, Yan Cheng, Weifeng Zhu, Hongning Liu, Fei Li. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm, 2024, 5(12): e70017 DOI:10.1002/mco2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peery AF, Crockett SD, Murphy CC, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2021. Gastroenterology. 2022; 162(2): 621-644.

[2]

Seyed Tabib NS, Madgwick M, Sudhakar P, Verstockt B, Korcsmaros T, Vermeire S. Big data in IBD: big progress for clinical practice. Gut. 2020; 69(8): 1520-1532.

[3]

Pang Y, Lv J, Kartsonaki C, et al. Metabolic risk factors, genetic predisposition, and risk of severe liver disease in Chinese: a prospective study of 0.5 million people. Am J Clin Nutr. 2021; 114(2): 496-504.

[4]

Camilleri M, Malhi H, Acosta A. Gastrointestinal complications of obesity. Gastroenterology. 2017; 152(7): 1656-1670.

[5]

Corsello A, Pugliese D, Gasbarrini A, Armuzzi A. Diet and nutrients in gastrointestinal chronic diseases. Nutrients. 2020; 12(9): 2693.

[6]

Wu K, Luo Q, Liu Y, Li A, Xia D, Sun X. Causal relationship between gut microbiota and gastrointestinal diseases: a mendelian randomization study. J Transl Med. 2024; 22(1): 92.

[7]

White LS, Van den Bogaerde J, Kamm M. The gut microbiota: cause and cure of gut diseases. Med J Aust. 2018; 209(7): 312-317.

[8]

Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016; 63(3): 764-775.

[9]

Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019; 4(2): 293-305.

[10]

O’Hara AM, Shanahan F. The gut flora as a forgotten organ. Embo Rep. 2006; 7(7): 688-693.

[11]

Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018; 361: k2179.

[12]

Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015; 17(5): 662-671.

[13]

Desai MS, Seekatz AM, Koropatkin NM, et al. A Dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016; 167(5): 1339-1353 e21.

[14]

Frazier K, Chang EB. Intersection of the gut microbiome and circadian rhythms in metabolism. Trends Endocrinol Metab. 2020; 31(1): 25-36.

[15]

Guan B, Tong J, Hao H, et al. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases. Acta Pharm Sin B. 2022; 12(5): 2129-2149.

[16]

Vaughn BP, Rank KM, Khoruts A. Fecal Microbiota Transplantation: current Status in treatment of GI and liver disease. Clin Gastroenterol Hepatol. 2019; 17(2): 353-361.

[17]

Eggerth AH, Gagnon BH. The bacteroides of human feces. J Bacteriol. 1933; 25(4): 389-413.

[18]

Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006; 56(Pt 7): 1599-1605.

[19]

Wang K, Liao M, Zhou N, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 2019; 26(1): 222-235.e5.

[20]

Kverka M, Zakostelska Z, Klimesova K, et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol. 2011; 163(2): 250-259.

[21]

Vallianou NG, Kounatidis D, Tsilingiris D, et al. The Role of next-generation probiotics in obesity and obesity-associated disorders: current knowledge and future perspectives. Int J Mol Sci. 2023; 24(7): 6755.

[22]

Cuffaro B, Assohoun ALW, Boutillier D, et al. In Vitro Characterization of gut microbiota-derived commensal strains: selection of Parabacteroides distasonis strains alleviating TNBS-induced colitis in mice. Cells. 2020; 9(9): 2104.

[23]

Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut. 2022; 71(4): 734-745.

[24]

O’Hara AM, Shanahan F. Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol. 2007; 5(3): 274-284.

[25]

Wollenweber HW, Rietschel ET, Hofstad T, Weintraub A, Lindberg AA. Nature, type of linkage, quantity, and absolute configuration of (3-hydroxy) fatty acids in lipopolysaccharides from Bacteroides fragilis NCTC 9343 and related strains. J Bacteriol. 1980; 144(3): 898-903.

[26]

Bank NC, Singh V, Rodriguez-Palacios A. Classification of Parabacteroides distasonis and other Bacteroidetes using O-antigen virulence gene: RfbA-Typing and hypothesis for pathogenic vs. probiotic strain differentiation. Gut Microbes. 2022; 14(1): 1997293.

[27]

Wexler HM, Getty C, Fisher G. The isolation and characterisation of a major outer-membrane protein from Bacteroides distasonis. J Med Microbiol. 1992; 37(3): 165-175.

[28]

Wexler HM. Outer-membrane pore-forming proteins in gram-negative anaerobic bacteria. Clin Infect Dis. 2002; 35(Suppl 1): S65-S71.

[29]

Fletcher CM, Coyne MJ, Bentley DL, Villa OF, Comstock LE. Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. Proc Natl Acad Sci USA. 2007; 104(7):2413-8.

[30]

Avall-Jääskeläinen S, Palva A. Lactobacillus surface layers and their applications. FEMS Microbiol Rev. 2005; 29(3): 511-529.

[31]

Ryan A, Lynch M, Smith SM, et al. A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog. 2011; 7(6): e1002076.

[32]

Ðapa T, Leuzzi R, Ng YK, et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol. 2013; 195(3): 545-555.

[33]

Chamarande J, Cunat L, Caillet C, et al. Surface properties of parabacteroides distasonis and impacts of stress-induced molecules on its Surface adhesion and biofilm formation capacities. Microorganisms. 2021; 27(9): 1602.

[34]

Kasper DL. The polysaccharide capsule of Bacteroides fragilis subspecies fragilis: immunochemical and morphologic definition. J Infect Dis. 1976; 133(1): 79-87.

[35]

Onderdonk AB, Moon NE, Kasper DL, Bartlett JG. Adherence of Bacteroides fragilis in vivo. Infect Immun. 1978; 19(3):1083-7.

[36]

An H, Qian C, Huang Y, et al. Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. J Exp Med. 2022; 219(4): e20212032.

[37]

Babb JL, Cummins CS. Encapsulation of Bacteroides species. Infect Immun. 1978; 19(3): 1088-1091.

[38]

Bjornson AB, Bjornson HS, Ashraf M, Lang TJ. Quantitative variability in requirements for opsonization of strains within the Bacteroides fragilis group. J Infect Dis. 1983; 148(4): 667-675.

[39]

Nakano V, Piazza RM, Cianciarullo AM, et al. Adherence and invasion of Bacteroidales isolated from the human intestinal tract. Clin Microbiol Infect. 2008; 14(10): 955-963.

[40]

Xu J, Mahowald MA, Ley RE, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 2007; 5(7): e156.

[41]

Rudek W, Haque R. Purification of a mucopolysacharidase from Bacteroides distasonis. J Gen Microbiol. 1980; 119(1):211-5.

[42]

Huang K, Wang MM, Kulinich A, et al. Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr Res. 2015; 415: 60-65.

[43]

Fraser AG, Brown R. Neuraminidase production by Bacteroidaceae. J Med Microbiol. 1981; 14(1): 63-76.

[44]

Gamage H, Chong RWW, Bucio-Noble D, et al. Changes in dietary fiber intake in mice reveal associations between colonic mucin O-glycosylation and specific gut bacteria. Article. Gut Microbes. 2020; 12(1): 1802209.

[45]

Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015; 6: 81.

[46]

Besanceney-Webler C, Jiang H, Wang W, Baughn AD, Wu P. Metabolic labeling of fucosylated glycoproteins in Bacteroidales species. Bioorg Med Chem Lett. 2011; 21(17): 4989-4992.

[47]

Coyne MJ, Reinap B, Lee MM, Comstock LE. Human symbionts use a host-like pathway for surface fucosylation. Science. 2005; 307(5716): 1778-1781.

[48]

Nihira T, Suzuki E, Kitaoka M, Nishimoto M, Ohtsubo K, Nakai H. Discovery of beta-1, 4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. J Biol Chem. 2013; 288(38): 27366-27374.

[49]

Salyers AA, Palmer JK, Wilkins TD. Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Appl Environ Microbiol. 1977; 33(5): 1118-1124.

[50]

Shimizu H, Nakajima M, Miyanaga A, et al. Characterization and structural analysis of a novel exo-Type enzyme acting on beta-1, 2-Glucooligosaccharides from Parabacteroides distasonis. Biochemistry. 2018; 57(26): 3849-3860.

[51]

Tannock GW. Characteristics of Bacteroides isolates from the cecum of conventional mice. Appl Environ Microbiol. 1977; 33(4): 745-750.

[52]

Averina OV, Kovtun AS, Polyakova SI, Savilova AM, Rebrikov DV, Danilenko VN. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J Med Microbiol. 2020; 69(4): 558-571.

[53]

Avelar KE, Vieira JM, Antunes LC, et al. Antimicrobial resistance of strains of the Bacteroides fragilis group isolated from the intestinal tract of children and adults in Brazil. Int J Antimicrob Agents. 2001; 18(2): 129-134.

[54]

Snydman DR, Jacobus NV, McDermott LA, et al. National survey on the susceptibility of Bacteroides Fragilis Group: report and analysis of trends for 1997–2000. Clin Infect Dis. 2002; 35(Suppl 1): S126-S134.

[55]

Vázquez-López R, Solano-Gálvez S, Álvarez-Hernández DA, et al. The Beta-Lactam resistome expressed by aerobic and anaerobic Bacteria isolated from human feces of healthy donors. Pharmaceuticals (Basel). 2021; 14(6): 533.

[56]

Boente RF, Ferreira LQ, Falcao LS, et al. Detection of resistance genes and susceptibility patterns in Bacteroides and Parabacteroides strains. Anaerobe. 2010; 16(3): 190-194.

[57]

Avelar KE, Otsuki K, Vicente AC, et al. Presence of the cfxA gene in Bacteroides distasonis. Res Microbiol. 2003; 154(5): 369-374.

[58]

Malouin F, Lamothe F. The role of beta-lactamase and the permeability barrier on the activity of cephalosporins against members of the Bacteroides fragilis group. Can J Microbiol. 1987; 33(3): 262-266.

[59]

Wexler HM, Halebian S. Alterations to the penicillin-binding proteins in the Bacteroides fragilis group: a mechanism for non-beta-lactamase mediated cefoxitin resistance. J Antimicrob Chemother. 1990; 26(1): 7-20.

[60]

Kierzkowska M, Majewska A, Mlynarczyk G. Trends and Impact in antimicrobial resistance among Bacteroides and Parabacteroides species in 2007–2012 compared to 2013–2017. Microb Drug Resist. 2020; 26(12): 1452-1457.

[61]

Kierzkowska M, Majewska A, Mlynarczyk G. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis. 1979; 139(1): 97-101.

[62]

Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka-Grzelak A, Mlynarczyk A, Mlynarczyk G. In vitro effect of clindamycin against Bacteroides and Parabacteroides isolates in Poland. J Glob Antimicrob Resist. 2018; 13: 49-52.

[63]

Leng Z, Riley DE, Berger RE, Krieger JN, Roberts MC. Distribution and mobility of the tetracycline resistance determinant tetQ. J Antimicrob Chemother. 1997; 40(4): 551-559.

[64]

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995; 49: 711-745.

[65]

Alauzet C, Cunat L, Wack M, et al. Impact of a Model used to simulate chronic socio-environmental stressors encountered during spaceflight on murine intestinal microbiota. Int J Mol Sci. 2020; 21(21): 7863.

[66]

Zhao Q, Dai M-Y, Huang R-Y, et al. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nat Commun. 2023; 14(1): 1829.

[67]

Su X, Gao Y, Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells. 2022; 11(15): 2296.

[68]

Davila A-M, Blachier F, Gotteland M, et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 2013; 68(1): 95-107.

[69]

Han S, Van Treuren W, Fischer CR, et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature. 2021; 595(7867): 415-420.

[70]

Jilly BJ, Schreckenberger PC, LeBeau LJ. Rapid glutamic acid decarboxylase test for identification of Bacteroides and Clostridium spp. J Clin Microbiol. 1984; 19(5): 592-593.

[71]

Liang Z, Di N, Li L, Yang D. Gut microbiota alterations reveal potential gut-brain axis changes in polycystic ovary syndrome. J Endocrinol Invest. 2021; 44(8): 1727-1737.

[72]

Wu LT, Tang ZR, Chen HY, et al. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim Nutr. 2021; 7(1): 11-16.

[73]

Ahmed S, Busetti A, Fotiadou P, et al. In vitro Characterization of gut microbiota-derived bacterial strains with neuroprotective properties. Front Cell Neurosci. 2019; 13: 402.

[74]

Cuffaro B, Assohoun ALW, Boutillier D, et al. Identification of new potential biotherapeutics from human gut microbiota-derived Bacteria. Microorganisms. 2021; 9(3): 565.

[75]

Russell WR, Duncan SH, Scobbie L, et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013; 57(3): 523-535.

[76]

Saito Y, Sato T, Nomoto K, Tsuji H. Identification of phenol-and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol. 2018; 94(9): fiy125.

[77]

Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009; 106(10): 3698-3703.

[78]

Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018; 23(6): 716-724.

[79]

Cheng L, Wu H, Cai X, et al. A Gpr35-tuned gut microbe brain metabolic axis regulates depressive-like behavior. Cell Host Microbe. 2024; 32(2): 227-243.e6.

[80]

Liu D, Zhang S, Li S, et al. Indoleacrylic acid produced by Parabacteroides distasonis alleviates type 2 diabetes via activation of AhR to repair intestinal barrier. BMC Biol. 2023; 21(1): 90.

[81]

Andreoli AJ, Ikeda M, Nishizuka Y, Hayaishi O. Quinolinic acid: a precursor to nicotinamide adenine dinucleotide in Escherichia coli. Biochem Biophys Res Commun. 1963; 12: 92-97.

[82]

Sun Y, Nie Q, Zhang S, et al. Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a. Nat Commun. 2023; 14(1): 7740.

[83]

Montgomery TL, Eckstrom K, Lile KH, et al. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. Microbiome. 2022; 10(1): 198.

[84]

Barroso A, Mahler JV, Fonseca-Castro PH, Quintana FJ. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol. 2021; 18(2): 259-268.

[85]

Meng D, Sommella E, Salviati E, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res. 2020; 88(2): 209-217.

[86]

Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat Rev Gastroenterol Hepatol. 2021; 18(8): 559-570.

[87]

Pugin B, Barcik W, Westermann P, et al. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb Ecol Health Dis. 2017; 28(1): 1353881.

[88]

Hamana K, Matsuzaki S. Polyamines as a Chemotaxonomic marker in Bacterial systematics. Crit Rev Microbiol. 1992; 18(4): 261-283.

[89]

Hamana K, Itoh T, Benno Y, Hayashi H. Polyamine distribution profiles of new members of the phylum Bacteroidetes. J Gen Appl Microbiol. 2008; 54(4): 229-236.

[90]

Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ. Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm rormation. J Biol Chem. 2010; 285(50): 39224-39238.

[91]

Nakamura A, Ooga T, Matsumoto M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes. 2019; 10(2): 159-171.

[92]

Michael AJ. Polyamine function in archaea and bacteria. J Biol Chem. 2018; 293(48): 18693-18701.

[93]

Sugiyama Y, Nara M, Sakanaka M, et al. Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: Potential presence of novel polyamine metabolism and transport genes. Int J Biochem Cell Biol. 2017; 93: 52-61.

[94]

Matsumoto M, Benno Y. The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiol Immunol. 2007; 51(1): 25-35.

[95]

Zhao Q, Huang JF, Cheng Y, et al. Polyamine metabolism links gut microbiota and testicular dysfunction. Microbiome. 2021; 9(1): 224.

[96]

Lee K-A, Kim S-H, Kim E-K, et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell. 2013; 153(4): 797-811.

[97]

Lee JS, Wang RX, Goldberg MS, Clifford GP, Kao DJ, Colgan SP. Microbiota-sourced purines support wound healing and mucous barrier function. iScience. 2020; 23(6): 101226.

[98]

Lee JS, Wang RX, Alexeev EE, et al. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem. 2018; 293(16): 6039-6051.

[99]

Kuang J, Wang J, Li Y, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 2023; 35(10): 1752-1766.e8.

[100]

de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013; 17(5): 657-669.

[101]

Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ regulatory T cell homeostasis. Nature. 2020; 577(7790): 410-415.

[102]

Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006; 47(2): 241-259.

[103]

Choudhuri S, Klaassen CD. Molecular regulation of bile acid homeostasis. Drug Metab Dispos. 2022; 50(4): 425-455.

[104]

Ridlon JM, Devendran S, Alves JM, et al. The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes. 2020; 11(3): 381-404.

[105]

Narushima S, Itoha K, Miyamoto Y, et al. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids. 2006; 41(9): 835-843.

[106]

Narushima S, Itoh K, Takamine F, Uchida K. Absence of cecal secondary bile acids in gnotobiotic mice associated with two human intestinal bacteria with the ability to dehydroxylate bile acids in vitro. Microbiol Immunol. 1999; 43(9):893-7.

[107]

Takamine F, Imamura T. 7 beta-dehydroxylation of 3, 7-dihydroxy bile acids by a Eubacterium species strain C-25 and stimulation of 7 beta-dehydroxylation by Bacteroides distasonis strain K-5. Microbiol Immunol. 1985; 29(12): 1247-1252.

[108]

Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020; 11(2): 158-171.

[109]

Li M, Wang S, Li Y, et al. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat Commun. 2022; 13(1): 2060.

[110]

Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019; 576(7785): 143-148.

[111]

Paik D, Yao L, Zhang Y, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature. 2022; 603(7903): 907-912.

[112]

Sato Y, Atarashi K, Plichta DR, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021; 599(7885): 458-464.

[113]

Sun H, Guo Y, Wang H, et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis. Gut. 2023; 72(9): 1664-1677.

[114]

Liu C, Du M-X, Xie L-S, et al. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat Microbiol. 2024; 9(2): 434-450.

[115]

Yan P, Sun Y, Luo J, Liu X, Wu J, Miao Y. Integrating the serum proteomic and fecal metaproteomic to analyze the impacts of overweight/obesity on IBD: a pilot investigation. Clin Proteomics. 2023; 20(1): 6.

[116]

Gaifem J, Mendes-Frias A, Wolter M, et al. Akkermansia muciniphila and Parabacteroides distasonis synergistically protect from colitis by promoting ILC3 in the gut. mBio. 2024; 15(4): e0007824.

[117]

Gomez-Nguyen A, Basson AR, Dark-Fleury L, et al. Parabacteroides distasonis induces depressive-like behavior in a mouse model of Crohn’s disease. Brain Behav Immun. 2021; 98: 245-250.

[118]

Ma M, Fu T, Wang Y, et al. Polysaccharide from edible alga Enteromorpha clathrata Improves ulcerative colitis in association with increased abundance of Parabacteroides spp. in the gut microbiota of dextran sulfate Sodium-Fed Mice. Mar Drugs. 2022; 20(12): 764.

[119]

Dziarski R, Park SY, Kashyap DR, Dowd SE, Gupta D. Pglyrp-regulated gut microflora prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and alistipes finegoldii attenuates colitis in mice. PLoS One. 2016; 11(1): e0146162.

[120]

Lopetuso LR, Petito V, Graziani C, et al. Gut Microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: time for microbial marker of gastrointestinal disorders. Dig Dis. 2018; 36(1): 56-65.

[121]

Nagayama M, Yano T, Atarashi K, et al. TH1 cell-inducing Escherichia coli strain identified from the small intestinal mucosa of patients with Crohn’s disease. Gut Microbes. 2020; 12(1): 1788898.

[122]

Yang F, Kumar A, Davenport KW, et al. Complete genome sequence of a Parabacteroides distasonis strain (CavFT hAR46) isolated from a gut wall-cavitating microlesion in a patient with severe crohn’s disease. Microbiol Resour Announc. 2019; 8(36):e00585-519.

[123]

Wang N, Fang JY. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 2023; 31(2): 159-172.

[124]

Yang J, Wei H, Zhou Y, et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology. 2022; 162(1): 135-149.e2.

[125]

Zhu H, Li M, Bi D, et al. Fusobacterium nucleatum promotes tumor progression in KRAS p.G12D-mutant colorectal cancer by binding to DHX15. Nat Commun. 2024; 15(1): 1688.

[126]

Bai X, Wei H, Liu W, et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut. 2022; 71(12): 2439-2450.

[127]

Gu S, Zaidi S, Hassan MI, et al. Mutated CEACAMs Disrupt transforming growth factor beta signaling and alter the intestinal microbiome to promote colorectal carcinogenesis. Gastroenterology. 2020; 158(1): 238-252.

[128]

Parker KD, Maurya AK, Ibrahim H, et al. Dietary rice bran-modified human gut microbial consortia confers protection against colon carcinogenesis following fecal transfaunation. Biomedicines. 2021; 9(2): 144.

[129]

Koh GY, Kane AV, Wu X, Crott JW. Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice. Carcinogenesis. 2020; 41(7): 909-917.

[130]

Liang R, Li P, Yang N, et al. Parabacteroides distasonis-derived outer membrane vesicles enhance antitumor immunity against colon tumors by modulating CXCL10 and CD8+ T cells. Drug Des Devel Ther. 2024; 18: 1833-1853.

[131]

Yuan N, Li X, Wang M, et al. Gut Microbiota alteration influences colorectal cancer metastasis to the liver by remodeling the liver immune microenvironment. Gut Liver. 2022; 16(4): 575-588.

[132]

Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007; 292(3): E740-E747.

[133]

Xu H, Wang S, Jiang Y, et al. Poria cocos Polysaccharide ameliorated antibiotic-associated diarrhea in mice via regulating the homeostasis of the gut microbiota and intestinal mucosal barrier. Int J Mol Sci. 2023; 24(2): 1423.

[134]

Mocanu V, Park H, Dang J, et al. Timing of tributyrin supplementation differentially modulates gastrointestinal inflammation and gut microbial recolonization following murine ileocecal resection. Nutrients. 2021; 13(6): 2069.

[135]

Gervason S, Meleine M, Lolignier S, et al. Antihyperalgesic properties of gut microbiota: parabacteroides distasonis as a new probiotic strategy to alleviate chronic abdominal pain. Pain. 2024; 165(5): e39-e54.

[136]

Touw K, Ringus DL, Hubert N, et al. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models. Physiol Rep. 2017; 5(6): e13182.

[137]

Li M, Liu S, Wang M, et al. Gut microbiota dysbiosis associated with bile acid metabolism in neonatal cholestasis disease. Sci Rep. 2020; 10(1): 7686.

[138]

Chiang JYL, Ferrell JM. Bile acid metabolism in liver pathobiology. Gene Expr. 2018; 18(2): 71-87.

[139]

Wang H, Guo Y, Han W, et al. Tauroursodeoxycholic acid improves nonalcoholic fatty liver disease by regulating gut microbiota and bile acid metabolism. J Agric Food Chem. 2024; 72(36): 20194-20210.

[140]

Wang L, Zheng W, Sun Y, et al. Fucoidan ameliorates alcohol-induced liver injury in mice through Parabacteroides distasonis-mediated regulation of the gut-liver axis. Int J Biol Macromol. 2024; 279(Pt 3):135309.

[141]

Yanavich C, Perazzo H, Li F, et al. A pilot study of microbial signatures of liver disease in those with HIV mono-infection in Rio de Janeiro, Brazil. AIDS. 2022; 36(1): 49-58.

[142]

Kwan S-Y, Jiao J, Joon A, et al. Gut microbiome features associated with liver fibrosis in Hispanics, a population at high risk for fatty liver disease. Hepatology. 2022; 75(4): 955-967.

[143]

Liang H, Song H, Zhang X, et al. Metformin attenuated sepsis-related liver injury by modulating gut microbiota. Emerg Microbes Infect. 2022; 11(1): 815-828.

[144]

Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. 2023; 21(4): 236-247.

[145]

Li X, Wu J, Kang Y, et al. Yeast mannoproteins are expected to be a novel potential functional food for attenuation of obesity and modulation of gut microbiota. Front Nutr. 2022; 9: 1019344.

[146]

He K, Hu Y, Ma H, et al. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta. 2016; 1862(9): 1696-1709.

[147]

Moran-Ramos S, Cerqueda-García D, López-Contreras B, et al. A metagenomic study identifies a Prevotella copri enriched microbial profile associated with non-alcoholic steatohepatitis in subjects with obesity. J Gastroenterol Hepatol. 2023; 38(5): 791-799.

[148]

Wei W, Wong CC, Jia Z, et al. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid. Nat Microbiol. 2023; 8(8): 1534-1548.

[149]

Tarantino G, Sinatti G, Citro V, Santini S, Jr., Balsano C. Sarcopenia, a condition shared by various diseases: can we alleviate or delay the progression? Intern Emerg Med. 2023; 18(7): 1887-1895.

[150]

Zamboni M, Rubele S, Rossi AP. Sarcopenia and obesity. Curr Opin Clin Nutr Metab Care. 2019; 22(1): 13-19.

[151]

Mai X, Yang S, Chen Q, Chen K. Gut microbial composition is altered in sarcopenia: A systematic review and meta-analysis of clinical studies. PLoS One. 2024; 19(8): e0308360.

[152]

Lapauw L, Rutten A, Dupont J, et al. Associations between gut microbiota and sarcopenia or its defining parameters in older adults: A systematic review. J Cachexia Sarcopenia Muscle. 2024.

[153]

Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism. 2024; 160: 155998.

[154]

Chawla N, Zengin Z, K Lee, et al. Metagenomic analysis of the gut microbiome in metastatic renal cell carcinoma patients with sarcopenia. IKCS North America. November 4–5, 2022; 2022: Abstract 45.

[155]

Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. J Hepatol. 2019; 70(2): 294-304.

[156]

Zhang H, Li C, Han L, et al. MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis. Gut Microbes. 2024; 16(1): 2367342.

[157]

Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014; 343(6178): 1249288.

[158]

Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017; 4: 14.

[159]

Lehmann FM, von Burg N, Ivanek R, et al. Microbiota-induced tissue signals regulate ILC3-mediated antigen presentation. Nat Commun. 2020; 11(1): 1794.

[160]

Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest. 2007; 117(8): 2197-2204.

[161]

Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018; 359(6371): 97-103.

[162]

Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015; 350(6264): 1084-1089.

[163]

Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013; 342(6161): 971-976.

[164]

Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019; 565(7741): 600-605.

[165]

Gao J, Shi LZ, Zhao H, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016; 167(2): 397-404.e9.

[166]

Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017; 114(40): 10713-10718.

[167]

Wang B, Qiu Y, Xie M, et al. Gut microbiota Parabacteroides distasonis enchances the efficacy of immunotherapy for bladder cancer by activating anti-tumor immune responses. BMC Microbiol. 2024; 24(1): 237.

[168]

Chamarande J, Cunat L, Pavlov N, Alauzet C, Cailliez-Grimal C. Parabacteroides distasonis properties linked to the selection of new biotherapeutics. Nutrients. 2022; 14(19): 4176.

[169]

Hiippala K, Kainulainen V, Suutarinen M, et al. Isolation of anti-inflammatory and epithelium reinforcing Bacteroides and Parabacteroides Spp. from a healthy fecal donor. Nutrients. 2020; 12(4): 935.

[170]

Buckner CM, Moir S, Kardava L, et al. CXCR4/IgG-expressing plasma cells are associated with human gastrointestinal tissue inflammation. J Allergy Clin Immunol. 2014; 133(6): 1676-85.e5.

[171]

Brīvība M, Silamiķele L, Kalniņa I, et al. Metformin targets intestinal immune system signaling pathways in a high-fat diet-induced mouse model of obesity and insulin resistance. Front Endocrinol (Lausanne). 2023; 14: 1232143.

[172]

Ouyang W. Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine Growth Factor Rev. 2010; 21(6): 435-441.

[173]

Bao Z, Wei R, Zheng X, et al. Landscapes of gut microbiome and bile acid signatures and their interaction in HBV-associated acute-on-chronic liver failure. Front Microbiol. 2023; 14: 1185993.

[174]

Ma C, Yuan D, Renaud SJ, et al. Chaihu-shugan-san alleviates depression-like behavior in mice exposed to chronic unpredictable stress by altering the gut microbiota and levels of the bile acids hyocholic acid and 7-ketoDCA. Front Pharmacol. 2022; 13: 1040591.

[175]

Cuffaro B, Boutillier D, Desramaut J, et al. Characterization of two Parabacteroides distasonis candidate strains as new live biotherapeutics against obesity. Cells. 2023; 12(9): 1260.

[176]

Zhao Q, Yu J, Zhou H, et al. Intestinal dysbiosis exacerbates the pathogenesis of psoriasis-like phenotype through changes in fatty acid metabolism. Signal Transduct Target Ther. 2023; 8(1): 40.

[177]

Pegg AE. The function of spermine. IUBMB Life. 2014; 66(1): 8-18.

[178]

Blake KJ, Baral P, Voisin T, et al. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat Commun. 2018; 9(1): 37.

[179]

Ma F, Li Z, Liu H, et al. Dietary-timing-induced gut microbiota diurnal oscillations modulate inflammatory rhythms in rheumatoid arthritis. Cell Metab. 2024;S1550-4131(24)00334-6.

[180]

Kaur AP, Bhardwaj S, Dhanjal DS, et al. Plant prebiotics and their role in the amelioration of diseases. Biomolecules. 2021; 11(3): 440.

[181]

Zhu L, Li S, Zheng W, Ni W, Cai M, Liu H. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy. Front Immunol. 2023; 14: 1086078.

[182]

Salvatore S, Battigaglia MS, Murone E, Dozio E, Pensabene L, Agosti M. Dietary fibers in healthy children and in pediatric gastrointestinal disorders: A practical guide. Nutrients. 2023; 15(9): 2208.

[183]

Lopez-Santamarina A, Cardelle-Cobas A, Del Carmen Mondragon A, Sinisterra-Loaiza L, Miranda JM, Cepeda A. Evaluation of the potential prebiotic effect of Himanthalia elongata, an Atlantic brown seaweed, in an in vitro model of the human distal colon. Food Res Int. 2022; 156: 111156.

[184]

Lv K, Yuan Q, Li H, et al. Chlorella pyrenoidosa polysaccharides as a prebiotic to modulate gut microbiota: physicochemical properties and fermentation characteristics in vitro. Foods. 2022; 11(5): 725.

[185]

An C, Kuda T, Yazaki T, Takahashi H, Kimura B. FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas. Appl Environ Microbiol. 2013; 79(3): 860-866.

[186]

Liu Z, Zhang Y, Ai C, et al. Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model. Food Res Int. 2021; 148: 110562.

[187]

Liu Z, Hu Y, Tao X, et al. Metabolites of sea cucumber sulfated polysaccharides fermented by Parabacteroides distasonis and their effects on cross-feeding. Food Res Int. 2023; 167: 112633.

[188]

Thirion F, Da Silva K, Plaza Oñate F, et al. Diet Supplementation with NUTRIOSE, a resistant dextrin, increases the abundance of Parabacteroides distasonis in the human gut. Mol Nutr Food Res. 2022; 66(11): e2101091.

[189]

J Abell GC, Christophersen CT, McOrist AL, Clarke JM. Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats. Br J Nutr. 2011; 105(10): 1480-1485.

[190]

Clarke JM, Topping DL, Christophersen CT, et al. Butyrate esterified to starch is released in the human gastrointestinal tract. Am J Clin Nutr. 2011; 94(5): 1276-1283.

[191]

Cai W, Xu J, Li G, et al. Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice. Food Res Int. 2020; 130: 108939.

[192]

Liu Z, Chen Q, Zhang C, Ni L. Comparative study of the anti-obesity and gut microbiota modulation effects of green tea phenolics and their oxidation products in high-fat-induced obese mice. Food Chem. 2022; 367: 130735.

[193]

Polimeno L, Barone M, Mosca A, et al. Soy metabolism by gut microbiota from patients with precancerous intestinal lesions. Microorganisms. 2020; 8(4): 469.

[194]

Song H, Shen X, Chu Q, Zheng X. Pomegranate fruit pulp polyphenols reduce diet-induced obesity with modulation of gut microbiota in mice. J Sci Food Agric. 2022; 102(5): 1968-1977.

[195]

Huang Y, Zheng Y, Yang F, et al. Lycium barbarum Glycopeptide prevents the development and progression of acute colitis by regulating the composition and diversity of the gut microbiota in mice. Front Cell Infect Microbiol. 2022; 12: 921075.

[196]

Zhang R, Wu J, Lei Y, et al. Oregano essential oils promote rumen digestive ability by modulating epithelial development and microbiota composition in beef cattle. Front Nutr. 2021; 8: 722557.

[197]

Wang T, Zhang C, Li H, et al. The underlying rationality of Chinese medicine herb pair Coptis chinensis and Dolomiaea souliei: From the perspective of metabolomics and intestinal function. J Ethnopharmacol. 2022; 289: 115065.

[198]

Xu Y, Wang N, Tan H-Y, et al. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Theranostics. 2020; 10(24): 11302-11323.

[199]

Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol. 2023; 13: 1268041.

[200]

Alam Z, Shang X, Effat K, et al. The potential role of prebiotics, probiotics, and synbiotics in adjuvant cancer therapy especially colorectal cancer. J Food Biochem. 2022; 46(10): e14302.

[201]

Wu Y, Li Y, Zheng Q, Li L. The Efficacy of Probiotics, Prebiotics, synbiotics, and fecal microbiota transplantation in irritable bowel syndrome: a systematic review and network meta-analysis. Nutrients. 2024; 16(13): 2114.

[202]

Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity? Gastroenterology. 2020; 158(7): 1881-1898.

[203]

Guardamagna M, Berciano-Guerrero M-A, Villaescusa-González B, et al. Gut microbiota and therapy in metastatic melanoma: focus on MAPK pathway inhibition. Int J Mol Sci. 2022; 23(19): 11990.

[204]

Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017; 66(4): 569-580.

[205]

Wang Y, Hunt A, Danziger L, Drwiega EN. A Comparison of currently available and investigational fecal microbiota transplant products for pecurrent Clostridioides difficile infection. Antibiotics (Basel). 2024; 13(5): 436.

[206]

Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-Week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019; 321(2): 156-164.

[207]

Ahn SB, Jun DW, Kang B-K, Lim JH, Lim S, Chung M-J. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep. 2019; 9(1): 5688.

[208]

El-Salhy M, Hatlebakk JG, Gilja OH, Bråthen Kristoffersen A, Hausken T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020; 69(5): 859-867.

[209]

West NP, Christophersen CT, Pyne DB, et al. Butyrylated starch increases colonic butyrate concentration but has limited effects on immunity in healthy physically active individuals. Exerc Immunol Rev. 2013; 19: 102-119.

[210]

Le Leu RK, Winter JM, Christophersen CT, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015; 114(2): 220-230.

[211]

Kiewiet MBG, Elderman ME, El Aidy S, et al. Flexibility of gut microbiota in ageing individuals during dietary fiber long-chain inulin intake. Mol Nutr Food Res. 2021; 65(4): e2000390.

[212]

Hu X, Xia K, Dai M, et al. Intermittent fasting modulates the intestinal microbiota and improves obesity and host energy metabolism. NPJ Biofilms Microbiomes. 2023; 9(1): 19.

[213]

Zhou J, Wu X, Xiang T, et al. Dynamical alterations of brain function and gut microbiome in weight loss. Front Cell Infect Microbiol. 2023; 13: 1269548.

[214]

García-Bayona L, Comstock LE. Streamlined Genetic Manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio. 2019; 10(4):e01762-19.

[215]

Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. Postbiotics-a step beyond pre-and probiotics. Nutrients. 2020; 12(8): 2189.

[216]

Koh E, Hwang IY, Lee HL, et al. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat Commun. 2022; 13(1): 3834.

[217]

Beukema M, Faas MM, de Vos P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp Mol Med. 2020; 52(9): 1364-1376.

[218]

Gotteland M, Riveros K, Gasaly N, et al. The pros and cons of using algal polysaccharides as prebiotics. Front Nutr. 2020; 7: 163.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/