RNA N4-acetylcytidine modification and its role in health and diseases

Qiang Wang , Yixiao Yuan , Qiang Zhou , Ying Dong Jia , Jing Liu , Guang Jun Xiao , Chunhong Li , Xiulin Jiang

MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70015

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70015 DOI: 10.1002/mco2.70015
REVIEW

RNA N4-acetylcytidine modification and its role in health and diseases

Author information +
History +
PDF

Abstract

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood. This review first outlines the key regulatory enzyme mediating ac4C modification, N-acetyltransferase 10 (NAT10), including its critical roles in regulating RNA stability, transcriptional efficiency, and translational fidelity. Additionally, it systematically summarizes the essential functions and mechanisms of ac4C modification in normal biological processes, including stem cell fate determination, spermatogenesis and oogenesis, embryonic development, cellular senescence, and bone remodeling. Furthermore, this review delves into the central roles and molecular mechanisms of ac4C modification in regulating malignant proliferation, cell cycle arrest, EMT, drug resistance, cell death, cancer metabolism, and tumor immunotherapy. It also emphasizes the potential of NAT10 as a prognostic biomarker and its therapeutic potential as a target for disease treatment. In summary, this review clarifies the multifaceted roles of ac4C modification in both health and disease and explores NAT10-targeted therapies with the aim of advancing cancer research and improving patient outcomes.

Keywords

human cancer / N4-acetylcytidine / NAT10 / pathology / physiology / RNA modification / tumor immunotherapy

Cite this article

Download citation ▾
Qiang Wang, Yixiao Yuan, Qiang Zhou, Ying Dong Jia, Jing Liu, Guang Jun Xiao, Chunhong Li, Xiulin Jiang. RNA N4-acetylcytidine modification and its role in health and diseases. MedComm, 2025, 6(1): e70015 DOI:10.1002/mco2.70015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO, Pessoa C. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics. 2019; 14(12): 1164-1176.

[2]

Hogg SJ, Beavis PA, Dawson MA, Johnstone RW. Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discovery. 2020; 19(11): 776-800.

[3]

Bošković A, Rando OJ. Transgenerational Epigenetic Inheritance. Annu Rev Genet. 2018; 52: 21-41.

[4]

Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 2023; 39(1): 74-88.

[5]

Morselli M, Dieci G. Epigenetic regulation of human non-coding RNA gene transcription. Biochem Soc Trans. 2022; 50(2): 723-736.

[6]

Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. Mol Biomedi. 2023; 4(1): 25.

[7]

Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N(7)-methylguanosine (m7G) in cancer. J Hematol Oncol. 2022; 15(1): 63.

[8]

Huang M, Long J, Yao Z, et al. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res. 2023; 83(1): 89-102.

[9]

Wang Y, Wei J, Feng L, et al. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol Cancer. 2023; 22(1): 81.

[10]

Xie L, Zhong X, Cao W, Liu J, Zu X, Chen L. Mechanisms of NAT10 as ac4C writer in diseases. Mol Ther Nucleic Acids. 2023; 32: 359-368.

[11]

Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020; 1253: 3-55.

[12]

Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150(1): 12-27.

[13]

An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022; 21(1): 14.

[14]

Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019; 112: 108613.

[15]

Qin Y, Li L, Luo E, et al. Role of m6A RNA methylation in cardiovascular disease (review). Int J Mol Med. 2020; 46(6): 1958-1972.

[16]

Ma S, Chen C, Ji X, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019; 12(1): 121.

[17]

Huang M, Xu S, Liu L, et al. m6A methylation regulates osteoblastic differentiation and bone remodeling. Front Cell Dev Biol. 2021; 9: 783322.

[18]

Wei J, Yu X, Yang L, et al. FTO mediates LINE1 m(6)A demethylation and chromatin regulation in mESCs and mouse development. Science. 2022; 376(6596): 968-973.

[19]

Zhu ZM, Huo FC, Zhang J, Shan HJ, Pei DS. Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med. 2023; 13(10): e1460.

[20]

He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019; 18(1): 176.

[21]

Arango D, Sturgill D, Yang R, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022; 82(15): 2797-2814.e11.

[22]

Thomas JM, Bryson KM, Meier JL. Nucleotide resolution sequencing of N4-acetylcytidine in RNA. Methods Enzymol. 2019; 621: 31-51.

[23]

Sas-Chen A, Thomas JM, Matzov D, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020; 583(7817): 638-643.

[24]

Bruenger E, Kowalak JA, Kuchino Y, et al. 5S rRNA modification in the hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum. FASEB J. 1993; 7(1): 196-200.

[25]

Zhang W, Gao J, Fan L, et al. ac4C acetylation regulates mRNA stability and translation efficiency in osteosarcoma. Heliyon. 2023; 9(6): e17103.

[26]

Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018; 175(7): 1872-1886.e24.

[27]

Ito S, Akamatsu Y, Noma A, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. J Biol Chem. 2014; 289(38): 26201-26212.

[28]

Wei W, Zhang S, Han H, et al. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer. Cell Rep. 2023; 42(7): 112810.

[29]

Ito S, Horikawa S, Suzuki T, et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014; 289(52): 35724-35730.

[30]

Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells. 2019; 8(9)

[31]

Luo J, Cao J, Chen C, Xie H. Emerging role of RNA acetylation modification ac4C in diseases: current advances and future challenges. Biochem Pharmacol. 2023; 213: 115628.

[32]

Ma CR, Liu N, Li H, Xu H, Zhou XL. Activity reconstitution of Kre33 and Tan1 reveals a molecular ruler mechanism in eukaryotic tRNA acetylation. Nucleic Acids Res. 2024; 52(9): 5226-5240.

[33]

Wang G, Zhang M, Zhang Y, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022; 12(5): e738.

[34]

Liao L, He Y, Li SJ, et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res. 2023; 33(5): 355-371.

[35]

Zhang Y, Lei Y, Dong Y, et al. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther. 2024; 253: 108576.

[36]

Whipple JM, Lane EA, Chernyakov I, D’Silva S, Phizicky EM. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev. 2011; 25(11): 1173-1184.

[37]

Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 2005; 33(Database issue): D139-40.

[38]

Thomas G, Gordon J, Rogg H. N4-Acetylcytidine. A previously unidentified labile component of the small subunit of eukaryotic ribosomes. J Biol Chem. 1978; 253(4): 1101-1105.

[39]

Harada F, Matsubara M, Kato N. Stable tRNA precursors in HeLa cells. Nucleic Acids Res. 1984; 12(24): 9263-9269.

[40]

Sharma S, Langhendries JL, Watzinger P, Kötter P, Entian KD, Lafontaine DL. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015; 43(4): 2242-2258.

[41]

Ikeuchi Y, Kitahara K, Suzuki T. The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. EMBO J. 2008; 27(16): 2194-2203.

[42]

Tardu M, Jones JD, Kennedy RT, Lin Q, Koutmou KS. Identification and quantification of modified nucleosides in Saccharomyces cerevisiae mRNAs. ACS Chem Biol. 2019; 14(7): 1403-1409.

[43]

Thomas JM, Briney CA, Nance KD, et al. A chemical signature for cytidine acetylation in RNA. J Am Chem Soc. 2018; 140(40): 12667-12670.

[44]

Sinclair WR, Arango D, Shrimp JH, et al. Profiling cytidine acetylation with specific affinity and reactivity. ACS Chem Biol. 2017; 12(12): 2922-2926.

[45]

Anwar Khan F, Chen X, Shoaib M, et al. Two dimensional gel electrophoresis (2-DE) for high-throughput proteome analyses of Mycoplasma bovis. Acta Biochim Pol. 2019; 66(3): 321-327.

[46]

Rudkin TM, Arnold DL. Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol. 1999; 56(8): 919-926.

[47]

Rebay I, Fehon RG. Dot blot assay for determining fusion protein antiserum quality. Cold Spring Harb Protoc. 2011; 2011(1):pdb.prot4998.

[48]

Beiki H, Sturgill D, Arango D, Relier S, Schiffers S, Oberdoerffer S. Detection of ac4C in human mRNA is preserved upon data reassessment. Mol Cell. 2024; 84(8): 1611-1625.e3.

[49]

Zhao W, Zhou Y, Cui Q, Zhou Y. PACES: prediction of N4-acetylcytidine (ac4C) modification sites in mRNA. Sci Rep. 2019; 9(1): 11112.

[50]

Kawai G, Ue H, Yasuda M, et al. Relation between functions and conformational characteristics of modified nucleosides found in tRNAs. Nucleic Acids Symp Ser. 1991;(25): 49-50.

[51]

Jin C, Wang T, Zhang D, et al. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac(4)C acetylation of KIF23 mRNA. J Exp Clin Cancer Res. 2022; 41(1): 345.

[52]

Thalalla Gamage S, Sas-Chen A, Schwartz S, Meier JL. Quantitative nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq. Nat Protoc. 2021; 16(4): 2286-2307.

[53]

Gao J, Xu P, Wang F, et al. Revealing the pharmacological effects of Remodelin against osteosarcoma based on network pharmacology, acRIP-seq and experimental validation. Sci Rep. 2024; 14(1): 3577.

[54]

Sturgill D, Arango D, Oberdoerffer S. Protocol for base resolution mapping of ac4C using RedaC:T-seq. STAR Protoc. 2022; 3(4): 101858.

[55]

Zhang H, Hou W, Wang HL, et al. GSK-3β-regulated N-acetyltransferase 10 is involved in colorectal cancer invasion. Clin Cancer Res. 2014; 20(17): 4717-4729.

[56]

Silva AP, Byrne RT, Chechik M, Smits C, Waterman DG, Antson AA. Expression, purification, crystallization and preliminary X-ray studies of the TAN1 orthologue from Methanothermobacter thermautotrophicus. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008; 64(Pt 11): 1083-1086.

[57]

Zhou Y, Chen C, Johansson MJ. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res. 2013; 41(11): 5669-5678.

[58]

Mohler K, Ibba M. Translational fidelity and mistranslation in the cellular response to stress. Nat Microbiol. 2017; 2: 17117.

[59]

She R, Luo J, Weissman JS. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Res. 2023; 51(12): 6355-6369.

[60]

Stern L, Schulman LH. The role of the minor base N4-acetylcytidine in the function of the Escherichia coli noninitiator methionine transfer RNA. J Biol Chem. 1978; 253(17): 6132-6139.

[61]

Kumbhar BV, Kamble AD, Sonawane KD. Conformational preferences of modified nucleoside N(4)-acetylcytidine, ac4C occur at “wobble” 34th position in the anticodon loop of tRNA. Cell Biochem Biophys. 2013; 66(3): 797-816.

[62]

Wu Q, Bazzini AA. Translation and mRNA Stability Control. Annu Rev Biochem. 2023; 92: 227-245.

[63]

Vlasova-St Louis I, Bohjanen PR. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev. 2017; 33: 83-93.

[64]

Dominissini D, Rechavi G. N(4)-acetylation of cytidine in mRNA by NAT10 regulates stability and translation. Cell. 2018; 175(7): 1725-1727.

[65]

Ohira T, Suzuki T. Transfer RNA modifications and cellular thermotolerance. Mol Cell. 2024; 84(1): 94-106.

[66]

Ohira T, Minowa K, Sugiyama K, et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature. 2022; 605(7909): 372-379.

[67]

Johansson MJ, Byström AS. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA. 2004; 10(4): 712-719.

[68]

Xu F, Zhou Y, Byström AS, Johansson MJO. Identification of factors that promote biogenesis of tRNA(CGA)(Ser). RNA Biol. 2018; 15(10): 1286-1294.

[69]

Orita I, Futatsuishi R, Adachi K, et al. Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance. Nucleic Acids Res. 2019; 47(4): 1964-1976.

[70]

Hori Y, Engel C, Kobayashi T. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol. 2023; 24(6): 414-429.

[71]

Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: from development to cancer. Semin Cell Dev Biol. 2023; 136: 64-74.

[72]

Denisenko O. Epigenetics of ribosomal RNA genes. Biochemistry (Mosc). 2022; 87(Suppl 1): S103-s31.

[73]

Gallagher JEG. Proteins and RNA sequences required for the transition of the t-Utp complex into the SSU processome. FEMS Yeast Res. 2019; 19(1):foy120

[74]

Gassmann R, Henzing AJ, Earnshaw WC. Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma. 2005; 113(7): 385-397.

[75]

Kong R, Zhang L, Hu L, et al. hALP, a novel transcriptional U three protein (t-UTP), activates RNA polymerase I transcription by binding and acetylating the upstream binding factor (UBF). J Biol Chem. 2011; 286(9): 7139-7148.

[76]

Cai S, Liu X, Zhang C, Xing B, Du X. Autoacetylation of NAT10 is critical for its function in rRNA transcription activation. Biochem Biophys Res Commun. 2017; 483(1): 624-629.

[77]

Yu XM, Li SJ, Yao ZT, et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 2023; 42(14): 1101-1116.

[78]

Feng Z, Li K, Qin K, et al. The LINC00623/NAT10 signaling axis promotes pancreatic cancer progression by remodeling ac4C modification of mRNA. J Hematol Oncol. 2022; 15(1): 112.

[79]

Mei Z, Shen Z, Pu J, et al. NAT10 mediated ac4C acetylation driven m(6)A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun Signal. 2024; 22(1): 51.

[80]

Liu S, Lin C, Lin X, et al. NAT10 phase separation regulates YTHDF1 splicing to promote gastric cancer progression. Cancer Res. 2024; 84(19): 3207-3222

[81]

Qiu X, Deng Z, Wang M, Feng Y, Bi L, Li L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum Cell. 2023; 36(2): 540-553.

[82]

Lv H, Wang H, Zhang Z, et al. Biomaterial stiffness determines stem cell fate. Life Sci. 2017; 178: 42-48.

[83]

Deng M, Zhang L, Zheng W, et al. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. J Exp Clin Cancer Res. 2023; 42(1): 9.

[84]

Yang Q, Lei X, He J, et al. N4-acetylcytidine drives glycolysis addiction in gastric cancer via NAT10/SEPT9/HIF-1α positive feedback loop. Adv Sci (Weinh). 2023; 10(23): e2300898.

[85]

Liu R, Wubulikasimu Z, Cai R, et al. NAT10-mediated N4-acetylcytidine mRNA modification regulates self-renewal in human embryonic stem cells. Nucleic Acids Res. 2023; 51(16): 8514-8531.

[86]

Hu Z, Lu Y, Cao J, et al. N-acetyltransferase NAT10 controls cell fates via connecting mRNA cytidine acetylation to chromatin signaling. Sci Adv. 2024; 10(2): eadh9871.

[87]

Ge J, Wang Z, Wu J. NAT10-mediated ac(4)C modification promotes ectoderm differentiation of human embryonic stem cells via acetylating NR2F1 mRNA. Cell Prolif. 2024; 57(4): e13577.

[88]

Saitou M, Hayashi K. Mammalian in vitro gametogenesis. Science. 2021; 374(6563): eaaz6830.

[89]

Chen L, Wang WJ, Liu Q, et al. NAT10-mediated N4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Res. 2022; 50(19): 10896-10913.

[90]

Xiang Y, Zhou C, Zeng Y, et al. NAT10-mediated N4-acetylcytidine of RNA contributes to post-transcriptional regulation of mouse oocyte maturation in vitro. Front Cell Dev Biol. 2021; 9: 704341.

[91]

Lin J, Xiang Y, Huang J, et al. NAT10 maintains OGA mRNA stability through ac4C modification in regulating oocyte maturation. Front Endocrinol (Lausanne). 2022; 13: 907286.

[92]

Jiang X, Cheng Y, Zhu Y, et al. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun. 2023; 14(1): 3729.

[93]

Rossant J, Tam PPL. Early human embryonic development: Blastocyst formation to gastrulation. Dev Cell. 2022; 57(2): 152-165.

[94]

Zhai J, Xiao Z, Wang Y, Wang H. Human embryonic development: from peri-implantation to gastrulation. Trends Cell Biol. 2022; 32(1): 18-29.

[95]

Lv J, Liu H, Wang Q, Tang Z, Hou L, Zhang B. Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun. 2003; 311(2): 506-513.

[96]

Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science. 2014; 344(6183): 527-532.

[97]

Yang W, Li HY, Wu YF, et al. ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss. Mol Ther Nucleic Acids. 2021; 26: 135-147.

[98]

Balmus G, Larrieu D, Barros AC, et al. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun. 2018; 9(1): 1700.

[99]

Larrieu D, Viré E, Robson S, Breusegem SY, Kouzarides T, Jackson SP. Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway. Sci Signal. 2018; 11(537)

[100]

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017; 58(5): 235-263.

[101]

Williams AB, Schumacher B. p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 2016; 6(5):a026070

[102]

Ling Y, Liu HJ, Hou L, Zhang B. Enhanced expression of halp gene confers cellular resistance to H2O2 induced senescence. Chin Med Sci J. 2006; 21(1): 1-5.

[103]

Liu X, Tan Y, Zhang C, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016; 17(3): 349-366.

[104]

Liu H, Ling Y, Gong Y, Sun Y, Hou L, Zhang B. DNA damage induces N-acetyltransferase NAT10 gene expression through transcriptional activation. Mol Cell Biochem. 2007; 300(1-2): 249-258.

[105]

Peterman E, Prekeris R. The postmitotic midbody: Regulating polarity, stemness, and proliferation. J Cell Biol. 2019; 218(12): 3903-3911.

[106]

Shen Q, Zheng X, McNutt MA, et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res. 2009; 315(10): 1653-1667.

[107]

Antonin W, Neumann H. Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol. 2016; 40: 15-22.

[108]

Chi YH, Haller K, Peloponese JM, Jr., Jeang KT. Histone acetyltransferase hALP and nuclear membrane protein hsSUN1 function in de-condensation of mitotic chromosomes. J Biol Chem. 2007; 282(37): 27447-27458.

[109]

Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023; 24(8): 560-575.

[110]

Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010; 221(1): 3-12.

[111]

Liu X, Cai S, Zhang C, et al. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res. 2018; 46(18): 9601-9616.

[112]

Hadjidakis DJ, Androulakis, II. Bone remodeling. Ann NY Acad Sci. 2006; 1092: 385-396.

[113]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-674.

[114]

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022; 12(1): 31-46.

[115]

Zong G, Wang X, Guo X, et al. NAT10-mediated AXL mRNA N4-acetylcytidine modification promotes pancreatic carcinoma progression. Exp Cell Res. 2023; 428(2): 113620.

[116]

Li Z, Li D, Yang T, Yao C. NAT10 promotes the tumorigenesis and progression of laryngeal squamous cell carcinoma through ac4C modification of FOXM1 mRNA. Cancer Biol Ther. 2023; 24(1): 2274143.

[117]

Oh TI, Lee YM, Lim BO, Lim JH. Inhibition of NAT10 suppresses melanogenesis and melanoma growth by attenuating microphthalmia-associated transcription factor (MITF) expression. Int J Mol Sci. 2017; 18(9): 1924

[118]

Ma N, Liu H, Wu Y, Yao M, Zhang B. Inhibition of N-Acetyltransferase 10 Suppresses the Progression of Prostate Cancer through Regulation of DNA Replication. Int J Mol Sci. 2022; 23(12): 6573

[119]

Miao D, Shi J, Lv Q, et al. NAT10-mediated ac(4)C-modified ANKZF1 promotes tumor progression and lymphangiogenesis in clear-cell renal cell carcinoma by attenuating YWHAE-driven cytoplasmic retention of YAP1. Cancer Commun (Lond). 2024; 44(3): 361-383.

[120]

Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annual review of pathology. 2015; 10: 425-448.

[121]

Wang Z. Cell cycle progression and synchronization: an overview. Methods Mol Biol. 2022; 2579: 3-23.

[122]

Wang Z, Luo J, Huang H, et al. NAT10-mediated upregulation of GAS5 facilitates immune cell infiltration in non-small cell lung cancer via the MYBBP1A-p53/IRF1/type I interferon signaling axis. Cell Death Discov. 2024; 10(1): 240.

[123]

Liu X, Liu X, Zhuo C, et al. NAT10 promotes malignant progression of lung cancer via the NF-κB signaling pathway. Discov Med. 2023; 35(179): 936-945.

[124]

Li Q, Liu X, Jin K, et al. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity. BMC Cancer. 2017; 17(1): 605.

[125]

Wang T, Zou Y, Huang N, Teng J, Chen J. CCDC84 acetylation oscillation regulates centrosome duplication by modulating HsSAS-6 degradation. Cell Rep. 2019; 29(7): 2078-2091.e5.

[126]

Zou YJ, Shan MM, Wan X, et al. Kinesin KIF15 regulates tubulin acetylation and spindle assembly checkpoint in mouse oocyte meiosis. Cell Mol Life Sci. 2022; 79(8): 422.

[127]

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15(3): 178-196.

[128]

Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018; 13: 395-412.

[129]

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019; 20(2): 69-84.

[130]

Pan Z, Bao Y, Hu M, et al. Role of NAT10-mediated ac4C-modified HSP90AA1 RNA acetylation in ER stress-mediated metastasis and lenvatinib resistance in hepatocellular carcinoma. Cell Death Discov. 2023; 9(1): 56.

[131]

Guo Q, Yu W, Tan J, et al. Remodelin delays non-small cell lung cancer progression by inhibiting NAT10 via the EMT pathway. Cancer Med. 2024; 13(11): e7283.

[132]

Liu Z, Liu X, Li Y, et al. miR-6716-5p promotes metastasis of colorectal cancer through downregulating NAT10 expression. Cancer Manag Res. 2019; 11: 5317-5332.

[133]

Tan Y, Zheng J, Liu X, et al. Loss of nucleolar localization of NAT10 promotes cell migration and invasion in hepatocellular carcinoma. Biochem Biophys Res Commun. 2018; 499(4): 1032-1038.

[134]

Li KJ, Hong Y, Yu YZ, et al. NAT10 promotes prostate cancer growth and metastasis by acetylating mRNAs of HMGA1 and KRT8. Adv Sci (Weinh). 2024:e2310131.

[135]

Wu J, Zhu H, Wu J, Chen W, Guan X. Inhibition of N-acetyltransferase 10 using remodelin attenuates doxorubicin resistance by reversing the epithelial-mesenchymal transition in breast cancer. Am J Transl Res. 2018; 10(1): 256-264.

[136]

Vittal R, Fan L, Greenspan DS, et al. IL-17 induces type V collagen overexpression and EMT via TGF-β-dependent pathways in obliterative bronchiolitis. Am J Physiol Lung Cell Mol Physiol. 2013; 304(6): L401-14.

[137]

Zhang Y, Jing Y, Wang Y, et al. NAT10 promotes gastric cancer metastasis via N4-acetylated COL5A1. Signal Transduct Target Ther. 2021; 6(1): 173.

[138]

Long Y, Ren Y, Wei Q, et al. NAT10-mediated RNA acetylation enhances HNRNPUL1 mRNA stability to contribute cervical cancer progression. Int J Med Sci. 2023; 20(8): 1079-1090.

[139]

Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y. Programmed cell death tunes tumor immunity. Front Immunol. 2022; 13: 847345.

[140]

Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022; 15(1): 174.

[141]

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013; 31: 51-72.

[142]

Zheng X, Wang Q, Zhou Y, et al. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun (Lond). 2022; 42(12): 1347-1366.

[143]

Dalhat MH, Choudhry H, Khan MI. NAT10, an RNA cytidine acetyltransferase, regulates ferroptosis in cancer cells. Antioxidants (Basel). 2023; 12(5)

[144]

Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res. 2019; 47(16): 8502-8520.

[145]

Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer. 2023; 9(5): 381-396.

[146]

Sun W, Shen X, Wang X, Zhang X, Ji Y, Wang J. Correlation of NAT10 expression with clinical data and survival profiles in esophageal squamous cell carcinoma patients, and its impact on cell proliferation and apoptosis. Histol Histopathol. 2024:18752.

[147]

Wei R, Cui X, Min J, et al. NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharm Sin B. 2022; 12(8): 3313-3325.

[148]

Liang SP, Wang XZ, Piao MH, et al. Activated SIRT1 contributes to DPT-induced glioma cell parthanatos by upregulation of NOX2 and NAT10. Acta Pharmacol Sin. 2023; 44(10): 2125-2138.

[149]

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021; 22(4): 266-282.

[150]

Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021; 18(5): 280-296.

[151]

Zeng F, Nijiati S, Tang L, Ye J, Zhou Z, Chen X. Ferroptosis detection: from approaches to applications. Angew Chem Int Ed Engl. 2023; 62(35): e202300379.

[152]

Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020; 11(2): 88.

[153]

Sun Y, Chen P, Zhai B, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020; 127: 110108.

[154]

Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022; 289(22): 7038-7050.

[155]

Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022; 21(1): 47.

[156]

Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022; 82(12): 2215-2227.

[157]

Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019; 12(1): 34.

[158]

Qu Z, Pang X, Mei Z, et al. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury. Redox Biol. 2024; 72: 103145.

[159]

Shen J, Sun Y, Zhuang Q, Xue D, He X. NAT10 promotes renal ischemia-reperfusion injury via activating NCOA4-mediated ferroptosis. Heliyon. 2024; 10(2): e24573.

[160]

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021; 31(2): 107-125.

[161]

Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 2014; 347(2): 159-166.

[162]

Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020; 88(1): 26-40.

[163]

Rodenhuis S. Drug resistance. Curr Opin Oncol. 1989; 1(2): 236-240.

[164]

Zhao CC, Sun X, Chen J, Geng BD. NAT10-mediated mRNA N4-acetylcytidine modification of MDR1 and BCRP promotes breast cancer progression. Thorac Cancer. 2024; 15(10): 820-829.

[165]

Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-Associated DNA repair in bladder cancer. Cancer Res. 2023; 83(10): 1666-1683.

[166]

Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016; 17(12): 1721-1730.

[167]

Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008; 13(6): 472-482.

[168]

Wu Y, Cao Y, Liu H, Yao M, Ma N, Zhang B. Remodelin, an inhibitor of NAT10, could suppress hypoxia-induced or constitutional expression of HIFs in cells. Mol Cell Biochem. 2020; 472(1-2): 19-31.

[169]

Chen X, Hao Y, Liu Y, et al. NAT10/ac4C/FOXP1 promotes malignant progression and facilitates immunosuppression by reprogramming glycolytic metabolism in cervical cancer. Adv Sci (Weinh). 2023; 10(32): e2302705.

[170]

Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021; 221: 107753.

[171]

Arneth B. Tumor microenvironment. Medicina (Kaunas). 2019; 56(1)

[172]

Guo D, Tong Y, Jiang X, et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 2022; 34(9): 1312-1324.e6.

[173]

Kearney CJ, Vervoort SJ, Hogg SJ, et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol. 2018; 3(23)

[174]

Zhu Q, Wang H, Chai S, et al. O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation. Proc Nat Acad Sci USA. 2023; 120(13): e2216796120.

[175]

Liu Z, Wang T, She Y, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021; 20(1): 105.

[176]

Qin G, Bai F, Hu H, et al. Targeting the NAT10/NPM1 axis abrogates PD-L1 expression and improves the response to immune checkpoint blockade therapy. Mol Med. 2024; 30(1): 13.

[177]

Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy. Semin Oncol Nurs. 2019; 35(5): 150923.

[178]

Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020; 70(2): 86-104.

[179]

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020; 17(8): 807-821.

[180]

Szeto GL, Finley SD. Integrative approaches to cancer immunotherapy. Trends Cancer. 2019; 5(7): 400-410.

[181]

Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 2022; 19(12): 775-790.

[182]

Oliveira G, Wu CJ. Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer. 2023; 23(5): 295-316.

[183]

Cha JH, Chan LC, Song MS, Hung MC. New approaches on cancer immunotherapy. Cold Spring Harb Perspect Med. 2020; 10(8):a036863

[184]

Liu Y, Wang X, Liu Y, et al. N4-acetylcytidine-dependent GLMP mRNA stabilization by NAT10 promotes head and neck squamous cell carcinoma metastasis and remodels tumor microenvironment through MAPK/ERK signaling pathway. Cell Death Dis. 2023; 14(11): 712.

[185]

Wardowska A. The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol. 2020; 81: 106262.

[186]

Guo G, Shi X, Wang H, et al. Epitranscriptomic N4-acetylcytidine profiling in CD4(+) T cells of systemic lupus erythematosus. Front Cell Dev Biol. 2020; 8: 842.

[187]

Dang Y, Li J, Li Y, et al. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA. J Virol. 2024; 98(1): e0135023.

[188]

McIntyre W, Netzband R, Bonenfant G, et al. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res. 2018; 46(11): 5776-5791.

[189]

Tsai K, Jaguva Vasudevan AA, Martinez Campos C, Emery A, Swanstrom R, Cullen BR. Acetylation of Cytidine Residues Boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe. 2020; 28(2): 306-312.e6.

[190]

Yan Q, Zhou J, Wang Z, et al. NAT10-dependent N(4)-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation. Nat Commun. 2023; 14(1): 6327.

[191]

Furman D, Chang J, Lartigue L, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017; 23(2): 174-184.

[192]

Law KP, Han TL, Mao X, Zhang H. Tryptophan and purine metabolites are consistently upregulated in the urinary metabolome of patients diagnosed with gestational diabetes mellitus throughout pregnancy: A longitudinal metabolomics study of Chinese pregnant women part 2. Clin Chim Acta. 2017; 468: 126-139.

[193]

Niwa T, Takeda N, Yoshizumi H. RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note. Kidney Int. 1998; 53(6): 1801-1806.

[194]

Shi J, Yang C, Zhang J, et al. NAT10 is involved in cardiac remodeling through ac4C-mediated transcriptomic regulation. Circ Res. 2023; 133(12): 989-1002.

[195]

Bhargava P, Fitzgerald KC, Venkata SLV, et al. Dimethyl fumarate treatment induces lipid metabolism alterations that are linked to immunological changes. Ann Clin Transl Neurol. 2019; 6(1): 33-45.

[196]

Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells. 2021; 10(11)

[197]

Ngian GS. Rheumatoid arthritis. Aust Fam Physician. 2010; 39(9): 626-628.

[198]

Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016; 388(10055): 2023-2038.

[199]

Liu D, Kuang Y, Chen S, et al. NAT10 promotes synovial aggression by increasing the stability and translation of N4-acetylated PTX3 mRNA in rheumatoid arthritis. Ann Rheum Dis. 2024; 83(9): 1118-1131

[200]

Petillo R, D’Ambrosio P, Torella A, et al. Novel mutations in LMNA A/C gene and associated phenotypes. Acta Myol. 2015; 34(2-3): 116-119.

[201]

Simon DN, Wilson KL. Partners and post-translational modifications of nuclear lamins. Chromosoma. 2013; 122(1-2): 13-31.

[202]

Zhang X, Liu J, Yan S, Huang K, Bai Y, Zheng S. High expression of N-acetyltransferase 10: a novel independent prognostic marker of worse outcome in patients with hepatocellular carcinoma. Int J Clin Exp Pathol. 2015; 8(11): 14765-14771.

[203]

Bhawe K, Felty Q, Yoo C, et al. Nuclear respiratory factor 1 (NRF1) transcriptional activity-driven gene signature association with severity of astrocytoma and poor prognosis of glioblastoma. Mol Neurobiol. 2020; 57(9): 3827-3845.

[204]

Liang P, Hu R, Liu Z, Miao M, Jiang H, Li C. NAT10 upregulation indicates a poor prognosis in acute myeloid leukemia. Curr Probl Cancer. 2020; 44(2): 100491.

[205]

Tao W, Tian G, Xu S, Li J, Zhang Z, Li J. NAT10 as a potential prognostic biomarker and therapeutic target for HNSCC. Cancer Cell Int. 2021; 21(1): 413.

[206]

Tan TZ, Miow QH, Huang RY, et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol Med. 2013; 5(7): 1051-1066.

[207]

Zhang X, Chen J, Jiang S, et al. N-acetyltransferase 10 enhances doxorubicin resistance in human hepatocellular carcinoma cell lines by promoting the epithelial-to-mesenchymal transition. Oxid Med Cell Long. 2019; 2019: 7561879.

[208]

Zi J, Han Q, Gu S, et al. Targeting NAT10 induces apoptosis associated with enhancing endoplasmic reticulum stress in acute myeloid leukemia cells. Front Oncol. 2020; 10: 598107.

[209]

Liu HY, Liu YY, Yang F, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020; 48(7): 3638-3656.

[210]

Qi P, Chen YK, Cui RL, et al. [Overexpression of NAT10 induced platinum drugs resistance in breast cancer cell]. Zhonghua Zhong Liu Za Zhi. 2022; 44(6): 540-549.

[211]

Shrimp JH, Jing Y, Gamage ST, et al. Remodelin is a cryptic assay interference chemotype that does not inhibit NAT10-dependent cytidine acetylation. ACS Med Chem Lett. 2021; 12(6): 887-892.

[212]

Dalhat MH, Altayb HN, Khan MI, Choudhry H. Structural insights of human N-acetyltransferase 10 and identification of its potential novel inhibitors. Sci Rep. 2021; 11(1): 6051.

[213]

Schiffers S, Oberdoerffer S. ac4C: a fragile modification with stabilizing functions in RNA metabolism. RNA. 2024; 30(5): 583-594.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/