Single-cell transcriptomic analysis of glioblastoma reveals pericytes contributing to the blood–brain–tumor barrier and tumor progression

Yuzhe Li , Changwu Wu , Xinmiao Long , Xiangyu Wang , Wei Gao , Kun Deng , Bo Xie , Sen Zhang , Minghua Wu , Qing Liu

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70014

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70014 DOI: 10.1002/mco2.70014
ORIGINAL ARTICLE

Single-cell transcriptomic analysis of glioblastoma reveals pericytes contributing to the blood–brain–tumor barrier and tumor progression

Author information +
History +
PDF

Abstract

The blood–brain barrier is often altered in glioblastoma (GBM) creating a blood–brain–tumor barrier (BBTB) composed of pericytes. The BBTB affects chemotherapy efficacy. However, the expression signatures of BBTB-associated pericytes remain unclear. We aimed to identify BBTB-associated pericytes in single-cell RNA sequencing data of GBM using pericyte markers, a normal brain pericyte expression signature, and functional enrichment. We identified parathyroid hormone receptor-1 (PTH1R) as a potential marker of pericytes associated with BBTB function. These pericytes interact with other cells in GBM mainly through extracellular matrix–integrin signaling pathways. Compared with normal pericytes, pericytes in GBM exhibited upregulation of several ECM genes (including collagen IV and FN1), and high expression levels of these genes were associated with a poor prognosis. Cell line experiments showed that PTH1R knockdown in pericytes increased collagen IV and FN1 expression levels. In mice models, the expression levels of PTH1R, collagen IV, and FN1 were consistent with these trends. Evans Blue leakage and IgG detection in the brain tissue suggested a negative correlation between PTH1R expression levels and blood–brain barrier function. Further, a risk model based on differentially expressed genes in PTH1R+ pericytes had predictive value for GBM, as validated using independent and in-house cohorts.

Keywords

blood–brain–tumor barrier / glioblastoma / pericyte / prognosis

Cite this article

Download citation ▾
Yuzhe Li, Changwu Wu, Xinmiao Long, Xiangyu Wang, Wei Gao, Kun Deng, Bo Xie, Sen Zhang, Minghua Wu, Qing Liu. Single-cell transcriptomic analysis of glioblastoma reveals pericytes contributing to the blood–brain–tumor barrier and tumor progression. MedComm, 2024, 5(12): e70014 DOI:10.1002/mco2.70014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander BM, Cloughesy TF. Adult glioblastoma. J Clin Oncol. 2017; 35(21): 2402-2409.

[2]

Wu W, Klockow JL, Zhang M, et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021; 171: 105780.

[3]

van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015; 19: 1-12.

[4]

Langen UH, Ayloo S, Gu C. Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol. 2019; 35: 591-613.

[5]

Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res. 2022; 41(1): 142.

[6]

Liu Y, Wang W, Zhang D, et al. Brain co-delivery of first-line chemotherapy drug and epigenetic bromodomain inhibitor for multidimensional enhanced synergistic glioblastoma therapy. Exploration (Beijing). 2022; 2(4): 20210274.

[7]

Matsuo M, Miwa K, Tanaka O, et al. Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys. 2012; 82(1): 83-89.

[8]

Pafundi DH, Laack NN, Youland RS, et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol. 2013; 15(8): 1058-1067.

[9]

Toyokawa G, Seto T, Takenoyama M, Ichinose Y. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?. Cancer Metastasis Rev. 2015; 34(4): 797-805.

[10]

Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012; 181(4): 1126-1141.

[11]

Vásquez X, Sánchez-Gómez P, Palma V. Netrin-1 in glioblastoma neovascularization: the new partner in crime?. Int J Mol Sci. 2021; 22(15): 8248.

[12]

Tavora B, Mederer T, Wessel KJ, et al. Tumoural activation of TLR3-SLIT2 axis in endothelium drives metastasis. Nature. 2020; 586(7828): 299-304.

[13]

Paiva AE, Lousado L, Almeida VM, et al. Endothelial cells as precursors for osteoblasts in the metastatic prostate cancer bone. Neoplasia. 2017; 19(11): 928-931.

[14]

Prazeres P, Turquetti AOM, Azevedo PO, et al. Perivascular cell αv integrins as a target to treat skeletal muscle fibrosis. Int J Biochem Cell Biol. 2018; 99: 109-113.

[15]

Caporarello N, D’Angeli F, Cambria MT, et al. Pericytes in microvessels: from “mural” function to brain and retina regeneration. Int J Mol Sci. 2019; 20(24): 6351.

[16]

Longden TA, Zhao G, Hariharan A, Lederer WJ. Pericytes and the control of blood flow in brain and heart. Annu Rev Physiol. 2023; 85: 137-164.

[17]

Giannoni P, Badaut J, Dargazanli C, et al. The pericyte-glia interface at the blood-brain barrier. Clin Sci (Lond). 2018; 132(3): 361-374.

[18]

Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T. What is a pericyte?. J Cereb Blood Flow Metab. 2016; 36(2): 451-455.

[19]

Guerra DAP, Paiva AE, Sena IFG, et al. Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis. 2018; 21(4): 667-675.

[20]

Hart DA. One of the primary functions of tissue-resident pluripotent pericytes cells may be to regulate normal organ growth and maturation: implications for attempts to repair tissues later in life. Int J Mol Sci. 2022; 23(10): 5496.

[21]

Andreotti JP, Paiva AE, Prazeres P, et al. The role of natural killer cells in the uterine microenvironment during pregnancy. Cell Mol Immunol. 2018; 15(11): 941-943.

[22]

Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a mechanistic point of view in the central nervous system. Semin Thromb Hemost. 2022; 48(3): 277-287.

[23]

Rustenhoven J, Aalderink M, Scotter EL, et al. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016; 13: 37.

[24]

Zhu S, Chen M, Ying Y, et al. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res. 2022; 10(1): 30.

[25]

Santos GSP, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericyte plasticity in the brain. Neurosci Bull. 2019; 35(3): 551-560.

[26]

Asada N, Kunisaki Y, Pierce H, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol. 2017; 19(3): 214-223.

[27]

Nishiyama A, Boshans L, Goncalves CM, Wegrzyn J, Patel KD. Lineage, fate, and fate potential of NG2-glia. Brain Res. 2016; 1638: 116-128. Pt B.

[28]

Wohl SG, Schmeer CW, Friese T, Witte OW, Isenmann S. In situ dividing and phagocytosing retinal microglia express nestin, vimentin, and NG2 in vivo. PLoS One. 2011; 6(8): e22408.

[29]

Cao Z, Liu Y, Wang Y, Leng P. Research progress on the role of PDGF/PDGFR in type 2 diabetes. Biomed Pharmacother. 2023; 164: 114983.

[30]

Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017; 214(3): 579-596.

[31]

Klinkhammer BM, Floege J, Boor P. PDGF in organ fibrosis. Mol Aspects Med. 2018; 62: 44-62.

[32]

Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002; 160(3): 985-1000.

[33]

Yamazaki T, Young KH. Effects of radiation on tumor vasculature. Mol Carcinog. 2022; 61(2): 165-172.

[34]

Ellison-Hughes GM, Madeddu P. Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacol Ther. 2017; 171: 1-12.

[35]

Cheng L, Huang Z, Zhou W, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013; 153(1): 139-152.

[36]

Garcia FJ, Sun N, Lee H, et al. Single-cell dissection of the human brain vasculature. Nature. 2022; 603(7903): 893-899.

[37]

Kumar AA, Yeo N, Whittaker M, et al. Vascular collagen type-IV in hypertension and cerebral small vessel disease. Stroke. 2022; 53(12): 3696-3705.

[38]

Tirado-Cabrera I, Martin-Guerrero E, Heredero-Jimenez S, Ardura JA, Gortázar AR. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion. J Cell Physiol. 2022; 237(10): 3927-3943.

[39]

Znorko B, Pawlak D, Oksztulska-Kolanek E, et al. RANKL/OPG system regulation by endogenous PTH and PTH1R/ATF4 axis in bone: implications for bone accrual and strength in growing rats with mild uremia. Cytokine. 2018; 106: 19-28.

[40]

Xie L, Wang G, Sang W, et al. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials. 2021; 269: 120638.

[41]

Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017; 18(1): 248-262.

[42]

Östman A, Corvigno S. Microvascular mural cells in cancer. Trends Cancer. 2018; 4(12): 838-848.

[43]

Hong J, Tobin NP, Rundqvist H, et al. Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. J Natl Cancer Inst. 2015; 107(10): djv209.

[44]

Tian L, Goldstein A, Wang H, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017; 544(7649): 250-254.

[45]

Kong D, Kwon D, Moon B, et al. CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomed Pharmacother. 2024; 174: 116436.

[46]

Park S, Avera AD, Kim Y. Biomanufacturing of glioblastoma organoids exhibiting hierarchical and spatially organized tumor microenvironment via transdifferentiation. Biotechnol Bioeng. 2022; 119(11): 3252-3274.

[47]

Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer. 2012; 12: 35.

[48]

Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013; 13(7): 511-518.

[49]

Fujimoto T, Nakagawa S, Morofuji Y, et al. Pericytes suppress brain metastasis from lung cancer in vitro. Cell Mol Neurobiol. 2020; 40(1): 113-121.

[50]

Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci USA. 2007; 104(9): 3460-3465.

[51]

Santa Maria C, Cheng Z, Li A, et al. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol. 2016; 49: 11-23.

[52]

Zhai X, Mao C, Shen Q, et al. Molecular insights into the distinct signaling duration for the peptide-induced PTH1R activation. Nat Commun. 2022; 13(1): 6276.

[53]

Chew C, Lennon R. Basement membrane defects in genetic kidney diseases. Front Pediatr. 2018; 6: 11.

[54]

Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE. Collagen: an overview. Implant Dent. 2002; 11(3): 280-285.

[55]

Favor J, Gloeckner CJ, Janik D, et al. Type IV procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: an extension of the Col4a1 allelic series and the identification of the first two Col4a2 mutant alleles. Genetics. 2007; 175(2): 725-736.

[56]

Kuo DS, Labelle-Dumais C, Mao M, et al. Allelic heterogeneity contributes to variability in ocular dysgenesis, myopathy and brain malformations caused by Col4a1 and Col4a2 mutations. Hum Mol Genet. 2014; 23(7): 1709-1722.

[57]

Jeanne M, Labelle-Dumais C, Jorgensen J, et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012; 90(1): 91-101.

[58]

Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007; 8(5): 215.

[59]

Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992; 69(1): 11-25.

[60]

Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol. 2015; 36: 41-47.

[61]

Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol. 1995; 7(5): 681-689.

[62]

Osada T, Gu YH, Kanazawa M, et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by β(1)-integrins. J Cereb Blood Flow Metab. 2011; 31(10): 1972-1985.

[63]

Schaffner F, Ray AM, Dontenwill M. Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers (Basel). 2013; 5(1): 27-47.

[64]

Janouskova H, Maglott A, Leger DY, et al. Integrin α5β1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma. Cancer Res. 2012; 72(14): 3463-3470.

[65]

Stupp R, Hegi ME, Gorlia T, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014; 15(10): 1100-1108.

[66]

Gravendeel LA, Kouwenhoven MC, Gevaert O, et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 2009; 69(23): 9065-9072.

[67]

Xie Y, He L, Lugano R, et al. Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing. JCI Insight. 2021; 6(15): e150861.

[68]

Chen Z, Zhou L, Liu L, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020; 11(1): 5077.

[69]

Avraham S, Korin B, Chung JJ, Oxburgh L, Shaw AS. The Mesangial cell—the glomerular stromal cell. Nat Rev Nephrol. 2021; 17(12): 855-864.

[70]

Navarro R, Delgado-Wicke P, Nuñez-Prado N, et al. Role of nucleotide-binding oligomerization domain 1 (NOD1) in pericyte-mediated vascular inflammation. J Cell Mol Med. 2016; 20(5): 980-986.

[71]

Wu C, Tan J, Shen H, et al. Exploring the relationship between metabolism and immune microenvironment in osteosarcoma based on metabolic pathways. J Biomed Sci. 2024; 31(1): 4.

[72]

Jones-Bolin S. Guidelines for the care and use of laboratory animals in biomedical research. Curr Protoc Pharmacol. 2012. Appendix 4:Appendix 4B.

[73]

Fu X, Zhou B, Yan Q, et al. Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduct Target Ther. 2020; 5(1): 297.

[74]

Lindenau KL, Barr JL, Higgins CR, Sporici KT, Brailoiu E, Brailoiu GC. Blood-brain barrier disruption mediated by FFA1 Receptor-evidence using miniscope. Int J Mol Sci. 2022; 23(4): 2258.

[75]

Li S, Kumar TP, Joshee S, et al. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res. 2018; 28(2): 221-248.

[76]

Wu C, Su J, Wang X, et al. Overexpression of the phospholipase A2 group V gene in glioma tumors is associated with poor patient prognosis. Cancer Manag Res. 2019; 11: 3139-3152.

[77]

Wu C, Long W, Qin C, et al. Liquid biopsy-based identification of prognostic and immunotherapeutically relevant gene signatures in lower grade glioma. J Big Data. 2023; 10(1): 19.

[78]

Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013; 4: 2612.

[79]

Wu C, Tan J, Wang X, et al. Pan-cancer analyses reveal molecular and clinical characteristics of cuproptosis regulators. iMeta. 2023; 2(1): e68.

[80]

Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017; 127(8): 2930-2940.

[81]

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39(1): 1-10.

[82]

Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018; 554(7693): 544-548.

[83]

Wu C, Qin C, Long W, Wang X, Xiao K, Liu Q. Tumor antigens and immune subtypes of glioblastoma: the fundamentals of mRNA vaccine and individualized immunotherapy development. J Big Data. 2022; 9(1): 92.

[84]

Huang FJ, You WK, Bonaldo P, Seyfried TN, Pasquale EB, Stallcup WB. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol. 2010; 344(2): 1035-1046.

[85]

Bondjers C, He L, Takemoto M, et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. Faseb J. 2006; 20(10): 1703-1705.

[86]

Oishi K, Kamiyashiki T, Ito Y. Isometric contraction of microvascular pericytes from mouse brain parenchyma. Microvasc Res. 2007; 73(1): 20-28.

[87]

Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. Faseb J. 2003; 17(3): 440-442.

[88]

Yang AC, Stevens MY, Chen MB, et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature. 2020; 583(7816): 425-430.

[89]

Crisan M, Corselli M, Chen WC, Péault B. Perivascular cells for regenerative medicine. J Cell Mol Med. 2012; 16(12): 2851-2860.

[90]

Guerra-Rebollo M, Garrido C, Sánchez-Cid L, et al. Targeting of replicating CD133 and OCT4/SOX2 expressing glioma stem cells selects a cell population that reinitiates tumors upon release of therapeutic pressure. Sci Rep. 2019; 9(1): 9549.

[91]

Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J. A pericyte origin of spinal cord scar tissue. Science. 2011; 333(6039): 238-242.

[92]

Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013; 502(7473): 637-643.

[93]

Guerra DAP, Paiva AE, Sena IFG, et al. Adipocytes role in the bone marrow niche. Cytometry A. 2018; 93(2): 167-171.

[94]

Sena IFG, Borges IT, Lousado L, et al. LepR+ cells dispute hegemony with Gli1+ cells in bone marrow fibrosis. Cell Cycle. 2017; 16(21): 2018-2022.

[95]

Christian S, Winkler R, Helfrich I, et al. Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol. 2008; 172(2): 486-494.

[96]

Kunz J, Krause D, Kremer M, Dermietzel R. The 140-kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase N. J Neurochem. 1994; 62(6): 2375-2386.

[97]

Huang Q, Liu L, Xiao D, et al. CD44(+) lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell. 2023; 41(9): 1621-1636. e1628.

[98]

Danopoulos S, Bhattacharya S, Mariani TJ, Al Alam D. Transcriptional characterisation of human lung cells identifies novel mesenchymal lineage markers. Eur Respir J. 2020; 55(1): 1900746.

[99]

Wakui S, Yokoo K, Muto T, et al. Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab Invest. 2006; 86(11): 1172-1184.

[100]

Cheng Q, Tang A, Wang Z, et al. CALD1 modulates gliomas progression via facilitating tumor angiogenesis. Cancers (Basel). 2021; 13(11): 2705.

[101]

Zhou W, Chen C, Shi Y, et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017; 21(5): 591-603. e594.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/