Metabolic reprogramming via mitochondrial delivery for enhanced maturation of chemically induced cardiomyocyte-like cells

Yena Nam , Yoonji Song , Seung Ju Seo , Ga Ryang Ko , Seung Hyun Lee , Eunju Cha , Su Min Kwak , Sumin Kim , Mikyung Shin , Yoonhee Jin , Jung Seung Lee

MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70005

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (12) : e70005 DOI: 10.1002/mco2.70005
ORIGINAL ARTICLE

Metabolic reprogramming via mitochondrial delivery for enhanced maturation of chemically induced cardiomyocyte-like cells

Author information +
History +
PDF

Abstract

Heart degenerative diseases pose a significant challenge due to the limited ability of native heart to restore lost cardiomyocytes. Direct cellular reprogramming technology, particularly the use of small molecules, has emerged as a promising solution to prepare functional cardiomyocyte through faster and safer processes without genetic modification. However, current methods of direct reprogramming often exhibit low conversion efficiencies and immature characteristics of the generated cardiomyocytes, limiting their use in regenerative medicine. This study proposes the use of mitochondrial delivery to metabolically reprogram chemically induced cardiomyocyte-like cells (CiCMs), fostering enhanced maturity and functionality. Our findings show that mitochondria sourced from high-energy-demand organs (liver, brain, and heart) can enhance structural maturation and metabolic functions. Notably, heart-derived mitochondria resulted in CiCMs with a higher oxygen consumption rate capacity, enhanced electrical functionality, and higher sensitivity to hypoxic condition. These results are related to metabolic changes caused by increased number and size of mitochondria and activated mitochondrial fusion after mitochondrial treatment. In conclusion, our study suggests that mitochondrial delivery into CiCMs can be an effective strategy to promote cellular maturation, potentially contributing to the advancement of regenerative medicine and disease modeling.

Keywords

cardiomyocytes / cell reprogramming / metabolic regulation / mitochondrial transfer

Cite this article

Download citation ▾
Yena Nam, Yoonji Song, Seung Ju Seo, Ga Ryang Ko, Seung Hyun Lee, Eunju Cha, Su Min Kwak, Sumin Kim, Mikyung Shin, Yoonhee Jin, Jung Seung Lee. Metabolic reprogramming via mitochondrial delivery for enhanced maturation of chemically induced cardiomyocyte-like cells. MedComm, 2024, 5(12): e70005 DOI:10.1002/mco2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142(3): 375-386.

[2]

Fu YB, Huang CW, Xu XX, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015; 25(9): 1013-1024.

[3]

Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021; 22(6): 410-424.

[4]

Yamakawa H, Ieda M, Cardiac regeneration by direct reprogramming in this decade and beyond. Inflamm Regen. 2021; 41(1): 20.

[5]

Tang Y, Aryal S, Geng X, et al. TBX20 Improves Contractility and mitochondrial function during direct human cardiac reprogramming. Circulation. 2022; 146(20): 1518-1536.

[6]

Mohamed TMA, Stone NR, Berry EC, et al. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation. 2017; 135(10): 978-995.

[7]

Wolfram JA, Donahue JK. Gene therapy to treat cardiovascular disease. J Am Heart Assoc. 2013; 2(4): e000119.

[8]

Cao N, Huang Y, Zheng JS, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016; 352(6290): 1216-1220.

[9]

Singh VP, Pinnamaneni JP, Pugazenthi A, et al. Enhanced generation of induced cardiomyocytes using a small-molecule cocktail to overcome barriers to cardiac cellular reprogramming. J Am Heart Assoc. 2020; 9(12): e015686.

[10]

He XY, Liang JL, Paul C, Huang W, Dutta S, Wang YG. Advances in cellular reprogramming-based approaches for heart regenerative repair. Cells. 2022; 11(23): 3914.

[11]

Tani H, Sadahiro T, Ieda M. Direct cardiac reprogramming: a novel approach for heart regeneration. Int J Mol Sci. 2018; 19(9): 2629.

[12]

Takeda Y, Harada Y, Yoshikawa T, Dai P. Chemical compound-based direct reprogramming for future clinical applications. Bioscience Rep. 2018; 38: BSR20171650.

[13]

Sia J, Yu P, Srivastava D, Li S. Effect of biophysical cues on reprogramming to cardiomyocytes. Biomaterials. 2016; 103: 1-11.

[14]

Li Y, Dal-Pra S, Mirotsou M, et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci Rep. 2016; 6(1): 38815.

[15]

Jin Y, Lee JS, Kim J, et al. Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng. 2018; 2(7): 522-539.

[16]

Min S, Lee H-J, Jin Y, et al. Biphasic electrical pulse by a micropillar electrode array enhances maturation and drug response of reprogrammed cardiac spheroids. Nano Lett. 2020; 20(10): 6947-6956.

[17]

Jin Y, Kim H, Min S, et al. Three-dimensional heart extracellular matrix enhances chemically induced direct cardiac reprogramming. Sci Adv. 8(50):eabn5768.

[18]

San-Millán I. The key role of mitochondrial function in health and disease. Antioxidants. 2023; 12(4): 782.

[19]

Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. BBRC. 2017; 482(3): 426-431.

[20]

Tzameli I. The evolving role of mitochondria in metabolism. Trends Endocrinol Metab. 2012; 23(9): 417-419.

[21]

Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2021; 12(1): 177.

[22]

Ding QQ, Qi YX, Tsang SY. Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes. Cells. 2021; 10(9): 2463.

[23]

Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. JCI. 2000; 106(7): 847-856.

[24]

Morita Y, Tohyama S. Metabolic regulation of cardiac differentiation and maturation in pluripotent stem cells: a lesson from heart development. JMA J. 2020; 3(3): 193-200.

[25]

Correia M, Santos F, Ferreira RD, Ferreira R, de Jesus BB, Nóbrega-Pereira S. Metabolic determinants in cardiomyocyte function and heart regenerative strategies. Metabolites. 2022; 12(6): 500.

[26]

Liu D, Gao Y, Liu J, et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther. 2021; 6(1): 65.

[27]

Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M. Artificial Mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int. 2017; 2017(1): 7610414.

[28]

Acquistapace A, Bru T, Lesault PF, et al. Human Mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011; 29(5): 812-824.

[29]

Ikeda G, Santoso MR, Tada Y, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021; 77(8): 1073-1088.

[30]

Sadeesh EM, Singla N, Lahamge MS, Kumari S, Ampadi AN, Anuj M. Tissue heterogeneity of mitochondrial activity, biogenesis and mitochondrial protein gene expression in buffalo. Mol Biol Rep. 2023; 50(6): 5255-5266.

[31]

Nascimento-Dos-Santos G, de-Souza-Ferreira E, Lani R, et al. Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina. BBA Mol Basis Dis. 2020; 1866(5): 165686.

[32]

Bak S, Leon IR, Jensen ON, Hojlund K. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle. J Proteome Res. 2013; 12(10): 4327-4339.

[33]

Chen W, Shi K, Chu B, Wei X, Qian Z. Mitochondrial surface engineering for multidrug resistance reversal. Nano Lett. 2019; 19(5): 2905-2913.

[34]

Zhou W, Zhao Z, Yu Z, Hou Y, Keerthiga R, Fu A. Mitochondrial transplantation therapy inhibits the proliferation of malignant hepatocellular carcinoma and its mechanism. Mitochondrion. 2022; 65: 11-22.

[35]

Chang J-C, Chang H-S, Wu Y-C, et al. Antitumor actions of intratumoral delivery of membrane-fused mitochondria in a mouse model of triple-negative breast cancers. Onco Targets Ther. 2020; 13: 5241-5255.

[36]

Sun X, Chen H, Gao R, et al. Intravenous Transplantation of an ischemic-specific peptide-tpp-mitochondrial compound alleviates myocardial ischemic reperfusion injury. ACS Nano. 2023; 17(2): 896-909.

[37]

Monteiro LdB, Davanzo GG, de Aguiar CF, Moraes-Vieira PMM. Using flow cytometry for mitochondrial assays. MethodsX. 2020; 7: 100938.

[38]

Haseda K, Kanematsu K, Noguchi K, Saito H, Umeda N, Ohta Y. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study. Biomed Opt Express. 2015; 6(3): 859-869.

[39]

Adams RA, Liu Z, Hsieh C, et al. Structural Analysis of mitochondria in cardiomyocytes: insights into bioenergetics and membrane remodeling. CIMB. 2023; 45(7): 6097-6115.

[40]

Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA. 2003; 100(9): 5407-5412.

[41]

Michelakis ED. Mitochondrial medicine. Circulation. 2008; 117(19): 2431-2434.

[42]

Sha L, Daitoku H, Araoi S, et al. Asymmetric arginine dimethylation modulates mitochondrial energy metabolism and homeostasis in caenorhabditis elegans. Mol Cell Biol. 2017; 37(6): e00504.

[43]

Fernandez-Vizarra E, Enriquez JA, Perez-Martos A, Montoya J, Fernandez-Silva P. Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion. 2011; 11(1): 207-213.

[44]

Meeusen S, McCaffery JM, Nunnari J. Mitochondrial fusion intermediates revealed in vitro. Science. 2004; 305(5691): 1747-1752.

[45]

Ni H-M, Williams JA, Ding W-X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015; 4: 6-13.

[46]

Ryu S-W, Han EC, Yoon J, Choi C. The Mitochondrial fusion-related proteins Mfn2 and OPA1 are transcriptionally induced during differentiation of bone marrow progenitors to immature dendritic cells. Mol Cells. 2015; 38(1): 89-94.

[47]

Dallman PR, Goodman JR. Enlargement of mitochondrial compartment in iron and copper deficiency. Blood. 1970; 35(4): 496-505.

[48]

Bustos RI, Jensen EL, Ruiz LM, et al. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells. BBRC. 2013; 437(3): 426-432.

[49]

Schraps N, Tirre M, Pyschny S, et al. Cardiomyocyte maturation alters molecular stress response capacities and determines cell survival upon mitochondrial dysfunction. Free Radic Biol Med. 2024; 213: 248-265.

[50]

Georgiadi A, Boekschoten MV, Muller M, Kersten S. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart. Physiol Genomics. 2012; 44(6): 352-361.

[51]

Kersten S. Integrated physiology and systems biology of PPARα. Mol Metab. 2014; 3(4): 354-371.

[52]

Durgan DJ, Smith JK, Hotze MA, et al. Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin. Am J Physiol Heart Circ Physiol. 2006; 290(6): H2480-H2497.

[53]

van der Lee KAJM, Vork MM, De Vries JE, et al. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. JLR. 2000; 41(1): 41-47.

[54]

He L, Kim T, Long QQ, et al. Carnitine Palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation. 2012; 126(14): 1705-1716.

[55]

Eaton S, Bartlett K, Quant PA. Carnitine Palmitoyl transferase i and the control of β-oxidation in heart mitochondria. BBRC. 2001; 285(2): 537-539.

[56]

Li X, Wu F, Gunther S, et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature. 2023; 622(7983): 619-626.

[57]

Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation. 2005; 112(5): 683-690.

[58]

Ikeda M, Ide T, Fujino T, et al. Overexpression of TFAM or Twinkle increases mtDNA copy number and facilitates cardioprotection associated with Limited mitochondrial oxidative stress. PLOS ONE. 2015; 10(3): e0119687.

[59]

Suarez J, Hu Y, Makino A, Fricovsky E, Wang H, Dillmann WH. Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am J Physiol Cell Ph. 2008; 295(6): C1561-C1568.

[60]

Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. Febs Lett. 2018; 592(5): 793-811.

[61]

Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015; 88: 179-188.

[62]

Limas CJ, Limas C. Carbachol induces desensitization of cardiac β-adrenergic receptors through muscarinic M1 receptors. BBRC. 1985; 128(2): 699-704.

[63]

Banach K, Halbach MD, Hu P, Hescheler J, Egert U. Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol Heart Circ Physiol. 2003; 284(6): H2114-H2123.

[64]

He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes—action potential characterization. Circ Res. 2003; 93(1): 32-39.

[65]

Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP. Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol. 2013; 165(3): 410-422.

[66]

Peters MC, Maas RGC, van Adrichem I, et al. Metabolic maturation increases susceptibility to hypoxia-induced damage in human iPSC-derived cardiomyocytes. Stem Cells Transl Med. 2022; 11(10): 1040-1051.

[67]

Huang T, Lin R, Su Y, et al. Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis. Nat Commun. 2023; 14(1): 5781.

[68]

Lee JM, Hwang JW, Kim MJ, et al. Mitochondrial Transplantation Modulates Inflammation And Apoptosis, Alleviating Tendinopathy Both In Vivo And In Vitro. Antioxidants (Basel). 2021; 10(5): 696.

[69]

Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S. Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol. 2017; 982: 277-306.

[70]

Tan Y, Xia F, Li L, et al. Novel insights into the molecular features and regulatory mechanisms of mitochondrial dynamic disorder in the pathogenesis of cardiovascular disease. Oxid Med Cell Longev. 2021; 2021: 6669075.

[71]

Lin R-Z, Im G-B, Luo AC, et al. Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature. 2024; 629(8012): 660-668.

[72]

Cannon MV, Takeda K, Pinkert CA. Mitochondrial biology in reproduction. Reprod Med Biol. 2011; 10(4): 251-258.

[73]

Chang J-C, Wu S-L, Liu K-H, et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Transl Res. 2016; 170: 40-56. e3.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/