Cell death pathways: molecular mechanisms and therapeutic targets for cancer

Shaohui Wang , Sa Guo , Jing Guo , Qinyun Du , Cen Wu , Yeke Wu , Yi Zhang

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e693

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e693 DOI: 10.1002/mco2.693
REVIEW

Cell death pathways: molecular mechanisms and therapeutic targets for cancer

Author information +
History +
PDF

Abstract

Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy’s future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.

Keywords

apoptosis / autophagy / cancer therapy / cell death / drug resistance / ferroptosis / necroptosis / pyroptosis / tumor microenvironment

Cite this article

Download citation ▾
Shaohui Wang, Sa Guo, Jing Guo, Qinyun Du, Cen Wu, Yeke Wu, Yi Zhang. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm, 2024, 5(9): e693 DOI:10.1002/mco2.693

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-263.

[2]

Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell. 2022; 40(5): 458-478.

[3]

Strasser A, Vaux DL. Cell death in the origin and treatment of cancer. Mol Cell. 2020; 78(6): 1045-1054.

[4]

Ke B, Tian M, Li J, Liu B, He G. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev. 2016; 36(6): 983-1035.

[5]

Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020; 21(11): 678-695.

[6]

Loftus LV, Amend SR, Pienta KJ. Interplay between cell death and cell proliferation reveals new strategies for cancer therapy. Int J Mol Sci. 2022; 23(9): 4723.

[7]

Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. Int J Mol Sci. 2022; 23(3): 1328.

[8]

Gong L, Huang D, Shi Y, Liang Z, Bu H. Regulated cell death in cancer: from pathogenesis to treatment. Chin Med J (Engl). 2023; 136(6): 653-665.

[9]

Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016; 8(4): 603-619.

[10]

Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer. 2024; 24(5): 299-315.

[11]

Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: perspective on immune evasion and cell death interactions. Cancer Lett. 2024; 590: 216856.

[12]

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021; 22(4): 266-282.

[13]

Xing N, Du Q, Guo S, et al. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov. 2023; 9(1): 110.

[14]

Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol. 2020; 38: 567-595.

[15]

Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer. 2023; 9(5): 381-396.

[16]

Zheng S, Guan XY. Ferroptosis: promising approach for cancer and cancer immunotherapy. Cancer Lett. 2023; 561: 216152.

[17]

Nicolò E, Giugliano F, Ascione L, et al. Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev. 2022; 106: 102395.

[18]

Zhang Z, Ji Y, Hu N, et al. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J Pharm Sci. 2022; 17(5): 751-766.

[19]

Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022; 23(4): 487-500.

[20]

Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021; 26(3-4): 152-162.

[21]

Krysko O, Aaes TL, Kagan VE, et al. Necroptotic cell death in anti-cancer therapy. Immunol Rev. 2017; 280(1): 207-219.

[22]

Obeng E. Apoptosis (programmed cell death) and its signals—a review. Braz J Biol. 2021; 81(4): 1133-1143.

[23]

Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis. ADV PROTEIN CHEM STR. 2021; 125: 73-120.

[24]

Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021; 18(5): 1106-1121.

[25]

Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J Mol Biol. 2022; 434(4): 167378.

[26]

Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis. 2023; 28(1-2): 20-38.

[27]

Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022; 12: 985363.

[28]

Sobol B, Azzam Nieto O, Eberlein EL, et al. Specific targeting of antiapoptotic Bcl-2 proteins as a radiosensitizing approach in solid tumors. Int J Mol Sci. 2022; 23(14): 7850.

[29]

Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta, Mol Cell Res. 2022; 1869(10): 119317.

[30]

Lalier L, Vallette F, Manon S>. Bcl-2 family members and the mitochondrial import machineries: the roads to death. Biomol. 2022; 12(2).

[31]

Ke FS, Holloway S, Uren RT, et al. The BCL-2 family member BID plays a role during embryonic development in addition to its BH3-only protein function by acting in parallel to BAX, BAK and BOK. EMBO J. 2022; 41(15): e110300.

[32]

Zaib S, Hayyat A, Ali N, Gul A, Naveed M, Khan I. Role of mitochondrial membrane potential and lactate dehydrogenase A in apoptosis. Anticancer Agents Med Chem. 2022; 22(11): 2048-2062.

[33]

Zhou Z, Arroum T, Luo X, et al. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ. 2024; 31(4): 387-404.

[34]

Sahoo G, Samal D, Khandayataray P, Murthy MK. A review on caspases: key regulators of biological activities and apoptosis. Mol Neurobiol. 2023; 60(10): 5805-5837.

[35]

Bhadra K. A mini review on molecules inducing caspase-independent cell death: a new route to cancer therapy. Molecules. 2022; 27(19): 6401.

[36]

Lossi L. The concept of intrinsic versus extrinsic apoptosis. Biochem J. 2022; 479(3): 357-384.

[37]

Nozaki K, Li L, Miao EA. Innate sensors trigger regulated cell death to combat intracellular infection. Annu Rev Immunol. 2022; 40: 469-498.

[38]

Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y. Programmed cell death tunes tumor immunity. Front Immunol. 2022; 13: 847345.

[39]

Green DR. The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol. 2022; 14(2): a041053.

[40]

Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis. 2023; 28(5-6): 730-753.

[41]

Bai ZQ, Ma X, Liu B, Huang T, Hu K. Solution structure of c-FLIP death effector domains. Biochem Biophys Res Commun. 2022; 617(2): 1-6. Pt.

[42]

Fox JL, Hughes MA, Meng X, et al. Cryo-EM structural analysis of FADD:caspase-8 complexes defines the catalytic dimer architecture for co-ordinated control of cell fate. Nat Commun. 2021; 12(1): 819.

[43]

Palanirajan SK, Gummadi SN. Phospholipid scramblase 3: a latent mediator connecting mitochondria and heavy metal apoptosis. Cell Biochem Biophys. 2023; 81(3): 443-458.

[44]

Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X, Liu NF. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 2022; 13(5): 467.

[45]

Yuan J, Ofengeim D. A guide to cell death pathways. Nat Rev Mol Cell Biol. 2024; 25(5): 379-395.

[46]

Yang M, Chen W, He L, Liu D, Zhao L, Wang X. A glimpse of necroptosis and diseases. Biomed Pharmacother. 2022; 156: 113925.

[47]

Kolbrink B, von Samson-Himmelstjerna FA, Murphy JM, Krautwald S. Role of necroptosis in kidney health and disease. Nat Rev Nephrol. 2023; 19(5): 300-314.

[48]

Zhang L, Cui T, Wang X. The interplay between autophagy and regulated necrosis. Antioxid Redox Signaling. 2023; 38(7-9): 550-580.

[49]

Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif. 2021; 54(3): e12992.

[50]

Yan J, Wan P, Choksi S, Liu ZG. Necroptosis and tumor progression. Trends Cancer. 2022; 8(1): 21-27.

[51]

Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discovery. 2023; 22(9): 723-742.

[52]

Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis. 2023; 14(2): 163.

[53]

Yang T, Wang G, Zhang M, et al. Triggering endogenous Z-RNA sensing for anti-tumor therapy through ZBP1-dependent necroptosis. Cell Rep. 2023; 42(11): 113377.

[54]

Alvarez-Diaz S, Preaudet A, Samson AL, et al. Necroptosis is dispensable for the development of inflammation-associated or sporadic colon cancer in mice. Cell Death Differ. 2021; 28(5): 1466-1476.

[55]

Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol Med. 2024; 16(2): 219-237.

[56]

Hu X, Xu Y, Zhang H, et al. Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res. 2022; 40: 125-134.

[57]

Xu D, Zou C, Yuan J. Genetic regulation of RIPK1 and necroptosis. Annu Rev Genet. 2021; 55: 235-263.

[58]

Cuny GD, Degterev A. RIPK protein kinase family: atypical lives of typical kinases. Semin Cell Dev Biol. 2021; 109: 96-105.

[59]

Morgan MJ, Kim YS. Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med. 2022; 54(10): 1695-1704.

[60]

Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N. MLKL in cancer: more than a necroptosis regulator. Cell Death Differ. 2021; 28(6): 1757-1772.

[61]

Baik JY, Liu Z, Jiao D, et al. ZBP1 not RIPK1 mediates tumor necroptosis in breast cancer. Nat Commun. 2021; 12(1): 2666.

[62]

Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: many ways to die. Front Immunol. 2021; 12: 631821.

[63]

Guo Y, Cui Y, Li Y, et al. Cytoplasmic YAP1-mediated ESCRT-III assembly promotes autophagic cell death and is ubiquitinated by NEDD4L in breast cancer. Cancer Commun. 2023; 43(5): 582-612.

[64]

Guo Y, Zhang X, Li J, et al. TRAF6 regulates autophagy and apoptosis of melanoma cells through c-Jun/ATG16L2 signaling pathway. MedComm. 2023; 4(4): e309.

[65]

Buzun K, Gornowicz A, Lesyk R, Bielawski K, Bielawska A. Autophagy modulators in cancer therapy. Int J Mol Sci. 2021; 22(11): 5804.

[66]

Lei Y, Zhang E, Bai L, Li Y. Autophagy in cancer immunotherapy. Cells. 2022; 11(19): 2996.

[67]

Zhang J, Xiang Q, Wu M, et al. Autophagy regulators in cancer. Int J Mol Sci. 2023; 24(13): 10944.

[68]

Ariosa AR, Lahiri V, Lei Y, et al. A perspective on the role of autophagy in cancer. Biochim Biophys Acta. 2021; 1867(12): 166262.

[69]

Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023; 24(8): 560-575.

[70]

Russell RC, Guan KL. The multifaceted role of autophagy in cancer. EMBO J. 2022; 41(13): e110031.

[71]

Rakesh R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta. 2022; 1868(7): 166400.

[72]

Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer. Dev Cell. 2021; 56(7): 906-918.

[73]

Hernandez GA, Perera RM. Autophagy in cancer cell remodeling and quality control. Mol Cell. 2022; 82(8): 1514-1527.

[74]

Ferreira PMP, Sousa RWR, Ferreira JRO, Militão GCG, Bezerra DP. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol Res. 2021; 168: 105582.

[75]

Jain V, Singh MP, Amaravadi RK. Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci. 2023; 44(5): 290-302.

[76]

Ascenzi F, De Vitis C, Maugeri-Saccà M, Napoli C, Ciliberto G, Mancini R. SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res. 2021; 40(1): 265.

[77]

Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021; 18(5): 280-296.

[78]

Lee S, Hwang N, Seok BG, Lee S, Lee SJ, Chung SW. Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis. 2023; 14(7): 464.

[79]

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021; 31(2): 107-125.

[80]

Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021; 218(6).

[81]

Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022; 185(14): 2401-2421.

[82]

Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021; 6(1): 49.

[83]

von Krusenstiern AN, Robson RN, Qian N, et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol. 2023; 19(6): 719-730.

[84]

Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 2022; 24(1): 449.

[85]

Pope LE, Dixon SJ. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 2023; 33(12): 1077-1087.

[86]

Dixon SJ, Olzmann JA. The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 2024; 25(6): 424-442.

[87]

Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021; 17(9): 2054-2081.

[88]

Liang D, Feng Y, Zandkarimi F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 2023; 186(13): 2748-2764.e22. e22.

[89]

Liu Y, Wan Y, Jiang Y, Zhang L, Cheng W. GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta. 2023; 1878(3): 188890.

[90]

Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021; 28(4): 1135-1148.

[91]

Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022; 289(22): 7038-7050.

[92]

Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System X(c) (-)/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 2022; 13: 910292.

[93]

Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022; 12(9): 4310-4329.

[94]

Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal transduct target ther. 2022; 7(1): 196.

[95]

Wang JL, Hua SN, Bao HJ, Yuan J, Zhao Y, Chen S. Pyroptosis and inflammasomes in cancer and inflammation. MedComm. 2023; 4(5): e374.

[96]

Yang F, Bettadapura SN, Smeltzer MS, Zhu H, Wang S. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin. 2022; 43(10): 2462-2473.

[97]

Lu X, Guo T, Zhang X. Pyroptosis in cancer: friend or foe? Cancers. 2021; 13(14): 3620.

[98]

Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021; 18(9): 2114-2127.

[99]

Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021; 22(5): 550-559.

[100]

Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy. Pharmacol Ther. 2022; 232: 108010.

[101]

Wei X, Xie F, Zhou X, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 2022; 19(9): 971-992.

[102]

Miao R, Jiang C, Chang WY, et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity. 2023; 56(11): 2523-2541.e8. e8.

[103]

Zhong X, Zeng H, Zhou Z, et al. Structural mechanisms for regulation of GSDMB pore-forming activity. Nature. 2023; 616(7957): 598-605.

[104]

Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta Pharm Sin B. 2021; 11(9): 2768-2782.

[105]

Liu SW, Song WJ, Ma GK, Wang H, Yang L. Pyroptosis and its role in cancer. World J Clin Cases. 2023; 11(11): 2386-2395.

[106]

Varghese B, Del Gaudio N, Cobellis G, Altucci L, Nebbioso A. KDM4 involvement in breast cancer and possible therapeutic approaches. Front Oncol. 2021; 11: 750315.

[107]

Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol. 2024; 17(1): 22.

[108]

Su Y, Sai Y, Zhou L, et al. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol. 2022; 12: 1023427.

[109]

Boutelle AM, Attardi LD. p53 and tumor suppression: it takes a network. Trends Cell Biol. 2021; 31(4): 298-310.

[110]

Krishna S, Kumar SB, Murthy TPK, Murahari M. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy. Comput Biol Med. 2021; 134: 104455.

[111]

Suraweera CD, Banjara S, Hinds MG, Kvansakul M. Metazoans and intrinsic apoptosis: an evolutionary analysis of the Bcl-2 family. Int J Mol Sci. 2022; 23(7): 3691.

[112]

Spitz AZ, Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci. 2022; 43(3): 206-220.

[113]

Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021; 37(11): 1012-1027.

[114]

Martisova A, Holcakova J, Izadi N, Sebuyoya R, Hrstka R, Bartosik M. DNA methylation in solid tumors: functions and methods of detection. Int J Mol Sci. 2021; 22(8): 4247.

[115]

Yang M, Luo H, Yi X, Wei X, Jiang DS. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm. 2023; 4(3): e267.

[116]

Ozyerli-Goknar E, Bagci-Onder T. Epigenetic deregulation of apoptosis in cancers. Cancers. 2021; 13(13): 3210.

[117]

Qu J, Li P, Sun Z. Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol. 2023; 14: 1284344.

[118]

Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol. 2022; 85: 69-94.

[119]

Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023; 22(1): 138.

[120]

Popova NV, Jücker M. The role of mTOR signaling as a therapeutic target in cancer. Int J Mol Sci. 2021; 22(4): 1743.

[121]

Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Semin Cancer Biol. 2022; 80: 1-17.

[122]

Asl ER, Amini M, Najafi S, et al. Interplay between MAPK/ERK signaling pathway and microRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021; 278: 119499.

[123]

Moon H, Ro SW. MAPK/ERK signaling pathway in hepatocellular carcinoma. Cancers. 2021; 13(12): 3026.

[124]

Wu D, Tian S, Zhu W. Modulating multidrug resistance to drug-based antitumor therapies through NF-κB signaling pathway: mechanisms and perspectives. Expert Opin Ther Targets. 2023; 27(6): 503-515.

[125]

He R, He Y, Du R, et al. Revisiting of TAMs in tumor immune microenvironment: insight from NF-κB signaling pathway. Biomed Pharmacother. 2023; 165: 115090.

[126]

Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Tar. 2024; 9(1): 53.

[127]

Wibisana JN, Okada M. Encoding and decoding NF-κB nuclear dynamics. Curr Opin Cell Biol. 2022; 77: 102103.

[128]

Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: at the borders of autoimmunity and inflammation. Front Immunol. 2021; 12: 716469.

[129]

de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023; 41(3): 374-403.

[130]

Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment. Technol Cancer Res Treat. 2021; 20: 153303382110363.

[131]

Wu Q, You L, Nepovimova E, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol. 2022; 15(1): 77.

[132]

Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol. 2022; 85: 196-208.

[133]

Ren Y, Wang R, Weng S, et al. Multifaceted role of redox pattern in the tumor immune microenvironment regarding autophagy and apoptosis. Mol Cancer. 2023; 22(1): 130.

[134]

Gámez-García A, Bolinaga-Ayala I, Yoldi G, et al. ERK5 inhibition induces autophagy-mediated cancer cell death by activating ER stress. Front Cell Dev Biol. 2021; 9: 742049.

[135]

Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 2023; 41(3): 421-433.

[136]

Di Pilato M, Kfuri-Rubens R, Pruessmann JN, et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell. 2021; 184(17): 4512-4530.e22. e22.

[137]

Wu Y, Yi M, Niu M, Mei Q, Wu K. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer. 2022; 21(1): 184.

[138]

Li C, Teixeira AF, Zhu HJ. Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 2021; 20(1): 154.

[139]

Xu R, Zhou X, Wang S, Trinkle C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther. 2021; 218: 107668.

[140]

Kalkavan H, Rühl S, Shaw JJP, Green DR. Non-lethal outcomes of engaging regulated cell death pathways in cancer. Nat Cancer. 2023; 4(6): 795-806.

[141]

Valentini E, Di Martile M, Brignone M, et al. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis. 2023; 14(7): 441.

[142]

Gampa SC, Garimella SV, Pandrangi S. Nano-TRAIL: a promising path to cancer therapy. Cancer Drug Resist. 2023; 6(1): 78-102.

[143]

Pimentel JM, Zhou JY, Wu GS. The role of TRAIL in apoptosis and immunosurveillance in cancer. Cancers. 2023; 15(10): 2752.

[144]

Diaz Arguello OA, Haisma HJ. Apoptosis-inducing TNF superfamily ligands for cancer therapy. Cancers (Basel). 2021; 13(7): 1543.

[145]

Liu X, Xie X, Ren Y, et al. The role of necroptosis in disease and treatment. MedComm. 2021; 2(4): 730-755.

[146]

Zhou Y, Cai Z, Zhai Y, et al. Necroptosis inhibitors: mechanisms of action and therapeutic potential. Apoptosis. 2024; 29(1-2): 22-44.

[147]

Liu Y, Yang X, Zhou C, et al. Unveiling dynamic changes of chemical constituents in raw and processed fuzi with different steaming time points using desorption electrospray ionization mass spectrometry imaging combined with metabolomics. Front Pharmacol. 2022; 13: 842890.

[148]

Wen C, Yu Y, Gao C, Qi X, Cardona CJ, Xing Z. RIPK3-dependent necroptosis is induced and restricts viral replication in human astrocytes infected with zika virus. Front Cell Infect Microbiol. 2021; 11: 637710.

[149]

Kim N, Park CJ, Kim Y, et al. Identification of Pyrido[3, 4-d]pyrimidine derivatives as RIPK3-Mediated necroptosis inhibitors. Eur J Med Chem. 2023; 259: 115635.

[150]

Yang W, Tao K, Wang Y, et al. Necrosulfonamide ameliorates intestinal inflammation via inhibiting GSDMD-medicated pyroptosis and MLKL-mediated necroptosis. Biochem Pharmacol. 2022; 206: 115338.

[151]

Chen JL, Wu X, Yin D, et al. Autophagy inhibitors for cancer therapy: small molecules and nanomedicines. Pharmacol Ther. 2023; 249: 108485.

[152]

Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy. 2024; 20(8): 1700-1711.

[153]

Ma W, Hu N, Xu W, Zhao L, Tian C, Kamei KI. Ferroptosis inducers: a new frontier in cancer therapy. Bioorg Chem. 2024; 146: 107331.

[154]

Costa I, Barbosa DJ, Benfeito S, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther. 2023; 244: 108373.

[155]

Marupudi N, Xiong MP. Genetic targets and applications of iron chelators for neurodegeneration with brain iron accumulation. ACS Bio Med Chem Au. 2024; 4(3): 119-130.

[156]

Liu J, Chen T, Liu X, Li Z, Zhang Y. Engineering materials for pyroptosis induction in cancer treatment. Bioact Mater. 2024; 33: 30-45.

[157]

Wang L, Qin X, Liang J, Ge P. Induction of pyroptosis: a promising strategy for cancer treatment. Front Oncol. 2021; 11: 635774.

[158]

Glytsou C, Chen X, Zacharioudakis E, et al. Mitophagy promotes resistance to BH3 mimetics in acute myeloid leukemia. Cancer Discov. 2023; 13(7): 1656-1677.

[159]

Montero J, Haq R. Adapted to survive: targeting cancer cells with BH3 mimetics. Cancer Discov. 2022; 12(5): 1217-1232.

[160]

Di Cristofano F, George A, Tajiknia V, et al. Therapeutic targeting of TRAIL death receptors. Biochem Soc Trans. 2023; 51(1): 57-70.

[161]

Singh D, Tewari M, Singh S, Narayan G. Revisiting the role of TRAIL/TRAIL-R in cancer biology and therapy. Future Oncol. 2021; 17(5): 581-596.

[162]

Zhang T, Wang Y, Inuzuka H, Wei W. Necroptosis pathways in tumorigenesis. Semin Cancer Biol. 2022; 86(3): 32-40. Pt.

[163]

Yang X, Lu H, Xie H, et al. Potent and selective RIPK1 inhibitors targeting dual-pockets for the treatment of systemic inflammatory response syndrome and sepsis. Angew Chem Int Ed Engl. 2022; 61(5): e202114922.

[164]

Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 2023; 22(1): 96.

[165]

Lopez A, Reyna DE, Gitego N, et al. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun. 2022; 13(1): 1199.

[166]

Wang Y, Wang Y, Pan J, Gan L, Xue J. Ferroptosis, necroptosis, and pyroptosis in cancer: crucial cell death types in radiotherapy and post-radiotherapy immune activation. Radiother Oncol. 2023; 184: 109689.

[167]

Xu W, Huang Y. Regulation of inflammatory cell death by phosphorylation. Front Immunol. 2022; 13: 851169.

[168]

Mudaliar P, Nalawade A, Devarajan S, Aich J. Therapeutic potential of autophagy activators and inhibitors in lung and breast cancer-a review. Mol Biol Rep. 2022; 49(11): 10783-10795.

[169]

Ashrafizadeh M, Paskeh MDA, Mirzaei S, et al. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res. 2022; 41(1): 105.

[170]

Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy. 2024: 1-12.

[171]

Mondal K, Porter H. Hydroxychloroquine causes early inner retinal toxicity and affects autophagosome-lysosomal pathway and sphingolipid metabolism in the retina. Mol Neurobiol. 2022; 59(6): 3873-3887.

[172]

Kwantwi LB. The dual role of autophagy in the regulation of cancer treatment. Amino Acids. 2024; 56(1): 7.

[173]

Yun CW, Jeon J, Go G, Lee JH, Lee SH. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int J Mol Sci. 2020; 22(1): 179.

[174]

Verma AK, Bharti PS, Rafat S, et al. Autophagy paradox of cancer: role, regulation, and duality. Oxid Med Cell Longev. 2021; 2021: 8832541.

[175]

Stalnecker CA, Grover KR, Edwards AC, et al. Concurrent inhibition of IGF1R and ERK increases pancreatic cancer sensitivity to autophagy inhibitors. Cancer Res. 2022; 82(4): 586-598.

[176]

Witte HM, Riecke A, Steinestel K, et al. The addition of chloroquine and bevacizumab to standard radiochemotherapy for recurrent glioblastoma multiforme. Br J Neurosurg. 2024; 38(2): 404-410.

[177]

Wang Z, Chen C, Ai J, et al. Identifying mitophagy-related genes as prognostic biomarkers and therapeutic targets of gastric carcinoma by integrated analysis of single-cell and bulk-RNA sequencing data. Comput Biol Med. 2023; 163: 107227.

[178]

Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy. Life Sci. 2021; 265: 118745.

[179]

Gan T, Qu S, Zhang H, Zhou XJ. Modulation of the immunity and inflammation by autophagy. MedComm. 2023; 4(4): e311.

[180]

Luo Y, Bai XY, Zhang L, et al. Ferroptosis in cancer therapy: mechanisms, small molecule inducers, and novel approaches. Drug Des Dev Ther. 2024; 18: 2485-2529.

[181]

Kim JW, Min DW, Kim D, et al. GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis. Sci Rep. 2023; 13(1): 8872.

[182]

Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 2023; 62: 102703.

[183]

Lee J, Roh JL. Targeting iron-sulfur clusters in cancer: opportunities and challenges for ferroptosis-based therapy. Cancers. 2023; 15(10): 2694.

[184]

Chen H, Wang C, Liu Z, et al. Ferroptosis and its multifaceted role in cancer: mechanisms and therapeutic approach. Antioxidants (Basel, Switzerland). 2022; 11(8).

[185]

Wang Y, Wu X, Ren Z, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 2023; 66: 100916.

[186]

Li B, Chen X, Qiu W, et al. Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy. Adv Sci (Weinh). 2022; 9(17): e2105451.

[187]

Gupta J, Safdari HA, Hoque M. Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol. 2021; 69: 307-324.

[188]

Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022; 21(1): 47.

[189]

Hou J, Hsu JM, Hung MC. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol Cell. 2021; 81(22): 4579-4590.

[190]

Ross C, Chan AH, von Pein JB, Maddugoda MP, Boucher D, Schroder K. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu Rev Immunol. 2022; 40: 249-269.

[191]

Wu H, Qian D, Bai X, Sun S. Targeted pyroptosis is a potential therapeutic strategy for cancer. J Oncol. 2022; 2022: 1.

[192]

Hsu SK, Li CY, Lin IL, et al. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics. 2021; 11(18): 8813-8835.

[193]

Yin Q, Song SY, Bian Y, et al. Unlocking the potential of pyroptosis in tumor immunotherapy: a new horizon in cancer treatment. Front Immunol. 2024; 15: 1381778.

[194]

Zheng N, Fang J, Xue G, et al. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance. Cancer Cell. 2022; 40(9): 973-985.e7. e7.

[195]

Hu Y, Liu Y, Zong L, et al. The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles. Cell Death Dis. 2023; 14(12): 836.

[196]

Ding B, Chen H, Tan J, et al. ZIF-8 nanoparticles evoke pyroptosis for high-efficiency cancer immunotherapy. Angew Chem Int Ed Engl. 2023; 62(10): e202215307.

[197]

Luo QW, Yao L, Li L, et al. Inherent capability of self-assembling nanostructures in specific proteasome activation for cancer cell pyroptosis. Small (Weinheim an der Bergstrasse, Germany). 2023; 19(9): e2205531.

[198]

Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta. 2021; 1876(1): 188569.

[199]

Li X, Dou J, You Q, Jiang Z. Inhibitors of BCL2A1/Bfl-1 protein: potential stock in cancer therapy. Eur J Med Chem. 2021; 220: 113539.

[200]

Thus YJ, Eldering E, Kater AP, Spaargaren M. Tipping the balance: toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma. Leukemia. 2022; 36(9): 2165-2176.

[201]

Pullarkat VA, Lacayo NJ, Jabbour E, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021; 11(6): 1440-1453.

[202]

Khan S, Cao L, Wiegand J, et al. PROTAC-mediated dual degradation of BCL-xL and BCL-2 is a highly effective therapeutic strategy in small-cell lung cancer. Cells. 2024; 13(6): 528.

[203]

Tompson DJ, Davies C, Scott NE, et al. Comparison of the pharmacokinetics of RIPK1 inhibitor GSK2982772 in healthy western and Japanese subjects. Eur J Drug Metab Pharmacokinet. 2021; 46(1): 71-83.

[204]

Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications. Pharmacol Res. 2021; 163: 105297.

[205]

Tao H, Zhao H, Mo A, et al. VX-765 attenuates silica-induced lung inflammatory injury and fibrosis by modulating alveolar macrophages pyroptosis in mice. Ecotoxicol Environ Saf. 2023; 249: 114359.

[206]

Xia YM, Guan YQ, Liang JF, Wu WD. TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4/NF-κB signaling pathway. Ren Fail. 2024; 46(1): 2313176.

[207]

Feng W, Chen J, Huang W, et al. HMGB1-mediated elevation of KLF7 facilitates hepatocellular carcinoma progression and metastasis through upregulating TLR4 and PTK2. Theranostics. 2023; 13(12): 4042-4058.

[208]

Wang E, Pineda JMB, Kim WJ, et al. Modulation of RNA splicing enhances response to BCL2 inhibition in leukemia. Cancer Cell. 2023; 41(1): 164-180.e8. e8.

[209]

Daver N, Perl AE, Maly J, et al. Venetoclax plus gilteritinib for FLT3-mutated relapsed/refractory acute myeloid leukemia. J Clin Oncol. 2022; 40(35): 4048-4059.

[210]

Joly F, Fabbro M, Follana P, et al. A phase II study of Navitoclax (ABT-263) as single agent in women heavily pretreated for recurrent epithelial ovarian cancer: the MONAVI—GINECO study. Gynecol Oncol. 2022; 165(1): 30-39.

[211]

Setton J, Zinda M, Riaz N, et al. Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 2021; 11(7): 1626-1635.

[212]

Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: driving personalized medicine. Pharmacol Rev. 2023; 75(4): 789-814.

[213]

Sazonova EV, Yapryntseva MA, Pervushin NV, Tsvetcov RI, Zhivotovsky B, Kopeina GS. Cancer drug resistance: targeting proliferation or programmed cell death. Cells. 2024; 13(5): 388.

[214]

Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021; 18(6): 327-344.

[215]

Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov. 2021; 11(4): 874-899.

[216]

Ong F, Kim K, Konopleva MY. Venetoclax resistance: mechanistic insights and future strategies. Cancer Drug Resist. 2022; 5(2): 380-400.

[217]

Nishida Y, Ishizawa J, Ayoub E, et al. Enhanced TP53 reactivation disrupts MYC transcriptional program and overcomes venetoclax resistance in acute myeloid leukemias. Sci Adv. 2023; 9(48): eadh1436.

[218]

Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021; 138(13): 1120-1136.

[219]

Zhang L, Zhu Y, Zhang J, Zhang L, Chen L. Inhibiting cytoprotective autophagy in cancer therapy: an update on pharmacological small-molecule compounds. Front Pharmacol. 2022; 13: 966012.

[220]

Ketkar M, Dutt S. Epigenetic regulation towards acquired drug resistance in cancer. Subcell Biochem. 2022; 100: 473-502.

[221]

Zhuang H, Yu B, Tao D, et al. The role of m6A methylation in therapy resistance in cancer. Mol Cancer. 2023; 22(1): 91.

[222]

Pi M, Kuang H, Yue C, et al. Targeting metabolism to overcome cancer drug resistance: a promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist Updat. 2022; 61: 100822.

[223]

Zhu S, Zhang T, Zheng L, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021; 14(1): 156.

[224]

Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022; 21(1): 28.

[225]

Hege Hurrish K, Qiao X, Li X, et al. Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia. Biochem Pharmacol. 2022; 205: 115283.

[226]

Zhao T, He Q, Xie S, et al. A novel Mcl-1 inhibitor synergizes with venetoclax to induce apoptosis in cancer cells. Mol med. 2023; 29(1): 10.

[227]

Lasater EA, Amin DN, Bannerji R, et al. Targeting MCL-1 and BCL-2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non-Hodgkin lymphoma: results from preclinical models and a Phase Ib study. Am J Hematol. 2023; 98(3): 449-463.

[228]

Uddin MS, Mamun AA, Alghamdi BS, et al. Epigenetics of glioblastoma multiforme: from molecular mechanisms to therapeutic approaches. Semin Cancer Biol. 2022; 83: 100-120.

[229]

Zhou M, Yuan M, Zhang M, et al. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem. 2021; 226: 113825.

[230]

Cocco S, Leone A, Roca MS, et al. Inhibition of autophagy by chloroquine prevents resistance to PI3K/AKT inhibitors and potentiates their antitumor effect in combination with paclitaxel in triple negative breast cancer models. J Transl Med. 2022; 20(1): 290.

[231]

Jain V, Harper SL, Versace AM, et al. Targeting UGCG overcomes resistance to lysosomal autophagy inhibition. Cancer Discov. 2023; 13(2): 454-473.

[232]

Shi F, Huang X, Hong Z, et al. Improvement strategy for immune checkpoint blockade: a focus on the combination with immunogenic cell death inducers. Cancer Lett. 2023; 562: 216167.

[233]

Vennin C, Cattaneo CM, Bosch L, et al. Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity. Cancer Cell. 2023; 41(6): 1170-1185.e12. e12.

[234]

Galluzzi L, Kepp O, Hett E, Kroemer G, Marincola FM. Immunogenic cell death in cancer: concept and therapeutic implications. J Transl Med. 2023; 21(1): 162.

[235]

Shang S, Liu J, Verma V, et al. Combined treatment of non-small cell lung cancer using radiotherapy and immunotherapy: challenges and updates. Cancer Commun. 2021; 41(11): 1086-1099.

[236]

Zou Y, Yaguchi T. Programmed cell death-1 blockade therapy in melanoma: resistance mechanisms and combination strategies. Exp Dermatol. 2023; 32(3): 264-275.

[237]

Lin M, Liu XM, Feng NP, Lyu YQ. Liposome co-delivery of quercetin and doxorubicin in inhibiting retinoblastoma by regulating epithelial-mesenchymal transition process. Zhongguo Zhong Yao Za Zhi. 2024; 49(13): 3515-3525.

[238]

Sajeev A, Sailo B, Unnikrishnan J, et al. Unlocking the potential of Berberine: advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett. 2024; 597: 217019.

[239]

Freedman RA, Heiling HM, Li T, et al. Neratinib and ado-trastuzumab-emtansine for pre-treated and untreated HER2-positive Breast cancer brain metastases: translational breast cancer research consortium trial 022. Ann Oncol. 2024.

[240]

Zhou C, Li C, Luo L, et al. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer. Cancer Cell. 2024; 42(7): 1286-1300.e8. e8.

[241]

Corbacioglu S, Lode H, Ellinger S, et al. Irinotecan and temozolomide in combination with dasatinib and rapamycin versus irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma (RIST-rNB-2011): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2024; 25(7): 922-932.

[242]

Adkins D, Ley JC, Liu J, Oppelt P. Ramucirumab in combination with pembrolizumab for recurrent or metastatic head and neck squamous cell carcinoma: a single-centre, phase 1/2 trial. Lancet Oncol. 2024; 25(7): 888-900.

[243]

Qian X, Yang H, Ye Z, et al. Celecoxib augments paclitaxel-induced immunogenic cell death in triple-negative breast cancer. ACS Nano. 2024; 18(24): 15864-15877.

[244]

Wang DS, Ren C, Li SS, et al. Cetuximab plus FOLFOXIRI versus cetuximab plus FOLFOX as conversion regimen in RAS/BRAF wild-type patients with initially unresectable colorectal liver metastases (TRICE trial): a randomized controlled trial. PLoS Med. 2024; 21(5): e1004389.

[245]

DiNardo CD, Lachowiez CA, Takahashi K, et al. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed and relapsed or refractory acute myeloid leukemia. J Clin Oncol. 2021; 39(25): 2768-2778.

[246]

Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic induction of BRCAness in BRCA-proficient cancers: expanding PARP inhibitor use. Cancers. 2022; 14(11): 2640.

[247]

Sun W, Wu Y, Ma F, Fan J, Qiao Y. Efficacy of PARP inhibitor, platinum, and immunotherapy in BRCA-mutated HER2-negative breast cancer patients: a systematic review and network meta-analysis. J Clin Med. 2023; 12(4): 1588.

[248]

Jiang W, Huang G, Pan S, et al. TRAIL-driven targeting and reversing cervical cancer radioresistance by seleno-nanotherapeutics through regulating cell metabolism. Drug Resist Updat. 2024; 72: 101033.

[249]

Lin Y, Yu B, Fang P, Wang J. Inhibiting autophagy before it starts. Autophagy. 2024; 20(4): 923-924.

[250]

Busche S, John K, Wandrer F, et al. BH3-only protein expression determines hepatocellular carcinoma response to sorafenib-based treatment. Cell Death Dis. 2021; 12(8): 736.

[251]

Lentz RW, Colton MD, Mitra SS, Messersmith WA. Innate immune checkpoint inhibitors: the next breakthrough in medical oncology? Mol Cancer Ther. 2021; 20(6): 961-974.

[252]

Xiao M, Xie L, Cao G, et al. CD4(+) T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy. J Immunother Cancer. 2022; 10(5): e004022.

[253]

Obenauf AC. Mechanism-based combination therapies for metastatic cancer. Sci Transl Med. 2022; 14(655): eadd0887.

[254]

Aissa AF, Islam A, Ariss MM, et al. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat Commun. 2021; 12(1): 1628.

[255]

Kim Y, Seidman JG, Seidman CE. Genetics of cancer therapy-associated cardiotoxicity. J Mol Cell Cardiol. 2022; 167: 85-91.

[256]

Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics data analysis: a review. Biotechnol Adv. 2021; 49: 107739.

[257]

Zielinski JM, Luke JJ, Guglietta S, Krieg C. High throughput multi-omics approaches for clinical trial evaluation and drug discovery. Front Immunol. 2021; 12: 590742.

[258]

Hosseini SA, Salehifard Jouneghani A, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. CRISPR/Cas9 as precision and high-throughput genetic engineering tools in gastrointestinal cancer research and therapy. Int J Biol Macromol. 2022; 223(A): 732-754. Pt.

[259]

Tanaka K, Yu HA, Yang S, et al. Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM-and PUMA-mediated apoptosis. Cancer Cell. 2021; 39(9): 1245-1261.e6. e6.

[260]

Kallal LA, Waszkiewicz A, Jaworski JP, et al. High-throughput screening and triage assays identify small molecules targeting c-MYC in cancer cells. SLAS Discov. 2021; 26(2): 216-229.

[261]

Jendoubi T. Approaches to integrating metabolomics and multi-omics data: a primer. Metabolites. 2021; 11(3): 184.

[262]

Menyhárt O, Győrffy B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput Struct Biotechnol J. 2021; 19: 949-960.

[263]

Chakraborty S, Sharma G, Karmakar S, Banerjee S. Multi-OMICS approaches in cancer biology: new era in cancer therapy. Biochim Biophys Acta, Mol Basis Dis. 2024; 1870(5): 167120.

[264]

Jafarzadeh L, Khakpoor-Koosheh M, Mirzaei H, Mirzaei HR. Biomarkers for predicting the outcome of various cancer immunotherapies. Crit Rev Oncol Hematol. 2021; 157: 103161.

[265]

Sarhadi VK, Armengol G. Molecular biomarkers in cancer. Biomolecules. 2022; 12(8): 1021.

[266]

Wang L, Yang Z, Guo F, et al. Research progress of biomarkers in the prediction of anti-PD-1/PD-L1 immunotherapeutic efficiency in lung cancer. Front Immunol. 2023; 14: 1227797.

[267]

Dang DK, Park BH. Circulating tumor DNA: current challenges for clinical utility. J Clin Invest. 2022; 132(12).

[268]

Hu J, Cao J, Topatana W, et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol. 2021; 14(1): 157.

[269]

Boon NJ, Oliveira RA, Körner PR, et al. DNA damage induces p53-independent apoptosis through ribosome stalling. Science. 2024; 384(6697): 785-792.

[270]

Dhainaut M, Rose SA, Akturk G, et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell. 2022; 185(7): 1223-1239.e20. e20.

[271]

Przybyla L, Gilbert LA. A new era in functional genomics screens. Nat Rev Genet. 2022; 23(2): 89-103.

[272]

Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 landscape: current state and future perspectives. Int J Mol Sci. 2023; 24(22): 16077.

[273]

Lee SG. Molecular target and action mechanism of anti-cancer agents. Int J Mol Sci. 2023; 24(9): 8259.

[274]

Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer. 2022; 22(6): 323-339.

[275]

Newhouse R, Nelissen E, El-Shakankery KH, et al. Pegylated liposomal doxorubicin for relapsed epithelial ovarian cancer. Cochrane Database Syst Rev. 2023; 7(7): Cd006910.

[276]

Xu X, Liu C, Wang Y, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021; 176: 113891.

[277]

Passaro A, Jänne PA, Peters S. Antibody-drug conjugates in lung cancer: recent advances and implementing strategies. J Clin Oncol. 2023; 41(21): 3747-3761.

[278]

Desai A, Abdayem P, Adjei AA, Planchard D. Antibody-drug conjugates: a promising novel therapeutic approach in lung cancer. Lung Cancer. 2022; 163: 96-106.

[279]

Zhen W, Weichselbaum RR, Lin W. Nanoparticle-mediated radiotherapy remodels the tumor microenvironment to enhance antitumor efficacy. Adv Mater. 2023; 35(21): e2206370.

[280]

Nishida N, Sakai D, Satoh T. Treatment strategy for HER2-negative advanced gastric cancer: salvage-line strategy for advanced gastric cancer. Int J Clin Oncol. 2024.

[281]

Rani V, Yadav D, Atale N. Matrixmetalloproteinase inhibitors: promising therapeutic targets against cancer. Curr Pharm Des. 2021; 27(45): 4557-4567.

[282]

Kang K, Park C, Chan FK. Necroptosis at a glance. J Cell Sci. 2022; 135(17).

[283]

Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA Jr, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res. 2021; 40(1): 355.

[284]

Subbiah V, Chawla SP, Conley AP, et al. Preclinical characterization and phase i trial results of INBRX-109, a third-generation, recombinant, humanized, death receptor 5 agonist antibody, in chondrosarcoma. Clin Cancer Res. 2023; 29(16): 2988-3003.

[285]

Zhu X, Li S. Ferroptosis, necroptosis, and pyroptosis in gastrointestinal cancers: the chief culprits of tumor progression and drug resistance. Adv Sci (Weinh). 2023; 10(26): e2300824.

[286]

Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Briefings Bioinf. 2021; 22(2): 1639-1655.

[287]

Xie J, Luo X, Deng X, et al. Advances in artificial intelligence to predict cancer immunotherapy efficacy. Front Immunol. 2022; 13: 1076883.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

417

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/