Structural insights into the mechanotransducing mechanism of FtsEX in cell division

Yuejia Chen , Du Guo , Xin Wang , Changbin Zhang , Yatian Chen , Qinghua Luo , Yujiao Chen , Lili Yang , Zhibo Zhang , Tian Hong , Zhengyu Zhang , Haohao Dong , Shenghai Chang , Jianping Hu , Xiaodi Tang

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e688

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e688 DOI: 10.1002/mco2.688
ORIGINAL ARTICLE

Structural insights into the mechanotransducing mechanism of FtsEX in cell division

Author information +
History +
PDF

Abstract

The filamentous temperature-sensitive (Fts) protein FtsEX plays a pivotal role in Escherichia coli (E. coli) cell division by facilitating the activation of peptidoglycan hydrolysis through the adaptor EnvC. FtsEX belongs to the type VII ATP-binding cassette (ABC) transporter superfamily, which harnesses ATP energy to induce mechanical force, triggering a cascade of conformational changes that activate the pathway. However, the precise mechanism by which FtsEX initiates mechanotransmission remains elusive. Due to the inherent instability of this type of ABC transporter protein in vitro, the conformation of FtsEX has solely been determined in the stabilized ATP-bound state. To elucidate the dynamics of FtsEX, we characterized FtsEX and EnvC of various functional structures through cryo-electron microscopy (cryo-EM) and homology modeling. We validated the structures by molecular dynamics simulations. By site-directed mutagenesis and phenotype screening, we also identified the functional residues involved in allosteric communication between FtsE and FtsX as well as FtsX and EnvC. Additionally, we discovered a potential role of phospholipids in stabilizing the complex conformation during mechanotransmission. This comprehensive exploration significantly enhances our understanding of the intricate mechanisms governing bacterial cell division and unveils potential molecular targets for developing innovative antimicrobial drugs to combat antibiotic resistance.

Keywords

ABC transporter / cell division / EnvC / FtsEX / mechanotransmission

Cite this article

Download citation ▾
Yuejia Chen, Du Guo, Xin Wang, Changbin Zhang, Yatian Chen, Qinghua Luo, Yujiao Chen, Lili Yang, Zhibo Zhang, Tian Hong, Zhengyu Zhang, Haohao Dong, Shenghai Chang, Jianping Hu, Xiaodi Tang. Structural insights into the mechanotransducing mechanism of FtsEX in cell division. MedComm, 2024, 5(11): e688 DOI:10.1002/mco2.688

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Salam MA, Al-Amin MY, Salam MT, et al. Antimicrobial resistance: a growing serious threat for global public health. Healthcare. 2023; 11: 1946.

[2]

EClinicalMedicine. Antimicrobial resistance: a top ten global public health threat. EClinicalMedicine. 2021; 41: 101221.

[3]

Bera A, Herbert S, Jakob A, Vollmer W, Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol. 2005; 55: 778-787.

[4]

Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci. 2014; 23: 243-259.

[5]

Claessen D, Errington J. Cell wall deficiency as a coping strategy for stress. Trends Microbiol. 2019; 27: 1025-1033.

[6]

Yang DC, Tan K, Joachimiak A, Bernhardt TG. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol. 2012; 85: 768-781.

[7]

Du S, Henke W, Pichoff S, Lutkenhaus J. How FtsEX localizes to the Z ring and interacts with FtsA to regulate cell division. Mol Microbiol. 2019; 112: 881-895.

[8]

Vollmer W. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev. 2008; 32: 287-306.

[9]

Romberg L, Levin PA. Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol. 2003; 57: 125-154.

[10]

Du S, Lutkenhaus J. Assembly and activation of the Escherichia coli divisome. Mol Microbiol. 2017; 105: 177-187.

[11]

Du S, Pichoff S, Lutkenhaus J. Roles of ATP hydrolysis by FtsEX and interaction with FtsA in regulation of septal peptidoglycan synthesis and hydrolysis. mBio. 2020; 11: 1-15.

[12]

Attaibi M, Den Blaauwen T. An updated model of the divisome: regulation of the septal peptidoglycan synthesis machinery by the divisome. Int J Mol Sci. 2022; 23: 3537.

[13]

Uehara T, Park JT. Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation. J Bacteriol. 2008; 190: 3914-3922.

[14]

Aarsman MEG, Piette A, Fraipont C, Vinkenvleugel TMF, Nguyen-Distèche M, Den Blaauwen T. Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol. 2005; 55: 1631-1645.

[15]

Liu B, Persons L, Lee L, De Boer PAJ. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol Microbiol. 2015; 95: 945-970.

[16]

Rico AI, García-Ovalle M, Mingorance J, Vicente M. Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol Microbiol. 2004; 53: 1359-1371.

[17]

Crow A, Greene NP, Kaplan E, Koronakis V. Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proc Natl Acad Sci USA. 2017; 114: 12572-12577.

[18]

Tang X, Chang S, Zhang Ke, et al. Structural basis for bacterial lipoprotein relocation by the transporter LolCDE. Nat Struct Mol Biol. 2021; 28: 347-355.

[19]

De Leeuw E, Graham B, Phillips GJ, Ten Hagen-Jongman CM, Oudega B, Luirink J. Molecular characterization of Escherichia coli FtsE and FtsX. Mol Microbiol. 1999; 31: 983-993.

[20]

Thomas C, Aller SG, Beis K, et al. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett. 2020; 594: 3767-3775.

[21]

Xu X, Li J, Chua W-Z, et al. Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. Proc Natl Acad Sci USA. 2023; 120: e2301897120.

[22]

Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009; 10: 218-227.

[23]

Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci. 2011; 108: E1052-E1060.

[24]

Uehara T, Parzych KR, Dinh T, Bernhardt TG. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 2010; 29: 1412-1422.

[25]

Cook J, Baverstock TC, Mcandrew MBL, Roper DI, Stansfeld PJ, Crow A. Activator-induced conformational changes regulate division-associated peptidoglycan amidases. Proc Natl Acad Sci USA. 2023; 120: e2302580120.

[26]

Peters NT, Dinh T, Bernhardt TG. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J Bacteriol. 2011; 193: 4973-4983.

[27]

Hao A, Suo Y, Lee S-Y. Structural insights into the FtsEX-EnvC complex regulation on septal peptidoglycan hydrolysis in Vibrio cholerae. Structure. 2024; 32(2): 188-199.e5.

[28]

Li J, Xu X, Shi J, Hermoso JA, Sham L-To, Luo M. Regulation of the cell division hydrolase RipC by the FtsEX system in Mycobacterium tuberculosis. Nat Commun. 2023; 14: 7999.

[29]

Pichoff S, Du S, Lutkenhaus J. Roles of FtsEX in cell division. Res Microbiol. 2019; 170: 374-380.

[30]

Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015; 7: 14.

[31]

Alcorlo M, Straume D, Lutkenhaus J, Håvarstein LS, Hermoso JA. Structural characterization of the essential cell division protein FtsE and its interaction with FtsX in Streptococcus pneumoniae. mBio. 2020; 11: 1-20.

[32]

Arends SJR, Kustusch RJ, Weiss DS. ATP-binding site lesions in FtsE impair cell division. J Bacteriol. 2009; 191: 3772-3784.

[33]

Cook J, Baverstock TC, Mcandrew MBL, Stansfeld PJ, Roper DI, Crow A. Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. Proc Natl Acad Sci. 2020; 117: 28355-28365.

[34]

Okada U, Yamashita E, Neuberger A, Morimoto M, Van Veen HW, Murakami S. Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat Commun. 2017; 8: 1336.

[35]

Bienert S, Waterhouse A, De Beer TAP, et al. The SWISS-MODEL repository—new features and functionality. Nucleic Acids Res. 2017; 45: D313-D319.

[36]

Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46: W296-W303.

[37]

Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev. 2016; 40: 133-159.

[38]

Cook J, Baverstock TC, Mcandrew MBL, Stansfeld PJ, Roper DI, Crow A. Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. Proc Natl Acad Sci USA. 2020; 117: 28355-28365.

[39]

Sharma S, Zhou R, Wan Li, et al. Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins. Nat Commun. 2021; 12: 4687.

[40]

Bei W, Luo Q, Shi H, et al. Cryo-EM structures of LolCDE reveal the molecular mechanism of bacterial lipoprotein sorting in Escherichia coli. PLOS Biol. 2022; 20: e3001823.

[41]

Yan X. Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. Proc Natl Acad Sci. 2017; 120: 2017.

[42]

Peters NT, Morlot C, Yang DC, Uehara T, Vernet T, Bernhardt TG. Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Mol Microbiol. 2013; 89: 690-701.

[43]

Heidrich C, Templin MF, Ursinus A, et al. Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol. 2001; 41: 167-178.

[44]

Denisov IG, Grinkova YV, Lazarides AA, Sligar SG. Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc. 2004; 126: 3477-3487.

[45]

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60: 2126-2132.

[46]

Adams PD, Afonine PV, Bunkóczi G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010; 66: 213-221.

[47]

Murzyn K, Róg T, Pasenkiewicz-Gierula M. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys J. 2005; 88: 1091-1103.

[48]

Tian C, Kasavajhala K, Belfon KAA, et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput. 2020; 16: 528-552.

[49]

Case DA, Yandong H, Walker RC, et al. AMBER. 2019.

[50]

Eslami H, Mojahedi F, Moghadasi J. Molecular dynamics simulation with weak coupling to heat and material baths. J Chem Phys. 2010; 133: 84105.

[51]

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983; 79: 926-935.

[52]

Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017; 14: 331-332.

[53]

Zhang K. Real-time CTF determination and correction. J Struct Biol. 2016; 193: 1-12.

[54]

Scheres SHW. Semi-automated selection of cryo-EM particles in RELION-1.3. J Struct Biol. 2015; 189: 114-122.

[55]

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017; 14: 290-296.

[56]

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr. 2010; 66: 486-501.

[57]

Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25: 1605-1612.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/