XBB.1.16-RBD-based trimeric protein vaccine can effectively inhibit XBB.1.16-included XBB subvariant infection

Dandan Peng , Cai He , Zimin Chen , Hong Lei , Xiya Huang , Chunjun Ye , Binhan Wang , Ying Hao , Xinyi Du , Shuaiyao Lu , Hongbo Hu , Wei Cheng , Haohao Dong , Jian Lei , Xikun Zhou , Xiangrong Song , Guangwen Lu , Xiawei Wei

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e687

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e687 DOI: 10.1002/mco2.687
ORIGINAL ARTICLE

XBB.1.16-RBD-based trimeric protein vaccine can effectively inhibit XBB.1.16-included XBB subvariant infection

Author information +
History +
PDF

Abstract

The newly identified XBB.1.16-containing sublineages, including XBB.1.5, have become the prevailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant in circulation. Unlike previous Omicron XBB variants (e.g., XBB.1.5 and XBB.1.9) harboring the F486P substitution, XBB.1.16 also carries a T478R substitution in the receptor-binding domain (RBD). Numerous researchers have delved into the high transmissibility and immune evasion of XBB.1.16 subvariant. Therefore, developing a new vaccine targeting XBB.1.16, including variants of concern (VOCs), is paramount. In our study, we engineered a recombinant protein by directly linking the S-RBD sequence of the XBB.1.16 strain of SARS-CoV-2 to the sequences of two heptad repeat sequences (HR1 and HR2) from the SARS-CoV-2 S2 subunit. Named the recombinant RBDXBB.1.16-HR/trimeric protein, this fusion protein autonomously assembles into a trimer. Combined with an MF59-like adjuvant, the RBDXBB.1.16-HR vaccine induces a robust humoral immune response characterized by high titers of neutralizing antibodies against variant pseudovirus and authentic VOCs and cellular immune responses. Additionally, a fourth heterologous RBDXBB.1.16-HR vaccine enhances both humoral and cellular immune response elicited by three-dose mRNA vaccines. These findings demonstrate that the recombinant RBDXBB.1.16-HR protein, featuring the new T478R mutation, effectively induces solid neutralizing antibodies to combat newly emerged XBB variants.

Keywords

heterologous booster / recombinant RBD-HR protein / XBB.1.16 variant

Cite this article

Download citation ▾
Dandan Peng, Cai He, Zimin Chen, Hong Lei, Xiya Huang, Chunjun Ye, Binhan Wang, Ying Hao, Xinyi Du, Shuaiyao Lu, Hongbo Hu, Wei Cheng, Haohao Dong, Jian Lei, Xikun Zhou, Xiangrong Song, Guangwen Lu, Xiawei Wei. XBB.1.16-RBD-based trimeric protein vaccine can effectively inhibit XBB.1.16-included XBB subvariant infection. MedComm, 2024, 5(9): e687 DOI:10.1002/mco2.687

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Umar TP. Arcturus (XBB.1.16) COVID-19 subvariant emergence in Indonesia. Lancet. 2023; 402(10408): 1127-1128.

[2]

WHO. Tracking SARS-CoV-2 variants. 2023. Accessed October 11, 2023. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants

[3]

Nehlmeier I, Kempf A, Arora P, et al. Host cell entry and neutralisation sensitivity of the SARS-CoV-2 XBB.1.16 lineage. Cell Mol Immunol. 2023; 20(8): 969-971.

[4]

Yamasoba D, Uriu K, Plianchaisuk A, et al. Virological characteristics of the SARS-CoV-2 omicron XBB.1.16 variant. Lancet Infect Dis. 2023; 23(6): 655-656.

[5]

European Medicines Agency. EMA and ECDC statement on updating COVID-19 vaccines to target new SARS-CoV-2 virus variants. Accessed June 6, 2023. https://www.ema.europa.eu/en/news/ema-and-ecdc-statement-updating-covid-19-vaccines-target-new-sars-cov-2-virus-variants

[6]

Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New Engl J Med. 2021; 384(5): 403-416.

[7]

Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet (Lond, Engl). 2021; 397(10287): 1819-1829.

[8]

Sun P, Balinsky CA, Jiang L, et al. Antibody responses to the SARS-CoV-2 ancestral strain and Omicron variants in Moderna mRNA-1273 vaccinated active-duty US navy sailors and marines. J Infect Dis. 2023; 228(2): 149-159.

[9]

Scheaffer SM, Lee D, Whitener B, et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat Med. 2023; 29(1): 247-257.

[10]

Andersson NW, Thiesson EM, Baum U, et al. Comparative effectiveness of bivalent BA.4-5 and BA.1 mRNA booster vaccines among adults aged ≥50 years in Nordic countries: nationwide cohort study. BMJ (Clin Res Ed). 2023; 382: e075286.

[11]

Mateo-Urdiales A, Sacco C, Fotakis EA, et al. Relative effectiveness of monovalent and bivalent mRNA boosters in preventing severe COVID-19 due to omicron BA.5 infection up to 4 months post-administration in people aged 60 years or older in Italy: a retrospective matched cohort study. Lancet Infect Dis. 2023; 23(12): 1349-1359.

[12]

Kurhade C, Zou J, Xia H, et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat Med. 2023; 29(2): 344-347.

[13]

Kopel H, Nguyen VH, Boileau C, et al. Comparative effectiveness of bivalent (original/Omicron BA.4/BA.5) COVID-19 vaccines in adults. Vaccines (Basel). 2023; 11(11): 1711.

[14]

He C, Yang J, Hong W, et al. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat Commun. 2022; 13(1): 5459.

[15]

Yang J, Wang W, Chen Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020; 586(7830): 572-577.

[16]

Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807): 215-220.

[17]

Yang J, Wang W, Chen Z, et al. Publisher correction: a vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2021; 590(7844): E23.

[18]

Flurkey K, Currer JM, Leiter EH, Witham B. The Jackson Laboratory Handbook on Genetically Standardized Mice. The Jackson Laboratory; 2009.

[19]

Fernández-Ciriza L, González Á, Del Pozo JL, et al. Humoral and cellular immune response over 9 months of mRNA-1273, BNT162b2 and ChAdOx1 vaccination in a University Hospital in Spain. Sci Rep. 2022; 12(1): 15606.

[20]

Milligan EC, Olstad K, Williams CA, et al. Infant rhesus macaques immunized against SARS-CoV-2 are protected against heterologous virus challenge 1 year later. Sci Transl Med. 2023; 15(685): eadd6383.

[21]

Park YJ, Pinto D, Walls AC, et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science. 2022; 378(6620): 619-627.

[22]

Peng D, Zhao T, Hong W, et al. Heterologous vaccination with subunit protein vaccine induces a superior neutralizing capacity against BA.4/5-included SARS-CoV-2 variants than homologous vaccination of mRNA vaccine. MedComm. 2023; 4(2): e238.

[23]

Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022; 608(7923): 603-608.

[24]

He C, Yang J, Hong W, et al. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat Commun. 2022; 13(1): 5459.

[25]

Ye F, Lin X, Chen Z, et al. S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis. Signal Transduct Target Ther. 2021; 6(1): 343.

[26]

Rohou A, Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015; 192(2): 216-221.

[27]

Tang G, Peng L, Baldwin PR, et al. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 2007; 157(1): 38-46.

[28]

Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J. 2021; 478(24): 4169-4185.

[29]

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017; 14(3): 290-296.

[30]

Badoual C, Hans S, Rodriguez J, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006; 12(2): 465-472.

[31]

Ren Z, Shi Q, Xu S, et al. Elicitation of T-cell-derived IFN-γ-dependent immunity by highly conserved Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII). Parasites Vectors. 2023; 16(1): 269.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/