Oncogenic SLC2A11–MIF fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder cancer proliferation and metastasis by regulating mRNA stability

Liang Cheng , Chenwei Yang , Junlin Lu , Ming Huang , Ruihui Xie , Sarah Lynch , Justin Elfman , Yuhang Huang , Sen Liu , Siting Chen , Baoqing He , Tianxin Lin , Hui Li , Xu Chen , Jian Huang

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e685

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e685 DOI: 10.1002/mco2.685
ORIGINAL ARTICLE

Oncogenic SLC2A11–MIF fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder cancer proliferation and metastasis by regulating mRNA stability

Author information +
History +
PDF

Abstract

Chimeric RNAs, distinct from DNA gene fusions, have emerged as promising therapeutic targets with diverse functions in cancer treatment. However, the functional significance and therapeutic potential of most chimeric RNAs remain unclear. Here we identify a novel fusion transcript of solute carrier family 2-member 11 (SLC2A11) and macrophage migration inhibitory factor (MIF). In this study, we investigated the upregulation of SLC2A11–MIF in The Cancer Genome Atlas cohort and a cohort of patients from Sun Yat-Sen Memorial Hospital. Subsequently, functional investigations demonstrated that SLC2A11–MIF enhanced the proliferation, antiapoptotic effects, and metastasis of bladder cancer cells in vitro and in vivo. Mechanistically, the fusion protein encoded by SLC2A11–MIF interacted with polypyrimidine tract binding protein 1 (PTBP1) and regulated the mRNA half-lives of Polo Like Kinase 1, Roundabout guidance receptor 1, and phosphoinositide-3-kinase regulatory subunit 3 in BCa cells. Moreover, PTBP1 knockdown abolished the enhanced impact of SLC2A11–MIF on biological function and mRNA stability. Furthermore, the expression of SLC2A11–MIF mRNA is regulated by CCCTC-binding factor and stabilized through RNA N4-acetylcytidine modification facilitated by N-acetyltransferase 10. Overall, our findings revealed a significant fusion protein orchestrated by the SLC2A11–MIF–PTBP1 axis that governs mRNA stability during the multistep progression of bladder cancer.

Keywords

bladder cancer / fusion protein / metastasis / mRNA stability / PTBP1 / SLC2A11–MIF

Cite this article

Download citation ▾
Liang Cheng, Chenwei Yang, Junlin Lu, Ming Huang, Ruihui Xie, Sarah Lynch, Justin Elfman, Yuhang Huang, Sen Liu, Siting Chen, Baoqing He, Tianxin Lin, Hui Li, Xu Chen, Jian Huang. Oncogenic SLC2A11–MIF fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder cancer proliferation and metastasis by regulating mRNA stability. MedComm, 2024, 5(9): e685 DOI:10.1002/mco2.685

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi X, Singh S, Lin E, Li H. Chimeric RNAs in cancer. Adv Clin Chem. 2021; 100: 1-35.

[2]

Zhu D, Singh S, Chen X, et al. The landscape of chimeric RNAs in bladder urothelial carcinoma. Int J Biochem Cell Biol. 2019; 110: 50-58.

[3]

Li Z, Qin F, Li H. Chimeric RNAs and their implications in cancer. Curr Opin Genet Dev. 2018; 48: 36-43.

[4]

Salesse S, Verfaillie CM. BCR/ABL: from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene. 2002; 21(56): 8547-8559.

[5]

Kumar S, Vo AD, Qin F, Li H. Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci Rep. 2016; 6: 21597.

[6]

Singh S, Li H. Comparative study of bioinformatic tools for the identification of chimeric RNAs from RNA sequencing. RNA Biol. 2021; 18(sup1): 254-267.

[7]

Wang Q, Chen J, Singh S, et al. Profile of chimeric RNAs and TMPRSS2-ERG e2e4 isoform in neuroendocrine prostate cancer. Cell Biosci. 2022; 12(1): 153.

[8]

Prakash T, Sharma VK, Adati N, et al. Expression of conjoined genes: another mechanism for gene regulation in eukaryotes. PLoS One. 2010; 5(10): e13284.

[9]

Jividen K, Li H. Chimeric RNAs generated by intergenic splicing in normal and cancer cells. Genes Chromosomes Cancer. 2014; 53(12): 963-971.

[10]

Nagasawa S, Ikeda K, Shintani D, et al. Identification of a novel oncogenic fusion gene SPON1-TRIM29 in clinical ovarian cancer that promotes cell and tumor growth and enhances chemoresistance in A2780 cells. Int J Mol Sci. 2022; 23(2): 689.

[11]

Zhang L, Wang D, Han X, et al. Novel read-through fusion transcript Bcl2l2-Pabpn1 in glioblastoma cells. J Cell Mol Med. 2022; 26(17): 4686-4697.

[12]

Lin Y, Dong H, Deng W, et al. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal carcinoma. Clin Cancer Res. 2019; 25(10): 3035-3045.

[13]

Qin F, Zhang Y, Liu J, Li H. SLC45A3-ELK4 functions as a long non-coding chimeric RNA. Cancer Lett. 2017; 404: 53-61.

[14]

Rickman DS, Pflueger D, Moss B, et al. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 2009; 69(7): 2734-2738.

[15]

Zhou J, Guan X, Xu E, Zhou J, Xiong R, Yang Q. Chimeric RNA RRM2-C2orf48 plays an oncogenic role in the development of NNK-induced lung cancer. iScience. 2023; 26(1): 105708.

[16]

Han P, Chen RH, Wang F, et al. Novel chimeric transcript RRM2-c2orf48 promotes metastasis in nasopharyngeal carcinoma. Cell Death Dis. 2017; 8(9): e3047.

[17]

Xiong X, Ke X, Wang L, et al. Neoantigen-based cancer vaccination using chimeric RNA-loaded dendritic cell-derived extracellular vesicles. J Extracell Vesicles. 2022; 11(8): e12243.

[18]

Ou MY, Xiao Q, Ju XC, et al. The CTNNBIP1-CLSTN1 fusion transcript regulates human neocortical development. Cell Rep. 2021; 35(13): 109290.

[19]

Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005; 310(5748): 644-648.

[20]

Liu CC, Veeraraghavan J, Tan Y, et al. A novel neoplastic fusion transcript, RAD51AP1-DYRK4, confers sensitivity to the MEK inhibitor trametinib in aggressive breast cancers. Clin Cancer Res. 2021; 27(3): 785-798.

[21]

Wu P, Yang S, Singh S, et al. The landscape and implications of chimeric RNAs in cervical cancer. EBioMedicine. 2018; 37: 158-167.

[22]

Wu H, Singh S, Xie Z, Li X, Li H. Landscape characterization of chimeric RNAs in colorectal cancer. Cancer Lett. 2020; 489: 56-65.

[23]

Xie R, Chen X, Chen Z, et al. Polypyrimidine tract binding protein 1 promotes lymphatic metastasis and proliferation of bladder cancer via alternative splicing of MEIS2 and PKM. Cancer Lett. 2019; 449: 31-44.

[24]

Wang Y, Li Z, Xu S, et al. LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis. 2022; 13(2): 98.

[25]

Qin F, Song Z, Babiceanu M, et al. Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells. PLoS Genet. 2015; 11(2): e1005001.

[26]

Qin F, Song Y, Zhang Y, Facemire L, Frierson H, Li H. Role of CTCF in regulating SLC45A3-ELK4 chimeric RNA. PLoS One. 2016; 11(3): e0150382.

[27]

Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018; 175(7): 1872-1886. e24.

[28]

Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res. 2023; 83(10): 1666-1683.

[29]

Singh S, Qin F, Kumar S, et al. The landscape of chimeric RNAs in non-diseased tissues and cells. Nucleic Acids Res. 2020; 48(4): 1764-1778.

[30]

Babiceanu M, Qin F, Xie Z, et al. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016; 44(6): 2859-2872.

[31]

Berthold R, Isfort I, Erkut C, et al. Fusion protein-driven IGF-IR/PI3K/AKT signals deregulate Hippo pathway promoting oncogenic cooperation of YAP1 and FUS-DDIT3 in myxoid liposarcoma. Oncogenesis. 2022; 11(1): 20.

[32]

Grosso AR, Leite AP, Carvalho S, et al. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. eLife. 2015; 4: e09214.

[33]

Sun Y, Li H. Chimeric RNAs discovered by RNA sequencing and their roles in cancer and rare genetic diseases. Genes. 2022; 13(5): 741.

[34]

Scheepers A, Schmidt S, Manolescu A, et al. Characterization of the human SLC2A11 (GLUT11) gene: alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol Membr Biol. 2005; 22(4): 339-351.

[35]

Zhang W, Zang Z, Song Y, Yang H, Yin Q. Co-expression network analysis of differentially expressed genes associated with metastasis in prolactin pituitary tumors. Mol Med Rep. 2014; 10(1): 113-118.

[36]

Zhang Y, Qin H, Bian J, Ma Z, Yi H. SLC2As as diagnostic markers and therapeutic targets in LUAD patients through bioinformatic analysis. Front Pharmacol. 2022; 13: 1045179.

[37]

Zhang H, Ye YL, Li MX, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 2017; 36(15): 2095-2104.

[38]

Klemke L, De Oliveira T, Witt D, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis. 2021; 12(2): 155.

[39]

Penticuff JC, Woolbright BL, Sielecki TM, Weir SJ. MIF family proteins in genitourinary cancer: tumorigenic roles and therapeutic potential. Nat Rev Urol. 2019; 16(5): 318-328.

[40]

O’Reilly C, Doroudian M, Mawhinney L, Donnelly SC. Targeting MIF in cancer: therapeutic strategies, current developments, and future opportunities. Med Res Rev. 2016; 36(3): 440-460.

[41]

Li BX, David LL, Davis LE, Xiao X. Protein arginine methyltransferase 5 is essential for oncogene product EWSR1-ATF1-mediated gene transcription in clear cell sarcoma. J Biol Chem. 2022; 298(10): 102434.

[42]

Li B, Yen TS. Characterization of the nuclear export signal of polypyrimidine tract-binding protein. J Biol Chem. 2002; 277(12): 10306-10314.

[43]

Ghetti A, Piñol-Roma S, Michael WM, Morandi C, Dreyfuss G. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 1992; 20(14): 3671-3678.

[44]

Romanelli MG, Diani E, Lievens PM. New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci. 2013; 14(11): 22906-22932.

[45]

Sawicka K, Bushell M, Spriggs KA, Willis AE. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans. 2008; 36(Pt 4): 641-647.

[46]

Montaudon E, Nikitorowicz-Buniak J, Sourd L, et al. PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance. Nat Commun. 2020; 11(1): 4053.

[47]

Liu Z, Sun Q, Wang X. PLK1, a potential target for cancer therapy. Transl Oncol. 2017; 10(1): 22-32.

[48]

Zhang J, Zhou Q, Xie K, et al. Targeting WD repeat domain 5 enhances chemosensitivity and inhibits proliferation and programmed death-ligand 1 expression in bladder cancer. J Exp Clin Cancer Res. 2021; 40(1): 203.

[49]

Zhou Q, Chen X, He H, et al. WD repeat domain 5 promotes chemoresistance and programmed death-ligand 1 expression in prostate cancer. Theranostics. 2021; 11(10): 4809-4824.

[50]

Feng L, Fu D, Gao L, Cheng H, Zhu C, Zhang G. Circular RNA_0001495 increases Robo1 expression by sponging microRNA-527 to promote the proliferation, migration and invasion of bladder cancer cells. Carcinogenesis. 2021; 42(8): 1046-1055.

[51]

Rehman H, Chandrashekar DS, Balabhadrapatruni C, et al. ARID1A-deficient bladder cancer is dependent on PI3K signaling and sensitive to EZH2 and PI3K inhibitors. JCI Insight. 2022; 7(16): e155899.

[52]

Xu H, Liu Y, Cheng P, et al. CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res. 2020; 39(1): 283.

[53]

Amini R, Karami H, Bayat M. Combination therapy with PIK3R3-siRNA and EGFR-TKI erlotinib synergistically suppresses glioblastoma cell growth in vitro. Asian Pac J Cancer Prev. 2021; 22(12): 3993-4000.

[54]

Ibrahim S, Li G, Hu F, et al. PIK3R3 promotes chemotherapeutic sensitivity of colorectal cancer through PIK3R3/NF-kB/TP pathway. Cancer Biol Ther. 2018; 19(3): 222-229.

[55]

Jia Y, Xie Z, Li H. Intergenically spliced chimeric RNAs in cancer. Trends Cancer. 2016; 2(9): 475-484.

[56]

Chwalenia K, Qin F, Singh S, Tangtrongstittikul P, Li H. Connections between transcription downstream of genes and cis-SAGe chimeric RNA. Genes. 2017; 8(11): 338.

[57]

Chwalenia K, Qin F, Singh S, Li H. A cell-based splicing reporter system to identify regulators of cis-splicing between adjacent genes. Nucleic Acids Res. 2019; 47(4): e24.

[58]

Jin G, Xu M, Zou M, Duan S. The processing, gene regulation, biological functions, and clinical relevance of N4-Acetylcytidine on RNA: a systematic review. Mol Ther Nucleic Acids. 2020; 20: 13-24.

[59]

Wang G, Zhang M, Zhang Y, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022; 12(5): e738.

[60]

Huang M, Dong W, Xie R, et al. HSF1 facilitates the multistep process of lymphatic metastasis in bladder cancer via a novel PRMT5-WDR5-dependent transcriptional program. Cancer Commun (London, England). 2022; 42(5): 447-470.

[61]

Xiao K, Peng S, Lu J, et al. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer. Cell Death Dis. 2023; 14(7): 408.

[62]

Zhang Q, Liu S, Wang H, et al. ETV4 mediated tumor-associated neutrophil infiltration facilitates lymphangiogenesis and lymphatic metastasis of bladder cancer. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2023; 10(11): e2205613.

[63]

Chen Z, Chen X, Xie R, et al. DANCR promotes metastasis and proliferation in bladder cancer cells by enhancing IL-11-STAT3 signaling and CCND1 expression. Mol Ther. 2019; 27(2): 326-341.

[64]

Chen X, Xie R, Gu P, et al. Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res. 2019; 25(4): 1389-1403.

[65]

Xie R, Chen X, Cheng L, et al. NONO inhibits lymphatic metastasis of bladder cancer via alternative splicing of SETMAR. Mol Ther. 2021; 29(1): 291-307.

[66]

Gu P, Chen X, Xie R, et al. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol Ther. 2017; 25(8): 1959-1973.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/