An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma

Modan Yang , Zuyuan Lin , Li Zhuang , Linhui Pan , Rui Wang , Hao Chen , Zhihang Hu , Wei Shen , Jianyong Zhuo , Xinyu Yang , Huigang Li , Chiyu He , Zhe Yang , Qinfen Xie , Siyi Dong , Junli Chen , Renyi Su , Xuyong Wei , Junjie Yin , Shusen Zheng , Di Lu , Xiao Xu

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e678

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e678 DOI: 10.1002/mco2.678
ORIGINAL ARTICLE

An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma

Author information +
History +
PDF

Abstract

Tumor recurrence is a life-threatening complication after liver transplantation (LT) for hepatocellular carcinoma (HCC). Precise recurrence risk stratification before transplantation is essential for the management of recipients. Here, we aimed to establish an inflammation-related prediction model for posttransplant HCC recurrence based on pretransplant peripheral cytokine profiling. Two hundred and ninety-three patients who underwent LT in two independent medical centers were enrolled, and their pretransplant plasma samples were sent for cytokine profiling. We identified four independent risk factors, including alpha-fetoprotein, systemic immune-inflammation index, interleukin 6, and osteocalcin in the training cohort (n = 190) by COX regression analysis. A prediction model named inflammatory fingerprint (IFP) was established based on the above factors. The IFP effectively predicted posttransplant recurrence (area under the receiver operating characteristic curve [AUROC]: 0.792, C-index: 0.736). The high IFP group recipients had significantly worse 3-year recurrence-free survival rates (37.9 vs. 86.9%, p < 0.001). Simultaneous T-cell profiling revealed that recipients with high IFP were characterized by impaired T cell function. The IFP also performed well in the validation cohort (n = 103, AUROC: 0.807, C-index: 0.681). In conclusion, the IFP efficiently predicted posttransplant HCC recurrence and helped to refine pretransplant risk stratification. Impaired T cell function might be the intrinsic mechanism for the high recurrence risk of recipients in the high IFP group.

Keywords

cytokines / hepatocellular carcinoma / liver transplantation / prognostic model / T-cell profiling

Cite this article

Download citation ▾
Modan Yang, Zuyuan Lin, Li Zhuang, Linhui Pan, Rui Wang, Hao Chen, Zhihang Hu, Wei Shen, Jianyong Zhuo, Xinyu Yang, Huigang Li, Chiyu He, Zhe Yang, Qinfen Xie, Siyi Dong, Junli Chen, Renyi Su, Xuyong Wei, Junjie Yin, Shusen Zheng, Di Lu, Xiao Xu. An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. MedComm, 2024, 5(9): e678 DOI:10.1002/mco2.678

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020; 1873(1): 188314.

[2]

Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021; 7(1): 6.

[3]

Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022; 135(5): 584-590.

[4]

Qu WF, Tian MX, Lu HW, et al. Development of a deep pathomics score for predicting hepatocellular carcinoma recurrence after liver transplantation. Hepatol Int. 2023; 17(4): 927-941.

[5]

Lucey MR, Furuya KN, Foley DP. Liver transplantation. N Engl J Med. 2023; 389(20): 1888-1900.

[6]

Pelizzaro F, Gambato M, Gringeri E, et al. Management of hepatocellular carcinoma recurrence after liver transplantation. Cancers (Basel). 2021; 13(19): 4882.

[7]

Xu X, Lu D, Ling Q, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Gut. 2016; 65(6): 1035-1041.

[8]

Moeckli B, Majno P, Orci LA, Peloso A, Toso C. Liver transplantation selection and allocation criteria for hepatocellular carcinoma: a European perspective. Semin Liver Dis. 2021; 41(2): 172-181.

[9]

Lingiah VA, Niazi M, Olivo R, Paterno F, Guarrera JV, Pyrsopoulos NT. Liver transplantation beyond Milan criteria. J Clin Transl Hepatol. 2020; 8(1): 69-75.

[10]

Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022; 400(10360): 1345-1362.

[11]

Halazun KJ, Sapisochin G, von Ahrens D, Agopian VG, Tabrizian P. Predictors of outcome after liver transplantation for hepatocellular carcinoma (HCC) beyond Milan criteria. Int J Surg. 2020; 82S: 61-69.

[12]

Duda DG, Dima SO, Cucu D, et al. Potential circulating biomarkers of recurrence after hepatic resection or liver transplantation in hepatocellular carcinoma patients. Cancers (Basel). 2020; 12(5): 1275.

[13]

Ben-Baruch A. Partners in crime: tNFalpha-based networks promoting cancer progression. Cancer Immunol Immunother. 2020; 69(2): 263-273.

[14]

Xiao Y, Huang S, Qiu F, et al. Tumor necrosis factor alpha-induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor-kappaB activation in hepatocellular carcinoma. EBioMedicine. 2020; 51: 102603.

[15]

Yang Y, Sun M, Yao W, et al. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib. J Immunother Cancer. 2020; 8(1): e000317.

[16]

Ismail MS, Mohamed I, Polychronopoulou E, et al. Outcomes in the era of interferon-free direct-acting antiviral therapy after liver transplantation in patients with hepatitis C virus and hepatocellular carcinoma. J Hepatocell Carcinoma. 2021; 8: 701-711.

[17]

Yan Y, Zheng L, Du Q, et al. Interferon regulatory factor 1 (IRF-1) downregulates checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in hepatocellular carcinoma (HCC) cells. Br J Cancer. 2021; 125(1): 101-111.

[18]

Yang Z, Sun B, Xiang J, et al. Role of epigenetic modification in interferon treatment of hepatitis B virus infection. Front Immunol. 2022; 13: 1018053.

[19]

Lin L, Chen S, Wang H, et al. SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma. Theranostics. 2021; 11(9): 4232-4250.

[20]

Wang Z, He L, Li W, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021; 9(9): e002787.

[21]

Zhang C, Gao Y, Du C, et al. Hepatitis B-induced IL8 promotes hepatocellular carcinoma venous metastasis and intrahepatic Treg accumulation. Cancer Res. 2021; 81(9): 2386-2398.

[22]

Chen G, Hu X, Huang Y, et al. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm. 2023; 4(6): e444.

[23]

Konishi D, Umeda Y, Yoshida K, et al. Regulatory T cells induce a suppressive immune milieu and promote lymph node metastasis in intrahepatic cholangiocarcinoma. Br J Cancer. 2022; 127(4): 757-765.

[24]

Zhou X, Zhao S, He Y, Geng S, Shi Y, Wang B. Precise spatiotemporal interruption of regulatory T-cell-mediated CD8(+) T-cell suppression leads to tumor immunity. Cancer Res. 2019; 79(3): 585-597.

[25]

Abdel-Rahman O. Outcomes of liver transplantation as an oncologic surgery for different primary liver cancers: a real-world, population-based study. Hepatobiliary Pancreat Dis Int. 2023; 22(1): 88-91.

[26]

Fung J, DiSabato D, Liao CY, Ahmed O, Pillai A. Perspective: advances in liver transplantation for hepatocellular carcinoma—A prototype for transplant oncology. Hepatobiliary Pancreat Dis Int. 2023; 22(1): 4-6.

[27]

Agarwal PD, Lucey MR. Management of hepatocellular carcinoma recurrence after liver transplantation. Ann Hepatol. 2022; 27(1): 100654.

[28]

Ng KT, Liu J, Yeung OW, et al. Post-transplant inflammatory cytokine signature adds value for predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. Hepatol Int. 2023; 17(6): 1596-1609.

[29]

Toniutto P, Fumolo E, Fornasiere E, Bitetto D. Liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a comprehensive review. J Clin Med. 2021; 10(17): 3932.

[30]

Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol. 2023; 14: 1133308.

[31]

Kim SJ, Kim JM. Prediction models of hepatocellular carcinoma recurrence after liver transplantation: a comprehensive review. Clin Mol Hepatol. 2022; 28(4): 739-753.

[32]

Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. Mol Biomed. 2022; 3(1): 45.

[33]

Chen X, Du Y, Lin X, Qian Y, Zhou T, Huang Z. CD4+CD25+ regulatory T cells in tumor immunity. Int Immunopharmacol. 2016; 34: 244-249.

[34]

Jayant K, Habib N, Huang KW, Warwick J, Arasaradnam R. Recent advances: the imbalance of immune cells and cytokines in the pathogenesis of hepatocellular carcinoma. Diagnostics (Basel). 2020; 10(5): 338.

[35]

Naseem S, Hussain T, Manzoor S. Interleukin-6: a promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev. 2018; 39: 36-45.

[36]

Hailemichael Y, Johnson DH, Abdel-Wahab N, et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 2022; 40(5): 509-523. e6.

[37]

Rosenberg N, Van Haele M, Lanton T, et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. J Hepatol. 2022; 77(6): 1631-1641.

[38]

Lee SJ, Lee IK, Jeon JH. Vascular calcification-new insights into its mechanism. Int J Mol Sci. 2020; 21(8): 2685.

[39]

Qian Z, Li H, Yang H, et al. Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. Sci Adv. 2021; 7(43): eabi5811.

[40]

Shen Y, Chen L, Zhou J, et al. Low total osteocalcin levels are associated with all-cause and cardiovascular mortality among patients with type 2 diabetes: a real-world study. Cardiovasc Diabetol. 2022; 21(1): 98.

[41]

Qian Z, Liu C, Li H, et al. Osteocalcin alleviates lipopolysaccharide-induced acute inflammation via activation of GPR37 in macrophages. Biomedicines. 2022; 10(5): 1006.

[42]

Liu Y, Huang L, Lu Y, et al. Relationships between the osteocalcin gene polymorphisms, serum osteocalcin levels, and hepatitis B virus-related hepatocellular carcinoma in a Chinese population. PLoS One. 2015; 10(1): e0116479.

[43]

Aziz MH, Sideras K, Aziz NA, et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels: a retrospective multicenter cohort study. Ann Surg. 2019; 270(1): 139-146.

[44]

Chan SL, Wong LL, Chan KA, et al. Development of a novel inflammation-based index for hepatocellular carcinoma. Liver Cancer. 2020; 9(2): 167-181.

[45]

Cui S, Cao S, Chen Q, He Q, Lang R. Preoperative systemic inflammatory response index predicts the prognosis of patients with hepatocellular carcinoma after liver transplantation. Front Immunol. 2023; 14: 1118053.

[46]

Zhuo J, Lu D, Wang J, et al. Molecular phenotypes reveal heterogeneous engraftments of patient-derived hepatocellular carcinoma xenografts. Chin J Cancer Res. 2021; 33(4): 470-479.

[47]

Kotwani P, Chan W, Yao F, Mehta N. DCP and AFP-L3 are complementary to AFP in predicting high-risk explant features: results of a prospective study. Clin Gastroenterol Hepatol. 2022; 20(3): 701-703. e2.

[48]

Wang MD, Sun LY, Qian GJ, et al. Prothrombin induced by vitamin K Absence-II versus alpha-fetoprotein in detection of both resectable hepatocellular carcinoma and early recurrence after curative liver resection: a retrospective cohort study. Int J Surg. 2022; 105: 106843.

[49]

Sun Y, Wu L, Zhong Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021; 184(2): 404-421. e16.

[50]

Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015; 351: h5527.

[51]

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015; 350: g7594.

[52]

Yang Z, Luo FZ, Wang S, et al. Alpha-fetoprotein and (18)F-FDG standard uptake value predict tumor recurrence after liver transplantation for hepatocellular carcinoma with portal vein tumor thrombosis: preliminary experience. Hepatobiliary Pancreat Dis Int. 2020; 19(3): 229-234.

[53]

Kardashian A, Florman SS, Haydel B, et al. Liver transplantation outcomes in a U.S. multicenter cohort of 789 patients with hepatocellular carcinoma presenting beyond Milan criteria. Hepatology. 2020; 72(6): 2014-2028.

[54]

Adwan H, Hammann L, Vogl TJ. Microwave ablation of recurrent hepatocellular carcinoma after curative surgical resection. J Clin Med. 2023; 12(7): 2560.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/