Renal cancer: signaling pathways and advances in targeted therapies

Aimin Jiang , Jinxin Li , Ziwei He , Ying Liu , Kun Qiao , Yu Fang , Le Qu , Peng Luo , Anqi Lin , Linhui Wang

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e676

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e676 DOI: 10.1002/mco2.676
REVIEW

Renal cancer: signaling pathways and advances in targeted therapies

Author information +
History +
PDF

Abstract

Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel–Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo–yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.

Keywords

molecular mechanisms / precision medicine / renal cancer / signaling pathways / targeted therapy

Cite this article

Download citation ▾
Aimin Jiang, Jinxin Li, Ziwei He, Ying Liu, Kun Qiao, Yu Fang, Le Qu, Peng Luo, Anqi Lin, Linhui Wang. Renal cancer: signaling pathways and advances in targeted therapies. MedComm, 2024, 5(8): e676 DOI:10.1002/mco2.676

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3): 209-249.

[2]

Murali R, Gopalakrishnan AV. Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review. Med Oncol. 2023; 40(12): 355.

[3]

Randall JM, Millard F, Kurzrock R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Rev. 2014; 33(4): 1109-1124.

[4]

Kim H, Shim BY, Lee SJ, Lee JY, Lee HJ, Kim IH. Loss of Von Hippel-Lindau (VHL) tumor suppressor gene function: vHL-HIF pathway and advances in treatments for metastatic renal cell carcinoma (RCC). Int J Mol Sci. 2021; 22(18): 9795.

[5]

Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017; 3: 17009.

[6]

Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019; 75(1): 74-84.

[7]

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018; 68(1): 7-30.

[8]

Yang L, Zou X, Zou J, Zhang G. Functions of circular RNAs in bladder, prostate and renal cell cancer (Review). Mol Med Rep. 2021; 23(5): 307.

[9]

Amendolare A, Marzano F, Petruzzella V, et al. The underestimated role of the p53 pathway in renal cancer. Cancers. 2022; 14(23): 5733.

[10]

Capitanio U, Cloutier V, Zini L, et al. A critical assessment of the prognostic value of clear cell, papillary and chromophobe histological subtypes in renal cell carcinoma: a population-based study. BJU Int. 2009; 103(11): 1496-1500.

[11]

Keegan KA, Schupp CW, Chamie K, Hellenthal NJ, Evans CP, Koppie TM. Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. J Urol. 2012; 188(2): 391-397.

[12]

Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA interplay in genitourinary cancers. Cells. 2019; 8(12): 1619.

[13]

Qu L, Chen H, Chen Q, et al. Development and validation of a prognostic model incorporating tumor thrombus grading for nonmetastatic clear cell renal cell carcinoma with tumor thrombus: a multicohort study. MedComm (2020). 2023; 4(4): e300.

[14]

Nerich V, Hugues M, Paillard MJ, et al. Clinical impact of targeted therapies in patients with metastatic clear-cell renal cell carcinoma. Onco Targets Ther. 2014; 7: 365-374.

[15]

Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018; 17(7): 1355-1364.

[16]

Dell’Atti L, Bianchi N, Aguiari G. New therapeutic interventions for kidney carcinoma: looking to the future. Cancers (Basel). 2022; 14(15): 3616.

[17]

Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014; 349: g4797.

[18]

Stephenson AJ, Chetner MP, Rourke K, et al. Guidelines for the surveillance of localized renal cell carcinoma based on the patterns of relapse after nephrectomy. J Urol. 2004; 172(1): 58-62.

[19]

Xu Q, Krause M, Samoylenko A, Vainio S. Wnt signaling in renal cell carcinoma. Cancers (Basel). 2016; 8(6): 57.

[20]

Sweeney PL, Suri Y, Basu A, Koshkin VS, Desai A. Mechanisms of tyrosine kinase inhibitor resistance in renal cell carcinoma. Cancer Drug Resist. 2023; 6(4): 858-873.

[21]

Liu YF, Zhang ZC, Wang SY, et al. Immune checkpoint inhibitor-based therapy for advanced clear cell renal cell carcinoma: a narrative review. Int Immunopharmacol. 2022; 110: 108900.

[22]

Lai Y, Zeng T, Liang X, Wu W, Zhong F, Wu W. Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int. 2019; 19: 221.

[23]

Mazumder S, Higgins PJ, Samarakoon R. Downstream targets of VHL/HIF-α signaling in renal clear cell carcinoma progression: mechanisms and therapeutic relevance. Cancers (Basel). 2023; 15(4): 1316.

[24]

Corn PG, McDonald ER, Herman JG, El-Deiry WS. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat Genet. 2003; 35(3): 229-237.

[25]

Banumathy G, Cairns P. Signaling pathways in renal cell carcinoma. Cancer Biol Ther. 2010; 10(7): 658-664.

[26]

Ganner A, Gehrke C, Klein M, et al. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Sci Rep. 2021; 11(1): 14827.

[27]

Zhao D, Pan C, Sun J, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 2015; 34(24): 3107-3119.

[28]

Yeo CD, Kang N, Choi SY, et al. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation. Korean J Intern Med. 2017; 32(4): 589-599.

[29]

Ogasawara N, Kudo T, Sato M, et al. Reduction of membrane protein CRIM1 decreases E-cadherin and increases claudin-1 and MMPs, enhancing the migration and invasion of renal carcinoma cells. Biol Pharm Bull. 2018; 41(4): 604-611.

[30]

Hathorn RW, Tso CL, Kaboo R, et al. In vitro modulation of the invasive and metastatic potentials of human renal cell carcinoma by interleukin-2 and/or interferon-alpha gene transfer. Cancer. 1994; 74(7): 1904-1911.

[31]

Guo H, German P, Bai S, et al. The PI3K/AKT pathway and renal cell carcinoma. J Genet Genomics. 2015; 42(7): 343-353.

[32]

Twardowski PW, Mack PC, Lara PN. Papillary renal cell carcinoma: current progress and future directions. Clin Genitourin Cancer. 2014; 12(2): 74-79.

[33]

Tomlinson IPM, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002; 30(4): 406-410.

[34]

Zhang S, Fang T, He Y, et al. VHL mutation drives human clear cell renal cell carcinoma progression through PI3K/AKT-dependent cholesteryl ester accumulation. EBioMedicine. 2024; 103: 105070.

[35]

Gao M, Liang J, Lu Y, et al. Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene. 2014; 33(6): 745-755.

[36]

Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular mechanisms in clear cell renal cell carcinoma: role of miRNAs and hypermethylated miRNA genes in crucial oncogenic pathways and processes. Front Genet. 2019; 10: 320.

[37]

Xu X, Wu J, Li S, et al. Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol Cancer. 2014; 13: 109.

[38]

Zhang H, Li H. miR-137 inhibits renal cell carcinoma growth in vitro and in vivo. Oncol Lett. 2016; 12(1): 715-720.

[39]

Wang Z, Qin C, Zhang J, et al. MiR-122 promotes renal cancer cell proliferation by targeting Sprouty2. Tumour Biol. 2017; 39(2): 1010428317691184.

[40]

Lian JH, Wang WH, Wang JQ, Zhang YH, Li Y. MicroRNA-122 promotes proliferation, invasion and migration of renal cell carcinoma cells through the PI3K/Akt signaling pathway. Asian Pac J Cancer Prev. 2013; 14(9): 5017-5021.

[41]

Cui L, Zhou H, Zhao H, et al. MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer. 2012; 12: 546.

[42]

Pan Y, Hu J, Ma J, et al. MiR-193a-3p and miR-224 mediate renal cell carcinoma progression by targeting alpha-2, 3-sialyltransferase IV and the phosphatidylinositol 3 kinase/Akt pathway. Mol Carcinog. 2018; 57(8): 1067-1077.

[43]

Butz H, Szabó PM, Khella HWZ, Nofech-Mozes R, Patocs A, Yousef GM. miRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget. 2015; 6(14): 12543-12557.

[44]

Jiang K, Xu LZ, Ning JZ, Cheng F. FAP promotes clear cell renal cell carcinoma progression via activating the PI3K/AKT/mTOR signaling pathway. Cancer Cell Int. 2023; 23(1): 217.

[45]

Huang X, Huang Y, Lv Z, et al. Loss of cell division cycle-associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma. Int J Oncol. 2022; 61(1): 87.

[46]

Király J, Szabó E, Fodor P, et al. Shikonin causes an apoptotic effect on human kidney cancer cells through Ras/MAPK and PI3K/AKT pathways. Molecules. 2023; 28(18): 6725.

[47]

Park G, Song NY, Kim DH, Lee SJ, Chun KS. Thymoquinone suppresses migration of human renal carcinoma Caki-1 cells through inhibition of the PGE2-mediated activation of the EP2 receptor pathway. Biomol Ther (Seoul). 2021; 29(1): 64-72.

[48]

Battelli C, Cho DC. mTOR inhibitors in renal cell carcinoma. Therapy. 2011; 8(4): 359-367.

[49]

Karami Fath M, Ebrahimi M, Nourbakhsh E, et al. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol Res Pract. 2022; 237: 154010.

[50]

Yalniz Z, Tigli H, Tigli H, Sanli O, Dalay N, Buyru N. Novel mutations and role of the LKB1 gene as a tumor suppressor in renal cell carcinoma. Tumour Biol. 2014; 35(12): 12361-12368.

[51]

Lipkin JS, Rizvi SM, Gatalica Z, et al. Therapeutic approach guided by genetic alteration: use of MTOR inhibitor in renal medullary carcinoma with loss of PTEN expression. Cancer Biol Ther. 2015; 16(1): 28-33.

[52]

Kumar A, Kumari N, Gupta V, Prasad R. Renal cell carcinoma: molecular aspects. Indian J Clin Biochem. 2018; 33(3): 246-254.

[53]

Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011; 23(10): 1515-1527.

[54]

Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001; 98(18): 10314-10319.

[55]

Jamaspishvili T, Berman DM, Ross AE, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018; 15(4): 222-234.

[56]

Kruck S, Bedke J, Hennenlotter J, et al. Activation of mTOR in renal cell carcinoma is due to increased phosphorylation rather than protein overexpression. Oncol Rep. 2010; 23(1): 159-163.

[57]

Sun Y, Jin D, Zhang Z, et al. The critical role of the Hippo signaling pathway in kidney diseases. Front Pharmacol. 2022; 13: 988175.

[58]

Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in disease: timing is everything. Annu Rev Pharmacol Toxicol. 2019; 59: 555-575.

[59]

Chen J, Chen JK, Nagai K, et al. EGFR signaling promotes TGFβ-dependent renal fibrosis. J Am Soc Nephrol. 2012; 23(2): 215-224.

[60]

White SM, Avantaggiati ML, Nemazanyy I, et al. YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev Cell. 2019; 49(3): 425-443. e9.

[61]

Zhang B, Chu W, Wen F, et al. Dysregulation of long non-coding RNAs and mRNAs in plasma of clear cell renal cell carcinoma patients using microarray and bioinformatic analysis. Front Oncol. 2020; 10: 559730.

[62]

Chen KH, He J, Wang DL, et al. Methylation-associated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma. Int J Oncol. 2014; 45(6): 2511-2521.

[63]

Rybarczyk A, Klacz J, Wronska A, Matuszewski M, Kmiec Z, Wierzbicki PM. Overexpression of the YAP1 oncogene in clear cell renal cell carcinoma is associated with poor outcome. Oncol Rep. 2017; 38(1): 427-439.

[64]

Gorin Y, Block K, Hernandez J, et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem. 2005; 280(47): 39616-39626.

[65]

Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013; 24(10): 1512-1518.

[66]

Yang H, Li W, Lv Y, et al. Exploring the mechanism of clear cell renal cell carcinoma metastasis and key genes based on multi-tool joint analysis. Gene. 2019; 720: 144103.

[67]

Cojocaru E, Lozneanu L, Giuşcă SE, Căruntu ID, Danciu M. Renal carcinogenesis–insights into signaling pathways. Rom J Morphol Embryol. 2015; 56(1): 15-19.

[68]

Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Muller JM, Krampera M, Lukong KE. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal. 2014; 26(12): 2843-2856.

[69]

Guillén-Ahlers H. Wnt signaling in renal cancer. Curr Drug Targets. 2008; 9(7): 591-600.

[70]

Kruck S, Eyrich C, Scharpf M, et al. Impact of an altered Wnt1/β-catenin expression on clinicopathology and prognosis in clear cell renal cell carcinoma. Int J Mol Sci. 2013; 14(6): 10944-10957.

[71]

Hsu RJ, Ho JY, Cha TL, et al. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway. PLoS One. 2012; 7(10): e47649.

[72]

Tamimi Y, Ekuere U, Laughton N, Grundy P. WNT5A is regulated by PAX2 and may be involved in blastemal predominant Wilms tumorigenesis. Neoplasia. 2008; 10(12): 1470-1480.

[73]

Kondratov AG, Kvasha SM, Stoliar LA, et al. Alterations of the WNT7A gene in clear cell renal cell carcinomas. PLoS One. 2012; 7(10): e47012.

[74]

Bilim V, Kawasaki T, Katagiri A, Wakatsuki S, Takahashi K, Tomita Y. Altered expression of beta-catenin in renal cell cancer and transitional cell cancer with the absence of beta-catenin gene mutations. Clin Cancer Res. 2000; 6(2): 460-466.

[75]

Ueda M, Gemmill RM, West J, et al. Mutations of the beta-and gamma-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br J Cancer. 2001; 85(1): 64-68.

[76]

Wang Q, Xu J, Xiong Z, et al. CENPA promotes clear cell renal cell carcinoma progression and metastasis via Wnt/β-catenin signaling pathway. J Transl Med. 2021; 19(1): 417.

[77]

Liu Q, Hoffman RM, Song J, et al. Guanylate-binding protein 2 expression is associated with poor survival and malignancy in clear-cell renal cell carcinoma. Anticancer Res. 2022; 42(5): 2341-2354.

[78]

Yan C, Chang J, Song X, et al. Memory stem T cells generated by Wnt signaling from blood of human renal clear cell carcinoma patients. Cancer Biol Med. 2019; 16(1): 109-124.

[79]

Peruzzi B, Athauda G, Bottaro DP. The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA. 2006; 103(39): 14531-14536.

[80]

Schödel J, Grampp S, Maher ER, et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 2016; 69(4): 646-657.

[81]

Lu J, Wei JH, Feng ZH, et al. miR-106b-5p promotes renal cell carcinoma aggressiveness and stem-cell-like phenotype by activating Wnt/β-catenin signalling. Oncotarget. 2017; 8(13): 21461-21471.

[82]

Hirata H, Ueno K, Nakajima K, et al. Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br J Cancer. 2013; 108(10): 2070-2078.

[83]

Joosten SC, Smits KM, Aarts MJ, et al. Epigenetics in renal cell cancer: mechanisms and clinical applications. Nat Rev Urol. 2018; 15(7): 430-451.

[84]

Huang X, Huang M, Kong L, Li Y. miR-372 suppresses tumour proliferation and invasion by targeting IGF2BP1 in renal cell carcinoma. Cell Prolif. 2015; 48(5): 593-599.

[85]

Wright TM, Brannon AR, Gordan JD, et al. Ror2, a developmentally regulated kinase, promotes tumor growth potential in renal cell carcinoma. Oncogene. 2009; 28(27): 2513-2523.

[86]

Rasmussen NR, Debebe Z, Wright TM, et al. Expression of Ror2 mediates invasive phenotypes in renal cell carcinoma. PLoS One. 2014; 9(12): e116101.

[87]

Ueno K, Hirata H, Majid S, et al. Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma. Mol Carcinog. 2011; 50(6): 449-457.

[88]

Wang X, Ren Y, Zhuang H, et al. Decrease of phosphorylated proto-oncogene CREB at Ser 133 site inhibits growth and metastatic activity of renal cell cancer. Expert Opin Ther Targets. 2015; 19(7): 985-995.

[89]

Wang X, Cui H, Lou Z, et al. Cyclic AMP responsive element-binding protein induces metastatic renal cell carcinoma by mediating the expression of matrix metallopeptidase-2/9 and proteins associated with epithelial-mesenchymal transition. Mol Med Rep. 2017; 15(6): 4191-4198.

[90]

Naviglio S, Caraglia M, Abbruzzese A, et al. Protein kinase A as a biological target in cancer therapy. Expert Opin Ther Targets. 2009; 13(1): 83-92.

[91]

Friedrich M, Heimer N, Stoehr C, et al. CREB1 is affected by the microRNAs miR-22-3p, miR-26a-5p, miR-27a-3p, and miR-221-3p and correlates with adverse clinicopathological features in renal cell carcinoma. Sci Rep. 2020; 10(1): 6499.

[92]

Su P, Zhang M, Kang X. Targeting c-Met in the treatment of urologic neoplasms: current status and challenges. Front Oncol. 2023; 13: 1071030.

[93]

Nakaigawa N, Yao M, Baba M, et al. Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma. Cancer Res. 2006; 66(7): 3699-3705.

[94]

Oh RR, Park JY, Lee JH, et al. Expression of HGF/SF and Met protein is associated with genetic alterations of VHL gene in primary renal cell carcinomas. APMIS. 2002; 110(3): 229-238.

[95]

Marona P, Górka J, Kotlinowski J, Majka M, Jura J, Miekus K. C-Met as a key factor responsible for sustaining undifferentiated phenotype and therapy resistance in renal carcinomas. Cells. 2019; 8(3): 272.

[96]

Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3(10): 721-732.

[97]

Marona P, Górka J, Mazurek Z, et al. MCPIP1 downregulation in clear cell renal cell carcinoma promotes vascularization and metastatic progression. Cancer Res. 2017; 77(18): 4905-4920.

[98]

Gibney GT, Aziz SA, Camp RL, et al. c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Ann Oncol. 2013; 24(2): 343-349.

[99]

Balan M, Chakraborty S, Flynn E, Zurakowski D, Pal S. Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth. Sci Rep. 2017; 7(1): 5900.

[100]

Li F, Aljahdali IAM, Zhang R, Nastiuk KL, Krolewski JJ, Ling X. Kidney cancer biomarkers and targets for therapeutics: survivin (BIRC5), XIAP, MCL-1, HIF1α HIF2α NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin Cancer Res. 2021; 40(1): 254.

[101]

Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV. p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res. 2004; 64(6): 1951-1958.

[102]

Wu H, He D, Biswas S, et al. mTOR activation initiates renal cell carcinoma development by coordinating ERK and p38MAPK. Cancer Res. 2021; 81(12): 3174-3186.

[103]

Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell. 2006; 22(3): 395-405.

[104]

Zhang C, Liu J, Wang J, et al. The interplay between tumor suppressor p53 and hypoxia signaling pathways in cancer. Front Cell Dev Biol. 2021; 9: 648808.

[105]

Lee SJ, Lim CJ, Min JK, et al. Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2. Cell Death Differ. 2007; 14(6): 1106-1116.

[106]

Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 2005; 19(10): 1162-1174.

[107]

Wu H, Leng RP. UBE4B, a ubiquitin chain assembly factor, is required for MDM2-mediated p53 polyubiquitination and degradation. Cell Cycle. 2011; 10(12): 1912-1915.

[108]

Ringshausen I, O’Shea CC, Finch AJ, Swigart LB, Evan GI. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell. 2006; 10(6): 501-514.

[109]

Chen T, Liang L, Wang Y, Li X, Yang C. Ferroptosis and cuproptposis in kidney Diseases: dysfunction of cell metabolism. Apoptosis. 2024; 29(3-4): 289-302.

[110]

Kang L, Wang D, Shen T, et al. PDIA4 confers resistance to ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma. Cell Death Dis. 2023; 14(3): 193.

[111]

Lu Y, Qin H, Jiang B, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 2021; 522: 1-13.

[112]

Wang Q, Gao S, Shou Y, et al. AIM2 promotes renal cell carcinoma progression and sunitinib resistance through FOXO3a-ACSL4 axis-regulated ferroptosis. Int J Biol Sci. 2023; 19(4): 1266-1283.

[113]

Yang WH, Ding CKC, Sun T, et al. The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 2019; 28(10): 2501-2508. e4.

[114]

Lai J, Miao S, Ran L. Ferroptosis-associated lncRNA prognostic signature predicts prognosis and immune response in clear cell renal cell carcinoma. Sci Rep. 2023; 13(1): 2114.

[115]

Lei G, Tang L, Yu Y, et al. The potential of targeting cuproptosis in the treatment of kidney renal clear cell carcinoma. Biomed Pharmacother. 2023; 167: 115522.

[116]

Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022; 375(6586): 1254-1261.

[117]

Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023; 19(7): 1982-1996.

[118]

Pirincci N, Gecit I, Gunes M, et al. Levels of serum trace elements in renal cell carcinoma cases. Asian Pac J Cancer Prev. 2013; 14(1): 499-502.

[119]

Panaiyadiyan S, Quadri JA, Nayak B, et al. Association of heavy metals and trace elements in renal cell carcinoma: a case-controlled study. Urol Oncol. 2022; 40(3): 111. e11-e18.

[120]

Xia Y, Liu L, Long Q, et al. Decreased expression of CTR2 predicts poor prognosis of patients with clear cell renal cell carcinoma. Urol Oncol. 2016; 34(1): 5. e1-e9.

[121]

Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021; 17(4): 245-261.

[122]

Feng W, Ye F, Xue W, Zhou Z, Kang YJ. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 2009; 75(1): 174-182.

[123]

Zhang Z, Qiu L, Lin C, et al. Copper-dependent and -independent hypoxia-inducible factor-1 regulation of gene expression. Metallomics. 2014; 6(10): 1889-1893.

[124]

Zhang B, Kirn LA, Burke R. The Vhl E3 ubiquitin ligase complex regulates melanisation via sima, cnc and the copper import protein Ctr1A. Biochim Biophys Acta Mol Cell Res. 2021; 1868(7): 119022.

[125]

Liu H, Tang T. Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set. Front Oncol. 2022; 12: 952290.

[126]

Xu J, Hu Z, Cao H, et al. Multi-omics pan-cancer study of cuproptosis core gene FDX1 and its role in kidney renal clear cell carcinoma. Front Immunol. 2022; 13: 981764.

[127]

Cao X, Zhu L, Song X, Hu Z, Cronan JE. Protein moonlighting elucidates the essential human pathway catalyzing lipoic acid assembly on its cognate enzymes. Proc Natl Acad Sci USA. 2018; 115(30): E7063-E7072.

[128]

Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018; 18(5): 309-324.

[129]

Kruk L, Mamtimin M, Braun A, et al. Inflammatory networks in renal cell carcinoma. Cancers. 2023; 15(8): 2212.

[130]

Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009; 1(5): a000141.

[131]

Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010; 14(1): 45-55.

[132]

Saccani A, Schioppa T, Porta C, et al. p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 2006; 66(23): 11432-11440.

[133]

Qi H, Ohh M. The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res. 2003; 63(21): 7076-7080.

[134]

Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002; 2(9): 647-656.

[135]

Ng KL, Yap NY, Rajandram R, et al. Nuclear factor-kappa B subunits and their prognostic cancer-specific survival value in renal cell carcinoma patients. Pathology. 2018; 50(5): 511-518.

[136]

Rébé C, Ghiringhelli F. STAT3, a master regulator of anti-tumor immune response. Cancers (Basel). 2019; 11(9): 1280.

[137]

Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules. 2020; 10(3): 487.

[138]

Schuster N, Krieglstein K. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res. 2002; 307(1): 1-14.

[139]

Boström AK, Lindgren D, Johansson ME, Axelson H. Effects of TGF-β signaling in clear cell renal cell carcinoma cells. Biochem Biophys Res Commun. 2013; 435(1): 126-133.

[140]

Isaka Y. Targeting TGF-β signaling in kidney fibrosis. Int J Mol Sci. 2018; 19(9): 2532.

[141]

Chen JY, Yiu WH, Tang PMK, Tang SCW. New insights into fibrotic signaling in renal cell carcinoma. Front Cell Dev Biol. 2023; 11: 1056964.

[142]

Massagué J. TGFbeta in cancer. Cell. 2008; 134(2): 215-230.

[143]

Chan MKK, Chung JYF, Tang PCT, et al. TGF-β signaling networks in the tumor microenvironment. Cancer Lett. 2022; 550: 215925.

[144]

Tang PCT, Chung JYF, Liao J, et al. Single-cell RNA sequencing uncovers a neuron-like macrophage subset associated with cancer pain. Sci Adv. 2022; 8(40): eabn5535.

[145]

Wakefield LM, Hill CS. Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat Rev Cancer. 2013; 13(5): 328-341.

[146]

Bierie B, Moses HL. Tumour microenvironment: tGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006; 6(7): 506-520.

[147]

Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer. J Pathol. 2011; 223(2): 205-218.

[148]

Cantelli G, Crosas-Molist E, Georgouli M, Sanz-Moreno V. TGFΒ-induced transcription in cancer. Semin Cancer Biol. 2017; 42: 60-69.

[149]

Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010; 10(6): 415-424.

[150]

Drabsch Y, ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012; 31(3-4): 553-568.

[151]

Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013; 13(11): 788-799.

[152]

Tian M, Neil JR, Schiemann WP. Transforming growth factor-β and the hallmarks of cancer. Cellular Signalling. 2011; 23(6): 951-962.

[153]

Bao JM, Dang Q, Lin CJ, et al. SPARC is a key mediator of TGF-β-induced renal cancer metastasis. J Cell Physiol. 2021; 236(3): 1926-1938.

[154]

Yuan JH, Yang F, Wang F, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014; 25(5): 666-681.

[155]

Zhang HM, Yang FQ, Yan Y, Che JP, Zheng JH. High expression of long non-coding RNA SPRY4-IT1 predicts poor prognosis of clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2014; 7(9): 5801-5809.

[156]

Siva S, Kothari G, Muacevic A, et al. Radiotherapy for renal cell carcinoma: renaissance of an overlooked approach. Nat Rev Urol. 2017; 14(9): 549-563.

[157]

Lilleby W, Fossa SD. Chemotherapy in metastatic renal cell cancer. World J Urol. 2005; 23(3): 175-179.

[158]

Kunath F, Schmidt S, Krabbe LM, et al. Partial nephrectomy versus radical nephrectomy for clinical localised renal masses. Cochrane Database Syst Rev. 2017; 5(5): CD012045.

[159]

Husillos Alonso A, Carbonero Garcia M, Gonzalez Enguita C. Is there a role for systemic targeted therapy after surgical treatment for metastases of renal cell carcinoma? World J Nephrol. 2015; 4(2): 254-262.

[160]

Ross K, Jones RJ. Immune checkpoint inhibitors in renal cell carcinoma. Clin Sci (Lond). 2017; 131(21): 2627-2642.

[161]

Di Marco F, Pani A, Floris M, et al. Unexpected outcomes of renal function after radical nephrectomy: histology relevance along with clinical aspects. J Clin Med. 2021; 10(15): 3322.

[162]

Capitanio U, Terrone C, Antonelli A, et al. Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a-T1b renal mass and normal preoperative renal function. Eur Urol. 2015; 67(4): 683-689.

[163]

Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology Guidelines on renal cell carcinoma: the 2022 update. Eur Urol. 2022; 82(4): 399-410.

[164]

Hanna N, Sun M, Meyer CP, et al. Survival analyses of patients with metastatic renal cancer treated with targeted therapy with or without cytoreductive nephrectomy: a national cancer data base study. J Clin Oncol. 2016; 34(27): 3267-3275.

[165]

Bhat S. Role of surgery in advanced/metastatic renal cell carcinoma. Indian J Urol. 2010; 26(2): 167-176.

[166]

Flanigan RC, Mickisch G, Sylvester R, Tangen C, Van Poppel H, Crawford ED. Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J Urol. 2004; 171(3): 1071-1076.

[167]

Naito S, Kato T, Tsuchiya N. Surgical and focal treatment for metastatic renal cell carcinoma: a literature review. Int J Urol. 2022; 29(6): 494-501.

[168]

Dursun F, Elshabrawy A, Wang H, et al. Survival after minimally invasive vs. open radical nephrectomy for stage I and II renal cell carcinoma. Int J Clin Oncol. 2022; 27(6): 1068-1076.

[169]

Laird A, Choy KC, Delaney H, et al. Matched pair analysis of laparoscopic versus open radical nephrectomy for the treatment of T3 renal cell carcinoma. World J Urol. 2015; 33(1): 25-32.

[170]

Asimakopoulos AD, Miano R, Annino F, et al. Robotic radical nephrectomy for renal cell carcinoma: a systematic review. BMC Urol. 2014; 14: 75.

[171]

Li J, Peng L, Cao D, et al. Comparison of perioperative outcomes of robot-assisted vs. laparoscopic radical nephrectomy: a systematic review and meta-analysis. Front Oncol. 2020; 10: 551052.

[172]

Kaneko G, Miyajima A, Kikuchi E, Nakagawa K, Oya M. The benefit of laparoscopic partial nephrectomy in high body mass index patients. Jpn J Clin Oncol. 2012; 42(7): 619-624.

[173]

Choi JE, You JH, Kim DK, Rha KH, Lee SH. Comparison of perioperative outcomes between robotic and laparoscopic partial nephrectomy: a systematic review and meta-analysis. Eur Urol. 2015; 67(5): 891-901.

[174]

Higgins LJ, Hong K. Renal ablation techniques: state of the art. AJR Am J Roentgenol. 2015; 205(4): 735-741.

[175]

Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014; 25(Suppl 3): iii49-iii56.

[176]

Filippiadis D, Mauri G, Marra P, Charalampopoulos G, Gennaro N, De Cobelli F. Percutaneous ablation techniques for renal cell carcinoma: current status and future trends. Int J Hyperthermia. 2019; 36(2): 21-30.

[177]

Bertolotti L, Bazzocchi MV, Iemma E, et al. Radiofrequency ablation, cryoablation, and microwave ablation for the treatment of small renal masses: efficacy and complications. Diagnostics (Basel). 2023; 13(3): 388.

[178]

Zhou W, Herwald SE, McCarthy C, Uppot RN, Arellano RS. Radiofrequency ablation, cryoablation, and microwave ablation for T1a renal cell carcinoma: a comparative evaluation of therapeutic and renal function outcomes. J Vasc Interv Radiol. 2019; 30(7): 1035-1042.

[179]

Atwell TD, Vlaminck JJ, Boorjian SA, et al. Percutaneous cryoablation of stage T1b renal cell carcinoma: technique considerations, safety, and local tumor control. J Vasc Interv Radiol. 2015; 26(6): 792-799.

[180]

Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995; 13(3): 688-696.

[181]

Camisaschi C, Filipazzi P, Tazzari M, et al. Effects of cyclophosphamide and IL-2 on regulatory CD4+ T cell frequency and function in melanoma patients vaccinated with HLA-class I peptides: impact on the antigen-specific T cell response. Cancer Immunol Immunother. 2013; 62(5): 897-908.

[182]

Karakus U, Sahin D, Mittl PRE, Mooij P, Koopman G, Boyman O. Receptor-gated IL-2 delivery by an anti-human IL-2 antibody activates regulatory T cells in three different species. Sci Transl Med. 2020; 12(574): eabb9283.

[183]

Wilcox RA, Tamada K, Strome SE, Chen LP. Signaling through NK cell-associated CD137 promotes both helper function for CD8(+) cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol. 2002; 169(8): 4230-4236.

[184]

Schwartz RN, Stover L, Dutcher J. Managing toxicities of high-dose interleukin-2. Oncology-Ny. 2002; 16(11): 11-20.

[185]

Charych DH, Hoch U, Langowski JL, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016; 22(3): 680-690.

[186]

Tannir NM, Cho DC, Diab A, et al. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study. J Immunother Cancer. 2022; 10(4): e004419.

[187]

Shiba M, Nonomura N, Nakai Y, et al. Type-I interferon receptor expression: its circadian rhythm and downregulation after interferon-alpha administration in peripheral blood cells from renal cancer patients. Int J Urol. 2009; 16(4): 356-359.

[188]

Escudier B, Bellmunt J, Negrier S, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010; 28(13): 2144-2150.

[189]

Griffith TS, Fialkov JM, Scott DL, et al. Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma. Cancer Res. 2002; 62(11): 3093-3099.

[190]

Li M, Xu TJ, Zhang Z, et al. Phase II multicenter, randomized, double-blind study of recombinant mutated human tumor necrosis factor-a in combination with chemotherapies in cancer patients. Cancer Sci. 2012; 103(2): 288-295.

[191]

Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008; 14(15): 4726-4734.

[192]

Clark PE. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int. 2009; 76(9): 939-945.

[193]

Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 2006; 12(1): 122-127.

[194]

Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res. 2021; 40(1): 186.

[195]

Ebrahimi N, Fardi E, Ghaderi H, et al. Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci. 2023; 80(4): 104.

[196]

Escudier B, Eisen T, Stadler WM, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009; 27(20): 3312-3318.

[197]

Gordon MS, Hussey M, Nagle RB, et al. Phase II study of erlotinib in patients with locally advanced or metastatic papillary histology renal cell cancer: sWOG S0317. J Clin Oncol. 2009; 27(34): 5788-5793.

[198]

Motzer RJ, Hutson TE, Tomczak P, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009; 27(22): 3584-3590.

[199]

Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013; 369(8): 722-731.

[200]

Motzer RJ, Escudier B, Tomczak P, et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013; 14(6): 552-562.

[201]

Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008; 14(17): 5459-5465.

[202]

Matsui J, Yamamoto Y, Funahashi Y, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008; 122(3): 664-671.

[203]

Okamoto K, Kodama K, Takase K, et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013; 340(1): 97-103.

[204]

Motzer RJ, Hutson TE, Glen H, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015; 16(15): 1473-1482.

[205]

Hagege A, Saada-Bouzid E, Ambrosetti D, et al. Targeting of c-MET and AXL by cabozantinib is a potential therapeutic strategy for patients with head and neck cell carcinoma. Cell Rep Med. 2022; 3(9): 100659.

[206]

Choueiri TK, Pal SK, McDermott DF, et al. A phase I study of cabozantinib (XL184) in patients with renal cell cancer. Ann Oncol. 2014; 25(8): 1603-1608.

[207]

Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016; 17(7): 917-927.

[208]

Choueiri TK, Hessel C, Halabi S, et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): progression-free survival by independent review and overall survival update. Eur J Cancer. 2018; 94: 115-125.

[209]

Rini BI, Powles T, Atkins MB, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet. 2019; 393(10189): 2404-2415.

[210]

Fitzgerald KN, Lee CH. Personalizing first-line management of metastatic renal cell carcinoma: leveraging current and novel therapeutic options. J Natl Compr Canc Netw. 2022; 20(13).

[211]

Armstrong AJ, Halabi S, Eisen T, et al. Everolimus versus sunitinib for patients with metastatic non-clear cell renal cell carcinoma (ASPEN): a multicentre, open-label, randomised phase 2 trial. Lancet Oncol. 2016; 17(3): 378-388.

[212]

Goudarzi Z, Mostafavi M, Salesi M, et al. Everolimus and temsirolimus are not the same second-line in metastatic renal cell carcinoma: a systematic review and meta-analysis. Cost Eff Resour Alloc. 2023; 21(1): 10.

[213]

Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008; 372(9637): 449-456.

[214]

Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007; 356(22): 2271-2281.

[215]

Lee JB, Park HS, Park S, et al. Temsirolimus in Asian metastatic/recurrent non-clear cell renal carcinoma. Cancer Res Treat. 2019; 51(4): 1578-1588.

[216]

Populo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012; 13(2): 1886-1918.

[217]

Chauhan A, Semwal DK, Mishra SP, Goyal S, Marathe R, Semwal RB. Combination of mTOR and MAPK inhibitors—a potential way to treat renal cell carcinoma. Med Sci (Basel). 2016; 4(4): 16.

[218]

Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010; 70(1): 288-298.

[219]

Zheng B, Mao JH, Qian L, et al. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett. 2015; 357(2): 468-475.

[220]

Lee BJ, Boyer JA, Burnett GL, et al. Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Nat Chem Biol. 2021; 17(10): 1065-1074.

[221]

Lee BJ, Mallya S, Dinglasan N, et al. Efficacy of a novel bi-steric mTORC1 inhibitor in models of B-cell acute lymphoblastic leukemia. Front Oncol. 2021; 11: 673213.

[222]

Vento JA, Rini BI. Treatment of refractory metastatic renal cell carcinoma. Cancers (Basel). 2022; 14(20): 5005.

[223]

Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001; 19: 565-594.

[224]

Yang JC, Hughes M, Kammula U, et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007; 30(8): 825-830.

[225]

Motzer RJ, Escudier B, George S, et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer. 2020; 126(18): 4156-4167.

[226]

McDermott DF, Lee JL, Bjarnason GA, et al. Open-label, single-arm phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced clear cell renal cell carcinoma. J Clin Oncol. 2021; 39(9): 1020-1028.

[227]

McDermott DF, Lee JL, Ziobro M, et al. Open-label, single-arm, phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced non-clear cell renal cell carcinoma. J Clin Oncol. 2021; 39(9): 1029-1039.

[228]

McDermott DF, Sosman JA, Sznol M, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 2016; 34(8): 833-842.

[229]

Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990; 171(5): 1393-1405.

[230]

Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers (Basel). 2019; 11(11): 1756.

[231]

Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017; 276(1): 80-96.

[232]

Andreae S, Buisson S, Triebel F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood. 2003; 102(6): 2130-2137.

[233]

Zelba H, Bedke J, Hennenlotter J, et al. PD-1 and LAG-3 dominate checkpoint receptor-mediated T-cell inhibition in renal cell carcinoma. Cancer Immunol Res. 2019; 7(11): 1891-1899.

[234]

Hirsch L, Flippot R, Escudier B, Albiges L. Immunomodulatory roles of VEGF pathway inhibitors in renal cell carcinoma. Drugs. 2020; 80(12): 1169-1181.

[235]

Ge Y, Yoon SH, Jang H, Jeong JH, Lee YM. Decursin promotes HIF-1alpha proteasomal degradation and immune responses in hypoxic tumour microenvironment. Phytomedicine. 2020; 78: 153318.

[236]

Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019; 380(12): 1116-1127.

[237]

Motzer RJ, Powles T, Burotto M, et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 2022; 23(7): 888-898.

[238]

Motzer RJ, McDermott DF, Escudier B, et al. Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma. Cancer. 2022; 128(11): 2085-2097.

[239]

Choueiri TK, Powles T, Albiges L, et al. Cabozantinib plus nivolumab and ipilimumab in renal-cell carcinoma. N Engl J Med. 2023; 388(19): 1767-1778.

[240]

Diaz-Montero CM, Rini BI, Finke JH. The immunology of renal cell carcinoma. Nat Rev Nephrol. 2020; 16(12): 721-735.

[241]

Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med. 2012; 14(6): 405-415.

[242]

Schepisi G, Conteduca V, Casadei C, et al. Potential application of chimeric antigen receptor (CAR)-T cell therapy in renal cell tumors. Front Oncol. 2020; 10: 565857.

[243]

Lamers CH, Klaver Y, Gratama JW, Sleijfer S, Debets R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells-a completed study overview. Biochem Soc Trans. 2016; 44(3): 951-959.

[244]

Li H, Ding J, Lu M, et al. CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J Immunother. 2020; 43(1): 16-28.

[245]

Yu H, Liu R, Ma B, et al. Axl receptor tyrosine kinase is a potential therapeutic target in renal cell carcinoma. Br J Cancer. 2015; 113(4): 616-625.

[246]

Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021; 52: 101481.

[247]

Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019; 10(1): 5408.

[248]

Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. CDK substrate phosphorylation and ordering the cell cycle. Cell. 2016; 167(7): 1750-1761. e16.

[249]

Arellano M, Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol. 1997; 29(4): 559-573.

[250]

Zhang M, Zhang L, Hei R, et al. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 2021; 11(5): 1913-1935.

[251]

Chen D, Sun X, Zhang X, Cao J. Inhibition of the CDK4/6-Cyclin D-Rb pathway by ribociclib augments chemotherapy and immunotherapy in renal cell carcinoma. BioMed research international. 2020; 2020: 9525207.

[252]

Nicholson HE, Tariq Z, Housden BE, et al. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci Signal. 2019; 12(601): eaay0482.

[253]

Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH. Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma. J Clin Oncol. 2018; 36(36): JCO2018792549.

[254]

Choueiri TK, Kaelin WG Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. 2020; 26(10): 1519-1530.

[255]

Courtney KD, Infante JR, Lam ET, et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2alpha antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol. 2018; 36(9): 867-874.

[256]

Jonasch E, Donskov F, Iliopoulos O, et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med. 2021; 385(22): 2036-2046.

[257]

Choueiri TK, McDermott DF, Merchan J, et al. Belzutifan plus cabozantinib for patients with advanced clear cell renal cell carcinoma previously treated with immunotherapy: an open-label, single-arm, phase 2 study. Lancet Oncol. 2023; 24(5): 553-562.

[258]

Hsu TS, Lin YL, Wang YA, et al. HIF-2alpha is indispensable for regulatory T cell function. Nat Commun. 2020; 11(1): 5005.

[259]

Xiong Y, Liu L, Xia Y, et al. Tumor infiltrating mast cells determine oncogenic HIF-2alpha-conferred immune evasion in clear cell renal cell carcinoma. Cancer Immunol Immunother. 2019; 68(5): 731-741.

[260]

Messai Y, Gad S, Noman MZ, et al. Renal cell carcinoma programmed death-ligand 1, a new direct target of hypoxia-inducible factor-2 alpha, is regulated by von Hippel-Lindau gene mutation status. Eur Urol. 2016; 70(4): 623-632.

[261]

Han GZ, Stevens C, Cao ZD, et al. PT2385, a novel HIF-2a antagonist, combines with checkpoint inhibitor antibodies to inhibit tumor growth in preclinical models by modulating myeloid cells and enhancing T cell infiltration. Cancer Res. 2016; 76.

[262]

Deeks ED. Belzutifan: first approval. Drugs. 2021; 81(16): 1921-1927.

[263]

Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018; 37(1): 20.

[264]

Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023; 22(8): 641-661.

[265]

von Minckwitz G, Huang CS, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019; 380(7): 617-628.

[266]

Shitara K, Bang YJ, Iwasa S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020; 382(25): 2419-2430.

[267]

Coleman RL, Lorusso D, Gennigens C, et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021; 22(5): 609-619.

[268]

Matulonis UA, Lorusso D, Oaknin A, et al. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol. 2023; 41(13): 2436-2445.

[269]

Powles T, Rosenberg JE, Sonpavde GP, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021; 384(12): 1125-1135.

[270]

McGregor BA, Gordon M, Flippot R, et al. Safety and efficacy of CDX-014, an antibody-drug conjugate directed against T cell immunoglobulin mucin-1 in advanced renal cell carcinoma. Invest New Drugs. 2020; 38(6): 1807-1814.

[271]

Jacobs J, Deschoolmeester V, Zwaenepoel K, et al. CD70: an emerging target in cancer immunotherapy. Pharmacol Ther. 2015; 155: 1-10.

[272]

Claus C, Riether C, Schurch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res. 2012; 72(14): 3664-3676.

[273]

Massard C, Soria JC, Krauss J, et al. First-in-human study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-CD27L antibody-drug conjugate AMG 172 in patients with relapsed/refractory renal cell carcinoma. Cancer Chemother Pharmacol. 2019; 83(6): 1057-1063.

[274]

Owonikoko TK, Hussain A, Stadler WM, et al. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother Pharmacol. 2016; 77(1): 155-162.

[275]

Pal SK, Forero-Torres A, Thompson JA, et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. Cancer. 2019; 125(7): 1124-1132. 2

[276]

Tannir NM, Forero-Torres A, Ramchandren R, et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest New Drugs. 2014; 32(6): 1246-1257.

[277]

Thompson JA, Motzer RJ, Molina AM, et al. Phase I trials of anti-ENPP3 antibody-drug conjugates in advanced refractory renal cell carcinomas. Clin Cancer Res. 2018; 24(18): 4399-4406.

[278]

Zaorsky NG, Lehrer EJ, Kothari G, Louie AV, Siva S. Stereotactic ablative radiation therapy for oligometastatic renal cell carcinoma (SABR ORCA): a meta-analysis of 28 studies. Eur Urol Oncol. 2019; 2(5): 515-523.

[279]

Singer EA, Rumble RB, Van Veldhuizen PJ. Management of metastatic clear cell renal cell carcinoma: ASCO guideline Q&A. JCO Oncol Pract. 2023; 19(3): 127-131.

[280]

Siva S, Correa RJM, Warner A, et al. Stereotactic ablative radiotherapy for >/= T1b primary renal cell carcinoma: a report from the international radiosurgery oncology consortium for kidney (IROCK). Int J Radiat Oncol Biol Phys. 2020; 108(4): 941-949.

[281]

Ali M, Mooi J, Lawrentschuk N, et al. The role of stereotactic ablative body radiotherapy in renal cell carcinoma. Eur Urol. 2022; 82(6): 613-622.

[282]

Liu Y, Zhang XY, Ma HL, et al. Locoregional recurrence after nephrectomy for localized renal cell carcinoma: feasibility and outcomes of different treatment modalities. Cancer Med-US. 2022; 11(23): 4430-4439.

[283]

Zhang S, Xiong X, Xie N, et al. The efficacy and safety of stereotactic body radiotherapy combined with systematic therapy for metastatic renal cell carcinoma: a systematic review and meta-analysis. MedComm (2020). 2024; 5(5): e544.

[284]

Wan X, Song M, Wang A, Zhao Y, Wei Z, Lu Y. Microbiome crosstalk in immunotherapy and antiangiogenesis therapy. Front Immunol. 2021; 12: 747914.

[285]

Lu Y, Yuan X, Wang M, et al. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol. 2022; 15(1): 47.

[286]

Deluce J, Maleki Vareki S, Fernandes R. The role of gut microbiome in immune modulation in metastatic renal cell carcinoma. Ther Adv Med Oncol. 2022; 14: 17588359221122714.

[287]

Salgia NJ, Bergerot PG, Maia MC, et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti-PD-1 immune checkpoint inhibitors. Eur Urol. 2020; 78(4): 498-502.

[288]

Lalani AA, Xie W, Braun DA, et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur Urol Oncol. 2020; 3(3): 372-381.

[289]

Dizman N, Meza L, Bergerot P, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022; 28(4): 704-712.

[290]

Guo Y, Chen Y, Liu X, Min JJ, Tan W, Zheng JH. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett. 2020; 469: 102-110.

[291]

Mukherjee P, Augur ZM, Li M, et al. Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Commun Biol. 2019; 2: 200.

[292]

Mei J, Fan H, Zhou J, Huang D, Xu J, Zhu Y. Pan-cancer analysis revealing DAAM1 as a novel predictive biomarker for PD-1/PD-L1 blockade in clear cell renal cell carcinoma. MedComm (2020). 2022; 3(4): e177.

[293]

Luo Y, Shi Q, Wang L, Li S, Xu W. Transcription factor 19-mediated epigenetic regulation of FOXM1/AURKB axis contributes to proliferation in clear cell renal carcinoma cells. MedComm (2020). 2023; 4(6): e442.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/