Protein modification in neurodegenerative diseases

Shahin Ramazi , Maedeh Dadzadi , Mona Darvazi , Nasrin Seddigh , Abdollah Allahverdi

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e674

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e674 DOI: 10.1002/mco2.674
REVIEW

Protein modification in neurodegenerative diseases

Author information +
History +
PDF

Abstract

Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications’ impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.

Keywords

immune system / neurodegenerative diseases / posttranslational modifications / SUMOylation

Cite this article

Download citation ▾
Shahin Ramazi, Maedeh Dadzadi, Mona Darvazi, Nasrin Seddigh, Abdollah Allahverdi. Protein modification in neurodegenerative diseases. MedComm, 2024, 5(8): e674 DOI:10.1002/mco2.674

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pourmirzaei M, Ramazi S, Esmaili F, Shojaeilangari S, Allahverdi A. Machine learning-based approaches for ubiquitination site prediction in human proteins. BMC Bioinformatics. 2023; 24(1): 449.

[2]

Esmaili F, Pourmirzaei M, Ramazi S, Shojaeilangari S, Yavari E. A review of machine learning and algorithmic methods for protein phosphorylation sites prediction. Genomics Proteomics Bioinformatics. 2023; 21(6): 1266-1285.

[3]

Ramazi S, Zahiri J. Post-translational modifications in proteins: resources, tools and prediction methods. Database. 2021; 2021: baab012.

[4]

Zafar S, Fatima SI, Schmitz M, Zerr I. Current technologies unraveling the significance of post-translational modifications (PTMs) as crucial players in neurodegeneration. Biomolecules. 2024; 14(1): 118.

[5]

Müller MM. Post-translational modifications of protein backbones: unique functions, mechanisms, and challenges. Biochemistry. 2018; 57(2): 177-185.

[6]

Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J Biosci. 2020; 45(1): 1-29.

[7]

Ramazi S, Tabatabaei SAH, Khalili E, Nia AG, Motarjem K. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences. Database. 2024; 2024: baad094.

[8]

Li W, Li H-L, Wang J-Z, Liu R, Wang X. Abnormal protein post-translational modifications induces aggregation and abnormal deposition of protein, mediating neurodegenerative diseases. Cell Biosci. 2024; 14(1): 1-14.

[9]

Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: regulators of neurodegenerative proteinopathies. Ageing Res Rev. 2021; 68: 101336.

[10]

Blomster HA, Imanishi SY, Siimes J, et al. In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem. 2010; 285(25): 19324-19329.

[11]

Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003; 21(3): 255-261.

[12]

Xue Y, Zhou F, Fu C, Xu Y, Yao X. SUMOsp: a web server for sumoylation site prediction. Nucleic Acids Res. 2006; 34(suppl_2): W254-W257.

[13]

Teleanu DM, Niculescu A-G, Lungu II, et al. An overview of oxidative stress, neuroinflammation and neurodegenerative diseases. Int J Mol Sci. 2022; 23(11): 5938.

[14]

Martin S, Wilkinson KA, Nishimune A, Henley JM. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci. 2007; 8(12): 948-959.

[15]

Didonna A, Benetti F. Post-translational modifications in neurodegeneration. Ageing Res Rev. 2016; 3(1): 27-49.

[16]

Feligioni M, Nisticò R. SUMO: a (oxidative) stressed protein. Neuromolecular Med. 2013; 15(4): 707-719.

[17]

Melchior F. SUMO: a (oxidative) stressed protein. Neuromolecular Med. 2000; 16(1): 591-626.

[18]

Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004; 73(1): 355-382.

[19]

Ramazi S, Zahiri J, Arab S, Parandian Y. Computational prediction of proteins sumoylation: a review on the methods and databases. J Nanomed Res. 2016; 3(5): 00068.

[20]

Tatham MH, Kim S, Yu B, et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and-3 binding and conjugation. Biochemistry. 2003; 42(33): 9959-9969.

[21]

Lu L, Shi X-H, Li S-J, et al. Protein sumoylation sites prediction based on two-stage feature selection. Mol Divers. 2010; 14(1): 81-86.

[22]

Hay RT. SUMO: a history of modification. Mol Cell. 2005; 18(1): 1-12.

[23]

Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 2002; 158(5): 915-927.

[24]

Ramazi S, Dadzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm. 2023; 4(6): e401.

[25]

Henley JM, Carmichael RE, Wilkinson KA. Extranuclear SUMOylation in neurons. Trends Neurosci. 2018; 41(4): 198-210.

[26]

Dorval V, Fraser PE. SUMO on the road to neurodegeneration. Biochim Biophys Acta. 2007; 1773(6): 694-706.

[27]

Guo C, Henley JM. Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB life. 2014; 66(2): 71-77.

[28]

Dorval V, Fraser PE. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins Tau and α-synuclein. J Biol Chem. 2006; 281(15): 9919-9924.

[29]

Marcelli S, Ficulle E, Piccolo L, Corbo M, Feligioni M. An overview of the possible therapeutic role of SUMOylation in the treatment of Alzheimer’s disease. Pharmacol Res. 2018; 130: 420-437.

[30]

Hong Y, Rogers R, Matunis MJ, et al. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem. 2001; 276(43): 40263-40267.

[31]

Wang W, Matunis MJ. Paralogue-specific roles of SUMO1 and SUMO2/3 in protein quality control and associated diseases. Cells. 2023; 13(1): 8.

[32]

Yau T-Y, Sander W, Eidson C, Courey AJ. SUMO interacting motifs: structure and function. Cells. 2021; 10(11): 2825.

[33]

Dohmen RJ. SUMO protein modification. Biochim Biophys Acta. 2004; 1695(1-3): 113-131.

[34]

Osula O, Swatkoski S, Cotter RJ. Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion. J Mass Spectrom. 2012; 47(5): 644-654.

[35]

Bragado L, Magalnik M, Mammi P, et al. SUMO conjugation regulates the activity of the Integrator complex. Nucleic Acids Res. 2022; 50(21): 12444-12461.

[36]

Hoppe JB, Salbego CG, Cimarosti H. SUMOylation: novel neuroprotective approach for Alzheimer’s disease? Aging Dis. 2015; 6(5): 322.

[37]

Princz A, Tavernarakis N. SUMOylation in neurodegenerative diseases. Gerontology. 2020; 66(2): 122-130.

[38]

Chen X, Zhang Y, Wang Q, et al. The function of SUMOylation and its crucial roles in the development of neurological diseases. FASEB J. 2021; 35(4): e21510.

[39]

Hendriks IA, Lyon D, Su D, et al. Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun. 2018; 9(1): 1-17.

[40]

Akar CA, Feinstein DL. Modulation of inducible nitric oxide synthase expression by sumoylation. J Neuroinflammation. 2009; 6: 1-10.

[41]

Lee JH, Park SM, Kim OS, et al. Differential SUMOylation of LXRα and LXRβ mediates transrepression of STAT1 inflammatory signaling in IFN-γ-stimulated brain astrocytes. Mol Cell. 2009; 35(6): 806-817.

[42]

Chevallot-Beroux M. PML and its Degradation by Arsenic Trioxide in Interferon-Mediated Neuro-Inflammation. Universitäts-und Landesbibliothek Bonn; 2023.

[43]

Hoppe JB, Rattray M, Tu H, Salbego CG, Cimarosti H. SUMO-1 conjugation blocks beta-amyloid-induced astrocyte reactivity. Neurosci Lett. 2013; 546: 51-56.

[44]

Henley JM, Seager R, Nakamura Y, Talandyte K, Nair J, Wilkinson KA. SUMOylation of synaptic and synapse-associated proteins: an update. J Neurochem. 2021; 156(2): 145-161.

[45]

Wasik U, Filipek A. Non-nuclear function of sumoylated proteins. Biochim Biophys Acta. 2014; 1843(12): 2878-2885.

[46]

Matsuzaki S, Lee L, Knock E, et al. SUMO1 affects synaptic function, spine density and memory. Sci Rep. 2015; 5(1): 1-14.

[47]

Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev. 2014; 94(4): 1249-1285.

[48]

Colnaghi L, Russo L, Natale C, et al. Super resolution microscopy of SUMO proteins in neurons. Front Cell Neurosci. 2019; 13: 486.

[49]

Riley BE, Zoghbi HY, Orr HT. SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J Biol Chem. 2005; 280(23): 21942-21948.

[50]

Lee L, Sakurai M, Matsuzaki S, Arancio O, Fraser P. SUMO and Alzheimer’s disease. Neuromolecular Med. 2013; 15(4): 720-736.

[51]

Bachmann S, Bell M, Klimek J, Zempel H. Differential effects of the six human TAU isoforms: somatic retention of 2N-TAU and increased microtubule number induced by 4R-TAU. Front Neurosci. 2021; 15: 643115.

[52]

Corsi A, Bombieri C, Valenti MT, Romanelli MG. Tau isoforms: gaining Insight into MAPT alternative splicing. Int J Mol Sci. 2022; 23(23): 15383.

[53]

Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci. 2014; 15(3): 4671-4713.

[54]

Chiavaioli F, Santano Rivero D, Del Villar I, et al. Ultrahigh sensitive detection of Tau protein as Alzheimer’s biomarker via microfluidics and nanofunctionalized optical fiber sensors. Adv Photonics Res. 2022; 3(11): 2200044.

[55]

Bodea LG, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem. 2016; 138: 71-94.

[56]

Sarge KD, Park-Sarge O-K. Sumoylation and human disease pathogenesis. Trends Biochem Sci. 2009; 34(4): 200-205.

[57]

Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer’s disease and other tauopathies. Int J Mol Sci. 2022; 23(21): 12841.

[58]

Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016; 17(1): 22-35.

[59]

Li L, Jiang Y, Wang J-Z, Liu R, Wang X. Tau ubiquitination in Alzheimer’s disease. Front Neurol. 2022; 12: 2642.

[60]

Takamura H, Nakayama Y, Ito H, Katayama T, Fraser PE, Matsuzaki S. SUMO1 modification of Tau in progressive supranuclear palsy. Mol Neurobiol. 2022; 59(7): 4419-4435.

[61]

Luo H-B, Xia Y-Y, Shu X-J, et al. SUMOylation at K340 inhibits Tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci USA. 2014; 111(46): 16586-16591.

[62]

Takahashi K, Ishida M, Komano H, Takahashi H. SUMO-1 immunoreactivity co-localizes with phospho-Tau in APP transgenic mice but not in mutant Tau transgenic mice. Neurosci Lett. 2008; 441(1): 90-93.

[63]

Selkoe DJ, Podlisny MB, Joachim CL, et al. Beta-amyloid precursor protein of Alzheimer disease occurs as 110-to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc Natl Acad Sci USA. 1988; 85(19): 7341-7345.

[64]

Zhang Y-W, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain. 2011; 4: 1-13.

[65]

Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism. 2021; 115: 154454.

[66]

Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting amyloidogenic processing of APP in Alzheimer’s disease. Front Mol Neurosci. 2020; 13: 137.

[67]

Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021; 89(8): 745-756.

[68]

Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener. 2011; 6(1): 1-16.

[69]

Guo Q, Wang Z, Li H, Wiese M, Zheng H. APP physiological and pathophysiological functions: insights from animal models. Cell Res. 2012; 22(1): 78-89.

[70]

Hampel H, Hardy J, Blennow K, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021; 26(10): 5481-5503.

[71]

Afsharian MH, Mahdavian R, Jafari S, Allahverdi A, Soleymani H, Naderi-Manesh H. Investigation of synergic effects of nanogroove topography and polyaniline-chitosan nanocomposites on PC12 cell differentiation and axonogenesis. Iscience. 2024; 27(2): 108828.

[72]

Nadeem MS, Hosawi S, Alshehri S, et al. Symptomatic, genetic, and mechanistic overlaps between autism and Alzheimer’s disease. Biomolecules. 2021; 11(11): 1635.

[73]

Müller UC, Zheng H. Physiological functions of APP family proteins. Cold Spring Harb Perspect Med. 2012; 2(2): a006288.

[74]

Hector A, Brouillette J. Hyperactivity induced by soluble amyloid-β oligomers in the early stages of Alzheimer’s disease. Front Mol Neurosci. 2021; 13: 600084.

[75]

Wang X, Zhou X, Li G, Zhang Y, Wu Y, Song W. Modifications and trafficking of APP in the pathogenesis of Alzheimer’s disease. Front Mol Neurosci. 2017; 10: 294.

[76]

Anderson DB, Wilkinson KA, Henley JM. Protein SUMOylation in neuropathological conditions. Drug News Perspect. 2009; 22(5): 255.

[77]

Lee L, Dale E, Staniszewski A, et al. Regulation of synaptic plasticity and cognition by SUMO in normal physiology and Alzheimer’s disease. Sci Rep. 2014; 4(1): 1-14.

[78]

Yun S-M, Cho S-J, Song JC, et al. SUMO1 modulates Aβ generation via BACE1 accumulation. Neurobiol Aging. 2013; 34(3): 650-662.

[79]

Zhang Y-Q, Sarge KD. Sumoylation of amyloid precursor protein negatively regulates Aβ aggregate levels. Biochem Biophys Res Commun. 2008; 374(4): 673-678.

[80]

Bao J, Qin M, Mahaman YAR, et al. BACE1 SUMOylation increases its stability and escalates the protease activity in Alzheimer’s disease. Proc Natl Acad Sci USA. 2018; 115(15): 3954-3959.

[81]

Dong Z, Yi L, Luo M, Wang M, Du Y. Fangchinoline alleviates cognitive impairments through enhancing autophagy and mitigating oxidative stress in Alzheimer’s disease models. Front Cell Dev Biol. 2023; 11: 1288506.

[82]

Zhao Y, Zhou H, Zhao Y, et al. BACE1 SUMOylation deregulates phosphorylation and ubiquitination in Alzheimer’s disease pathology. J Neurochem. 2023; 166(2): 318-327.

[83]

Li Y, Wang H, Wang S, Quon D, Liu Y-W, Cordell B. Positive and negative regulation of APP amyloidogenesis by sumoylation. Proc Natl Acad Sci USA. 2003; 100(1): 259-264.

[84]

Dorval V, Mazzella MJ, Mathews PM, Hay RT, Fraser PE. Modulation of Aβ generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem J. 2007; 404(2): 309-316.

[85]

Liu Y-C, Hsu W-L, Ma Y-L, Lee EH. Melatonin induction of APP intracellular domain 50 SUMOylation alleviates AD through enhanced transcriptional activation and Aβ degradation. Mol Ther. 2021; 29(1): 376-395.

[86]

Liu N, Lin M-M, Wang Y. The emerging roles of E3 ligases and DUBs in neurodegenerative diseases. Mol Neurobiol. 2023; 60(1): 247-263.

[87]

Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021; 7(1): 47.

[88]

Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020; 36(1): 1-12.

[89]

Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev. 2018; 42: 72-85.

[90]

Srinivasan E, Chandrasekhar G, Chandrasekar P, et al. Alpha-synuclein aggregation in Parkinson’s disease. Front Med (Lausanne). 2021; 8: 736978.

[91]

Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A. Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol. 2010; 225(1): 210-218.

[92]

Junqueira SC, Centeno EG, Wilkinson KA, Cimarosti H. Post-translational modifications of Parkinson’s disease-related proteins: phosphorylation, SUMOylation and Ubiquitination. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(8): 2001-2007.

[93]

Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012; 2(2): a009399.

[94]

Allen Reish HE, Standaert DG. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J Parkinsons Dis. 2015; 5(1): 1-19.

[95]

Proukakis C, Dudzik CG, Brier T, et al. A novel α-synuclein missense mutation in Parkinson disease. Neurology. 2013; 80(11): 1062-1064.

[96]

Jacob RS, Eichmann C, Dema A, Mercadante D, Selenko P. α-Synuclein plasma membrane localization correlates with cellular phosphatidylinositol polyphosphate levels. Elife. 2021; 10: e61951.

[97]

Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and Parkinson’s disease–lessons and emerging principles. Mol Neurodegener. 2019; 14: 1-14.

[98]

Burré J, Sharma M, Südhof TC. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb Perspect Med. 2018; 8(3): a024091.

[99]

Fusco G, Chen SW, Williamson PT, et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science. 2017; 358(6369): 1440-1443.

[100]

Kawahata I, Finkelstein DI, Fukunaga K. Pathogenic impact of α-synuclein phosphorylation and its kinases in α-synucleinopathies. Int J Mol Sci. 2022; 23(11): 6216.

[101]

Bisi N, Feni L, Peqini K, et al. α-Synuclein: an all-inclusive trip around its structure, influencing factors and applied techniques. Front Chem. 2021; 9: 666585.

[102]

Wang W, Perovic I, Chittuluru J, et al. A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA. 2011; 108(43): 17797-17802.

[103]

Savyon M, Engelender S. SUMOylation in α-synuclein homeostasis and pathology. Front Aging Neurosci. 2020; 12: 167.

[104]

Mehra S, Sahay S, Maji SK. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim Biophys Acta Proteins Proteom. 2019; 1867(10): 890-908.

[105]

Van der Perren A, Gelders G, Fenyi A, et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 2020; 139: 977-1000.

[106]

de Oliveira GA, Silva JL. Alpha-synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson’s disease. Commun Biol. 2019; 2(1): 374.

[107]

Olanow CW, Savolainen M, Chu Y, Halliday GM, Kordower JH. Temporal evolution of microglia and α-synuclein accumulation following foetal grafting in Parkinson’s disease. Brain. 2019; 142(6): 1690-1700.

[108]

Anderson JP, Walker DE, Goldstein JM, et al. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006; 281(40): 29739-29752.

[109]

Sampathu DM, Giasson BI, Pawlyk AC, Trojanowski JQ, Lee VM-Y. Ubiquitination of α-synuclein is not required for formation of pathological inclusions in α-synucleinopathies. Am J Pathol. 2003; 163(1): 91-100.

[110]

Nonaka T, Iwatsubo T, Hasegawa M. Ubiquitination of α-synuclein. Biochemistry. 2005; 44(1): 361-368.

[111]

Rott R, Szargel R, Shani V, et al. SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proc Natl Acad Sci USA. 2017; 114(50): 13176-13181.

[112]

Abeywardana T, Pratt MR. Extent of inhibition of α-synuclein aggregation in vitro by SUMOylation is conjugation site-and SUMO isoform-selective. Biochemistry. 2015; 54(4): 959-961.

[113]

Lee JT, Wheeler TC, Li L, Chin L-S. Ubiquitination of α-synuclein by Siah-1 promotes α-synuclein aggregation and apoptotic cell death. Hum Mol Genet. 2008; 17(6): 906-917.

[114]

Kim YM, Jang WH, Quezado MM, et al. Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. J Neurol Sci. 2011; 307(1-2): 157-161.

[115]

Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord. 2010; 25(S1): S32-S39.

[116]

Miklya I, Göltl P, Hafenscher F, Pencz N. The role of parkin in Parkinson’s disease. Neuropsychopharmacol Hung. 2014; 16(2): 67-76.

[117]

Ding D, Ao X, Liu Y, et al. Post-translational modification of Parkin and its research progress in cancer. Cancer Commun (Lond). 2019; 39: 1-10.

[118]

Kamienieva I, Duszyński J, Szczepanowska J. Multitasking guardian of mitochondrial quality: Parkin function and Parkinson’s disease. Transl Neurodegener. 2021; 10(1): 1-18.

[119]

Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat Med. 2004; 10(Suppl 7): S2-S9.

[120]

Zhang C-W, Hang L, Yao T-P, Lim K-L. Parkin regulation and neurodegenerative disorders. Front Aging Neurosci. 2016; 7: 248.

[121]

Murillo-González FE, García-Aguilar R, Vega L, Elizondo G. Regulation of Parkin expression as the key balance between neural survival and cancer cell death. Biochem Pharmacol. 2021; 190: 114650.

[122]

Liu J, Zhang C, Hu W, Feng Z. Parkinson’s disease-associated protein Parkin: an unusual player in cancer. Cancer Commun (Lond). 2018; 38: 1-8.

[123]

Chakraborty J, Basso V, Ziviani E. Post translational modification of Parkin. Biol Direct. 2017; 12(1): 1-11.

[124]

Ardley HC, Scott GB, Rose SA, Tan NG, Markham AF, Robinson PA. Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin. Mol Biol Cell. 2003; 14(11): 4541-4556.

[125]

Lim K-L, Dawson VL, Dawson TM. Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson’s and other conformational diseases? Neurobiol Aging. 2006; 27(4): 524-529.

[126]

Yamamoto A, Friedlein A, Imai Y, Takahashi R, Kahle PJ, Haass C. Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem. 2005; 280(5): 3390-3399.

[127]

Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Gene. 2014; 10(6): e1004391.

[128]

Um JW, Chung KC. Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res. 2006; 84(7): 1543-1554.

[129]

Guerra de Souza AC, Prediger RD, Cimarosti H. SUMO-regulated mitochondrial function in Parkinson’s disease. J Neurochem. 2016; 137(5): 673-686.

[130]

Smith N, Wilson MA. Structural biology of the DJ-1 superfamily. Adv Exp Med Biol. 2017; 1037: 5-24.

[131]

Zhang L, Wang J, Wang J, Yang B, He Q, Weng Q. Role of DJ-1 in immune and inflammatory diseases. Front Immunol. 2020; 11: 994.

[132]

Piston D, Alvarez-Erviti L, Bansal V, et al. DJ-1 is a redox sensitive adapter protein for high molecular weight complexes involved in regulation of catecholamine homeostasis. Hum Mol Genet. 2017; 26(20): 4028-4041.

[133]

Bandopadhyay R, Kingsbury AE, Cookson MR, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain. 2004; 127(2): 420-430.

[134]

Choi J, Sullards MC, Olzmann JA, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem. 2006; 281(16): 10816-10824.

[135]

Antipova D, Bandopadhyay R. Expression of DJ-1 in neurodegenerative disorders. Adv Exp Med Biol. 2017; 1037: 25-43.

[136]

Cao J, Lou S, Ying M, Yang B. DJ-1 as a human oncogene and potential therapeutic target. Biochem Pharmacol. 2015; 93(3): 241-250.

[137]

Nagakubo D, Taira T, Kitaura H, et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation withras. Biochem Biophys Res Commun. 1997; 231(2): 509-513.

[138]

Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev. 2013; 2013: 683920.

[139]

Jin F, Wang H, Li D, et al. DJ1 promotes cell proliferation and tumor metastasis in esophageal squamous cell carcinoma via the Wnt/βcatenin signaling pathway Corrigendum in/10.3892/ijo. 2022.5320. Int J Oncol. 2020; 56(5): 1115-1128.

[140]

Kawate T, Tsuchiya B, Iwaya K. Expression of DJ-1 in cancer cells: its correlation with clinical significance. Adv Exp Med Biol. 2017; 1037: 45-59.

[141]

De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biol. 2021; 41: 101884.

[142]

Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol. 2021; 204: 102114.

[143]

Emamzadeh FN, Surguchov A. Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci. 2018; 12: 612.

[144]

Meder D, Herz DM, Rowe JB, Lehéricy S, Siebner HR. The role of dopamine in the brain-lessons learned from Parkinson’s disease. Neuroimage. 2019; 190: 79-93.

[145]

Chen R, Park H-A, Mnatsakanyan N, et al. Parkinson’s disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death Dis. 2019; 10(6): 1-12.

[146]

Xu C-Y, Kang W-Y, Chen Y-M, et al. DJ-1 inhibits α-synuclein aggregation by regulating chaperone-mediated autophagy. Front Aging Neurosci. 2017; 9: 308.

[147]

Shinbo Y, Niki T, Taira T, et al. Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ. 2006; 13(1): 96-108.

[148]

Fan J, Ren H, Fei E, et al. Sumoylation is critical for DJ-1 to repress p53 transcriptional activity. FEBS Lett. 2008; 582(7): 1151-1156.

[149]

Strobbe D, Robinson AA, Harvey K, et al. Distinct mechanisms of pathogenic DJ-1 mutations in mitochondrial quality control. Front Mol Neurosci. 2018; 11: 68.

[150]

Moore DJ, Zhang L, Dawson TM, Dawson VL. A missense mutation (L166P) in DJ-1, linked to familial Parkinson’s disease, confers reduced protein stability and impairs homo-oligomerization. J Neurochem. 2003; 87(6): 1558-1567.

[151]

Zhu P-P, Stadler J, Klinefelter GR, et al. L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J Biol Chem. 2003; 278(38): 36588-36595.

[152]

Rosdah AA, Smiles WJ, Oakhill JS, et al. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther. 2020; 213: 107594.

[153]

Guo C, Wilkinson KA, Evans AJ, Rubin PP, Henley JM. SENP3-mediated deSUMOylation of Drp1 facilitates interaction with Mff to promote cell death. Sci Rep. 2017; 7(1): 43811.

[154]

Oliver D, Reddy PH. Dynamics of dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells. 2019; 8(9): 961.

[155]

Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev. 2011; 67(1-2): 103-118.

[156]

Ashraf GM, Chatzichronis S, Alexiou A, Firdousi G, Kamal MA, Ganash M. Dietary alterations in impaired mitochondrial dynamics due to neurodegeneration. Front Aging Neurosci. 2022; 14: 893018.

[157]

Murphy E, Ardehali H, Balaban RS, et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res. 2016; 118(12): 1960-1991.

[158]

Itoh K, Nakamura K, Iijima M, Sesaki H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol. 2013; 23(2): 64-71.

[159]

Yamada S, Sato A, Ishihara N, Akiyama H, Sakakibara S-I. Drp1 SUMO/deSUMOylation by Senp5 isoforms influences ER tubulation and mitochondrial dynamics to regulate brain development. Iscience. 2021; 24(12): 103484.

[160]

Figueroa-Romero C, Iñiguez-Lluhí JA, Stadler J, et al. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J. 2009; 23(11): 3917.

[161]

Jin J-Y, Wei X-X, Zhi X-L, Wang X-H, Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin. 2021; 42(5): 655-664.

[162]

Santel A, Frank S. Shaping mitochondria: The complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB life. 2008; 60(7): 448-455.

[163]

Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005; 6(8): 657-663.

[164]

Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci. 2008; 9(7): 505-518.

[165]

Chen J, Luo Y, Wang S, Zhu H, Li D. Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol. 2019; 134: 154-164.

[166]

Manczak M, Reddy PH. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated Tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet. 2012; 21(11): 2538-2547.

[167]

Schulte J, Littleton JT. The biological function of the Huntingtin protein and its relevance to Huntington’s disease pathology. Curr Trends Neurol. 2011; 5: 65.

[168]

Bates GP, Murphy KP. 13 Mouse models of Huntington’s disease. Med Mol Genet. 2002; 45: 387-426.

[169]

Ramírez-Jarquín UN, Sharma M, Zhou W, Shahani N, Subramaniam S. Deletion of SUMO1 attenuates behavioral and anatomical deficits by regulating autophagic activities in Huntington disease. Proc Natl Acad Sci USA. 2022; 119(5): e2107187119.

[170]

Soares ES, Prediger RD, Brocardo PS, Cimarosti HI. SUMO-modifying Huntington’s disease. IBRO Neurosci Rep. 2022; 12: 203-209.

[171]

Vonsattel JPG, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998; 57(5): 369.

[172]

Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature. 1986; 321(6066): 168-171.

[173]

Saudou F, Humbert S. The biology of huntingtin. Neuron. 2016; 89(5): 910-926.

[174]

Ehrnhoefer DE, Sutton L, Hayden MR. Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist. 2011; 17(5): 475-492.

[175]

Kim H, Lenoir S, Helfricht A, et al. A pathogenic proteolysis–resistant huntingtin isoform induced by an antisense oligonucleotide maintains huntingtin function. JCI insight. 2022; 7(17): e154108.

[176]

Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010; 3: 1.

[177]

Ji W, Tang Z, Chen Y, et al. Ependymal cilia: Physiology and role in hydrocephalus. Front Mol Neurosci. 2022; 15: 927479.

[178]

Guo Q, Huang B, Cheng J, et al. The cryo-electron microscopy structure of huntingtin. Nature. 2018; 555(7694): 117-120.

[179]

Vijayvargia R, Epand R, Leitner A, et al. Huntingtin’s spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function. Elife. 2016; 5: e11184.

[180]

Baias M, Smith PE, Shen K, et al. Structure and dynamics of the huntingtin exon-1 N-terminus: a solution NMR perspective. J Am Chem Soc. 2017; 139(3): 1168-1176.

[181]

Landles C, Milton RE, Jean A, et al. Development of novel bioassays to detect soluble and aggregated Huntingtin proteins on three technology platforms. Brain Commun. 2021; 3(1): fcaa231.

[182]

Steffan JS, Agrawal N, Pallos J, et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science. 2004; 304(5667): 100-104.

[183]

McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018; 25(1): 24-34.

[184]

Fodale V, Pintauro R, Daldin M, et al. Analysis of mutant and total huntingtin expression in Huntington’s disease murine models. Sci Rep. 2020; 10(1): 1-13.

[185]

MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993; 72(6): 971-983.

[186]

Nucifora LG, Burke KA, Feng X, et al. Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem. 2012; 287(19): 16017-16028.

[187]

Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993; 4(4): 387-392.

[188]

Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020; 16(10): 529-546.

[189]

Chiki A, Ricci J, Hegde R, et al. Site-specific phosphorylation of huntingtin exon 1 recombinant proteins enabled by the discovery of novel kinases. Chembiochem. 2021; 22(1): 217-231.

[190]

Martin DD, Kay C, Collins JA, Nguyen YT, Slama RA, Hayden MR. A human huntingtin SNP alters post-translational modification and pathogenic proteolysis of the protein causing Huntington disease. Sci Rep. 2018; 8(1): 1-8.

[191]

O’Rourke JG, Gareau JR, Ochaba J, et al. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep. 2013; 4(2): 362-375.

[192]

Mandel N, Agarwal N. Role of SUMOylation in neurodegenerative diseases. Cells. 2022; 11(21): 3395.

[193]

Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science. 2009; 324(5932): 1327-1330.

[194]

Carbo M, Brandi V, Pascarella G, et al. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington’s disease therapy. Int J Mol Med. 2019; 44(6): 2223-2233.

[195]

Sedighi F, Adegbuyiro A, Legleiter J. SUMOylation prevents Huntingtin fibrillization and localization onto lipid membranes. ACS Chem Neurosci. 2019; 11(3): 328-343.

[196]

Khalili E, Ramazi S, Ghanati F, Kouchaki SJ. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network. Brief Bioinform. 2022; 23(2): bbac015.

[197]

Raju TS. Co-and Post-Translational Modifications of Therapeutic Antibodies and Proteins. John Wiley & Sons; 2019. ISBN: 978-1-119-05331-6.

[198]

Kurochkina N, Bhaskar M, Yadav SP, Pant HC. Phosphorylation, dephosphorylation, and multiprotein assemblies regulate dynamic behavior of neuronal cytoskeleton: A mini-review. Front Mol Neurosci. 2018; 11: 373.

[199]

Shu L, Du C, Zuo Y. Abnormal phosphorylation of protein tyrosine in neurodegenerative diseases. J Neuropathol Exp Neurol. 2023; 82(10): 826-835.

[200]

Oliveira J, Costa M, de Almeida MSC, daCruz e Silva OA, Henriques AG. Protein phosphorylation is a key mechanism in Alzheimer’s disease. J Alzheimers Dis. 2017; 58(4): 953-978.

[201]

Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM. Synergistic interactions between Aβ tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci. 2010; 30(21): 7281-7289.

[202]

Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: a pathological factor with Aβ and Tau and biomarker in Alzheimer’s disease. Alzheimers Res Ther. 2022; 14(1): 1-14.

[203]

Mattsson-Carlgren N, Andersson E, Janelidze S, et al. Aβ deposition is associated with increases in soluble and phosphorylated Tau that precede a positive Tau PET in Alzheimer’s disease. Sci Adv. 2020; 6(16): eaaz2387.

[204]

Zhang H, Wei W, Zhao M, et al. Interaction between Aβ and Tau in the pathogenesis of Alzheimer’s disease. Int J Biol Sci. 2021; 17(9): 2181.

[205]

Basheer N, Smolek T, Hassan I, et al. Does modulation of Tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer’s disease? From preclinical studies to the clinical trials. Mol Psychiatry. 2023; 28(6): 2197-2214.

[206]

Gong C-X, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008; 15(23): 2321-2328.

[207]

Kanaan NM, Grabinski T. Neuronal and glial distribution of Tau protein in the adult rat and monkey. Front Mol Neurosci. 2021; 14: 607303.

[208]

Wang R, Lu KP, Zhou XZ. Function and regulation of cis P-Tau in the pathogenesis and treatment of conventional and nonconventional tauopathies. J Neurochem. 2023; 166(6): 904-914.

[209]

Xia Y, Prokop S, Giasson BI. “Don’t Phos Over Tau”: recent developments in clinical biomarkers and therapies targeting Tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol Neurodegener. 2021; 16(1): 37.

[210]

Iqbal K, Liu F, Gong C-X. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016; 12(1): 15-27.

[211]

Martin L, Latypova X, Terro F. Post-translational modifications of Tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011; 58(4): 458-471.

[212]

Torres AK, Rivera BI, Polanco CM, Jara C, Tapia-Rojas C. Phosphorylated Tau as a toxic agent in synaptic mitochondria: implications in aging and Alzheimer’s disease. Neural Regen Res. 2022; 17(8): 1645.

[213]

Katsumoto A, Takeuchi H, Tanaka F. Tau pathology in chronic traumatic encephalopathy and alzheimer’s disease: similarities and differences. Front Neurol. 2019; 10: 980.

[214]

Stathas S, Alvarez VE, Xia W, et al. Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer’s disease. Alzheimers Dement. 2022; 18(8): 1511-1522.

[215]

Moore KB, Hung T-J, Fortin JS. Hyperphosphorylated Tau (p-tau) and drug discovery in the context of Alzheimer’s disease and related tauopathies. Drug Discov Today. 2023; 28(3): 103487.

[216]

DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019; 14(1): 1-18.

[217]

Alonso AD, Di Clerico J, Li B, et al. Phosphorylation of Tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem. 2010; 285(40): 30851-30860.

[218]

Neddens J, Temmel M, Flunkert S, et al. Phosphorylation of different Tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun. 2018; 6(1): 1-15.

[219]

Ashton NJ, Benedet AL, Pascoal TA, et al. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. EBioMedicine. 2022; 76: 103836.

[220]

Mandelkow E, Von Bergen M, Biernat J, Mandelkow EM. Structural principles of Tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol. 2007; 17(1): 83-90.

[221]

Zhang H, Cao Y, Ma L, Wei Y, Li H. Possible mechanisms of Tau spread and toxicity in Alzheimer’s disease. Front Cell Dev Biol. 2021; 9: 707268.

[222]

Irani K, Siampour H, Allahverdi A, Moshaii A, Naderi-Manesh H. Lung cancer cell-derived exosome detection using electrochemical approach towards early cancer screening. Int J Mol Sci. 2023; 24(24): 17225.

[223]

Dujardin S, Commins C, Lathuiliere A, et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med. 2020; 26(8): 1256-1263.

[224]

Wegmann S, Biernat J, Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr Opin Neurobio. 2021; 69: 131-138.

[225]

Wesseling H, Mair W, Kumar M, et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell. 2020; 183(6): 1699-1713. e13.

[226]

Seddigh N, Taabodi D, Dadzadi M, Shahpasand K. cis P-Tau accumulation triggers neurodegeneration after ischemic stroke. ACS Omega. 2024; 9(5): 5509-5516.

[227]

Pichet Binette A, Franzmeier N, Spotorno N, et al. Amyloid-associated increases in soluble Tau relate to Tau aggregation rates and cognitive decline in early Alzheimer’s disease. Nat Commun. 2022; 13(1): 6635.

[228]

Alonso AD, Cohen LS, Corbo C, et al. Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci. 2018; 12: 338.

[229]

Wu M, Zhang M, Yin X, et al. The role of pathological Tau in synaptic dysfunction in Alzheimer’s diseases. Transl Neurodegener. 2021; 10: 1-11.

[230]

Kandimalla R, Manczak M, Yin X, Wang R, Reddy PH. Hippocampal phosphorylated Tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum Mol Genet. 2018; 27(1): 30-40.

[231]

Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J Neuroinflammation. 2023; 20(1): 165.

[232]

Chen Z, Wang S, Meng Z, et al. Tau protein plays a role in the mechanism of cognitive disorders induced by anesthetic drugs. Front Neurosci. 2023; 17: 1145318.

[233]

Torres AK, Jara C, Olesen MA, Tapia-Rojas C. Pathologically phosphorylated Tau at S396/404 (PHF-1) is accumulated inside of hippocampal synaptic mitochondria of aged Wild-type mice. Sci Rep. 2021; 11(1): 4448.

[234]

Wei H, Zhang H-l, Wang X-c, et al. Direct activation of protein phosphatase 2A (PP2A) by tricyclic sulfonamides ameliorates Alzheimer’s disease pathogenesis in cell and animal models. Neurotherapeutics. 2020; 17: 1087-1103.

[235]

Wang L, Zhou Y, Chen D, Lee TH. Peptidyl-prolyl cis/trans isomerase Pin1 and Alzheimer’s disease. Front Cell Dev Biol. 2020; 8: 355.

[236]

Kimura T, Tsutsumi K, Taoka M, et al. Isomerase Pin1 stimulates dephosphorylation of Tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem. 2013; 288(11): 7968-7977.

[237]

Kim N, Wang B, Koikawa K, et al. Inhibition of death-associated protein kinase 1 attenuates cis P-Tau and neurodegeneration in traumatic brain injury. Prog Neurobiol. 2021; 203: 102072.

[238]

Lee TH, Chen C-H, Suizu F, et al. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol cell. 2011; 42(2): 147-159.

[239]

Kim B, You M, Chen C, et al. Death-associated protein kinase 1 has a critical role in aberrant Tau protein regulation and function. Cell Death Dis. 2014; 5(5): e1237-e1237.

[240]

Iannuzzi F, Sirabella R, Canu N, Maier TJ, Annunziato L, Matrone C. Fyn tyrosine kinase elicits amyloid precursor protein Tyr682 phosphorylation in neurons from Alzheimer’s disease patients. Cells. 2020; 9(8): 1807.

[241]

Acevedo KM, Opazo CM, Norrish D, et al. Phosphorylation of amyloid precursor protein at threonine 668 is essential for its copper-responsive trafficking in SH-SY5Y neuroblastoma cells. J Biol Chem. 2014; 289(16): 11007-11019.

[242]

Zhang T, Chen D, Lee TH. Phosphorylation signaling in APP processing in Alzheimer’s disease. Int J Mol Sci. 2019; 21(1): 209.

[243]

Menon PK, Koistinen NA, Iverfeldt K, Ström A-L. Phosphorylation of the amyloid precursor protein (APP) at Ser-675 promotes APP processing involving meprin β. J Biol Chem. 2019; 294(47): 17768-17776.

[244]

Lee M-S, Kao S-C, Lemere CA, et al. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol. 2003; 163(1): 83-95.

[245]

Kumar S, Walter J. Phosphorylation of amyloid beta (Aβ) peptides–A trigger for formation of toxic aggregates in Alzheimer’s disease. Aging (Albany NY). 2011; 3(8): 803.

[246]

Chang K-A, Kim H-S, Ha T-Y, et al. Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol Cell Biol. 2006; 26(11): 4327-4338.

[247]

Kim BM, You M-H, Chen C-H, Suh J, Tanzi RE, Ho Lee T. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum Mol Genet. 2016; 25(12): 2498-2513.

[248]

Kumar S, Wirths O, Stüber K, et al. Phosphorylation of the amyloid β-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol. 2016; 131: 525-537.

[249]

Wang S, Unnithan S, Bryant N, et al. Elevated urinary Rab10 phosphorylation in idiopathic Parkinson disease. Mov Disord. 2022; 37(7): 1454-1464.

[250]

Lu J, Zhang S, Ma X, et al. Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation. J Biol Chem. 2020; 295(21): 7470-7480.

[251]

Zhao K, Lim Y-J, Liu Z, et al. Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc Natl Acad Sci USA. 2020; 117(33): 20305-20315.

[252]

Hu S, Hu M, Liu J, et al. Phosphorylation of Tau and α-synuclein induced neurodegeneration in MPTP mouse model of Parkinson’s disease. Neuropsychiatr Dis Treat. 2020: 651-663.

[253]

Jin M, Wang S, Gao X, Zou Z, Hirotsune S, Sun L. Pathological and physiological functional cross-talks of α-synuclein and Tau in the central nervous system. Neural Regen Res. 2024; 19(4): 855-862.

[254]

Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023; 8(1): 267.

[255]

Vacchi E, Kaelin-Lang A, Melli G. Tau and alpha synuclein synergistic effect in neurodegenerative diseases: When the periphery is the core. Int J Mol Sci. 2020; 21(14): 5030.

[256]

Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023; 14(3): 176.

[257]

Chatterjee K, Roy A, Banerjee R, et al. Inflammasome and α-synuclein in Parkinson’s disease: a cross-sectional study. J Neuroimmunol. 2020; 338: 577089.

[258]

Parra-Rivas LA, Madhivanan K, Aulston BD, et al. Serine-129 phosphorylation of a-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function. Neuron. 2023; 111(24): 4006–4023.

[259]

Oueslati A. Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J Parkinsons Dis. 2016; 6(1): 39-51.

[260]

Inglis KJ, Chereau D, Brigham EF, et al. Polo-like kinase 2 (PLK2) phosphorylates α-synuclein at serine 129 in central nervous system. J Biol Chem. 2009; 284(5): 2598-2602.

[261]

Ghanem SS, Majbour NK, Vaikath NN, et al. α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity. Proc Natl Acad Sci USA. 2022; 119(15): e2109617119.

[262]

Smith WW, Margolis RL, Li X, et al. α-Synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci. 2005; 25(23): 5544-5552.

[263]

Brahmachari S, Ge P, Lee SH, et al. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration. J Clin Invest. 2016; 126(8): 2970-2988.

[264]

Mahul-Mellier A-L, Fauvet B, Gysbers A, et al. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum Mol Genet. 2014; 23(11): 2858-2879.

[265]

Kouli A, Torsney KM, Kuan W-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. Codon Publications; 2018: 3-26.

[266]

Chu Y, Hirst WD, Federoff HJ, Harms AS, Stoessl AJ, Kordower JH. Nigrostriatal Tau pathology in parkinsonism and Parkinson’s disease. Brain. 2024; 147(2): 444-457.

[267]

Hadi F, Akrami H, Totonchi M, Barzegar A, Nabavi SM, Shahpasand K. α-synuclein abnormalities trigger focal Tau pathology, spreading to various brain areas in Parkinson disease. J Neurochem. 2021; 157(3): 727-751.

[268]

Zhang X, Gao F, Wang D, Zhang J. Tau pathology in Parkinson’s disease. Front Neurol. 2018; 9: 287858.

[269]

Muntane G, Dalfo E, Martinez A, Ferrer I. Phosphorylation of Tau and α-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer’s disease, and in Parkinson’s disease and related α-synucleinopathies. Neuroscience. 2008; 152(4): 913-923.

[270]

Batzu L, Rota S, Hye A, et al. Plasma p-tau181, neurofilament light chain and association with cognition in Parkinson’s disease. NPJ Parkinsons Dis. 2022; 8(1): 154.

[271]

Lin C-H, Yang S-Y, Horng H-E, et al. Plasma biomarkers differentiate Parkinson’s disease from atypical parkinsonism syndromes. Front Aging Neurosci. 2018; 10: 123.

[272]

Walden H, Muqit MM. Ubiquitin and Parkinson’s disease through the looking glass of genetics. Biochem J. 2017; 474(9): 1439-1451.

[273]

Chin L-S, Li L. Ubiquitin phosphorylation in Parkinson’s disease: Implications for pathogenesis and treatment. Transl Neurodegener. 2016; 5: 1-8.

[274]

Singh V, Menard MA, Serrano GE, et al. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun. 2023; 11(1): 201.

[275]

Slone SR, Lavalley N, McFerrin M, Wang B, Yacoubian TA. Increased 14-3-3 phosphorylation observed in Parkinson’s disease reduces neuroprotective potential of 14-3-3 proteins. Neurobiol Dis. 2015; 79: 1-13.

[276]

Zhou L, Zhang Q, Zhang P, et al. c-Abl-mediated Drp1 phosphorylation promotes oxidative stress-induced mitochondrial fragmentation and neuronal cell death. Cell Death Dis. 2017; 8(10): e3117-e3117.

[277]

Portz P, Lee MK. Changes in Drp1 function and mitochondrial morphology are associated with the α-synuclein pathology in a transgenic mouse model of Parkinson’s disease. Cells. 2021; 10(4): 885.

[278]

Han H, Tan J, Wang R, et al. PINK 1 phosphorylates Drp1S616 to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep. 2020; 21(8): e48686.

[279]

DeGuire SM, Ruggeri FS, Fares M-B, et al. N-terminal Huntingtin (Htt) phosphorylation is a molecular switch regulating Htt aggregation, helical conformation, internalization, and nuclear targeting. J Biol Chem. 2018; 293(48): 18540-18558.

[280]

Mees I, Nisbet R, Hannan A, Renoir T. Implications of Tau dysregulation in Huntington’s disease and potential for new therapeutics. J Huntingtons Dis. 2023; 12(1): 1-13.

[281]

Vuono R, Winder-Rhodes S, De Silva R, et al. The role of Tau in the pathological process and clinical expression of Huntington’s disease. Brain. 2015; 138(7): 1907-1918.

[282]

Thompson LM, Aiken CT, Kaltenbach LS, et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol. 2009; 187(7): 1083-1099.

[283]

Watkin EE, Arbez N, Waldron-Roby E, et al. Phosphorylation of mutant huntingtin at serine 116 modulates neuronal toxicity. PLoS One. 2014; 9(2): e88284.

[284]

Hegde RN, Chiki A, Petricca L, et al. TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington’s disease models. EMBO J. 2020; 39(17): e104671.

[285]

Cariulo C, Azzollini L, Verani M, et al. Phosphorylation of huntingtin at residue T3 is decreased in Huntington’s disease and modulates mutant huntingtin protein conformation. Proc Natl Acad Sci USA. 2017; 114(50): E10809-E10818.

[286]

Ochaba J, Fote G, Kachemov M, et al. IKKβ slows Huntington’s disease progression in R6/1 mice. Proc Natl Acad Sci USA. 2019; 116(22): 10952-10961.

[287]

Alpaugh M, Masnata M, de Rus Jacquet A, et al. Passive immunization against phosphorylated Tau improves features of Huntington’s disease pathology. Mol Ther. 2022; 30(4): 1500-1522.

[288]

Salem S, Cicchetti F. Untangling the role of Tau in Huntington’s disease pathology. J Huntingtons Dis. 2023; 12(1): 15-29.

[289]

St-Amour I, Turgeon A, Goupil C, Planel E, Hébert SS. Co-occurrence of mixed proteinopathies in late-stage Huntington’s disease. Acta Neuropathol. 2018; 135: 249-265.

[290]

Petry S, Nateghi B, Keraudren R, et al. Differential regulation of Tau exon 2 and 10 isoforms in Huntington’s disease brain. Neuroscience. 2023; 518: 54-63.

[291]

Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of Tau pathology within foetal neural allografts in patients with Huntington’s and Parkinson’s disease. Brain. 2017; 140(11): 2982-2992.

[292]

Portaleone P, Martini L. Encyclopedia of Endocrine Diseases. Milan, Italy: Academic Press; 2004.

[293]

Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochim Biophys Acta. 2016; 1864(10): 1372-1401.

[294]

Deng S, Marmorstein R. Protein N-terminal acetylation: structural basis, mechanism, versatility, and regulation. Trends Biochem Sci. 2021; 46(1): 15-27.

[295]

Son SM, Park SJ, Fernandez-Estevez M, Rubinsztein DC. Autophagy regulation by acetylation—implications for neurodegenerative diseases. Exp Mol Med. 2021; 53(1): 30-41.

[296]

Chen X, Li Y, Wang C, et al. Promoting Tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy. Mol Neurodegener. 2020; 15: 1-19.

[297]

Tutar Y, Özgür A, Tutar L, Tutar Y, Özgür A, Tutar L. Role of protein aggregation in neurodegenerative diseases. In: Kishore U, ed. Neurodegenerative Diseases. InTech; 2013: 55-76.

[298]

Schaffert L-N, Carter WG. Do post-translational modifications influence protein aggregation in neurodegenerative diseases: a systematic review. Brain Sci. 2020; 10(4): 232.

[299]

Allahverdi A, Chen Q, Korolev N, Nordenskiöld L. Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding. Sci Rep. 2015; 5(1): 8512.

[300]

Korolev N, Allahverdi A, Lyubartsev AP, Nordenskiöld LJ. The polyelectrolyte properties of chromatin. Soft Matter. 2012; 8 (36): 9322-9333.

[301]

Belloy ME, Napolioni V, Greicius MD. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron. 2019; 101(5): 820-838.

[302]

Fenoglio C, Scarpini E, Serpente M, Galimberti D. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2018; 62(3): 913-932.

[303]

Nativio R, Donahue G, Berson A, et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci. 2018; 21(4): 497-505.

[304]

Allahverdi A, Yang R, Korolev N, et al. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Rec. 2011; 39(5): 1680-1691.

[305]

Korolev N, Allahverdi A, Yang Y, Fan Y, Lyubartsev AP, Nordenskiöld L. Electrostatic origin of salt-induced nucleosome array compaction. Biophys J. 2010; 99(6): 1896-1905.

[306]

Peixoto L, Abel T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology. 2013; 38(1): 62-76.

[307]

Geng H, Chen H, Wang H, Wang L. The histone modifications of neuronal plasticity. Neural Plasticity. 2021; 2021: 1-7.

[308]

Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci. 2008; 28(42): 10576-10586.

[309]

de la Fuente V, Federman N, Zalcman G, Salles A, Freudenthal R, Romano A. NF-κB transcription factor role in consolidation and reconsolidation of persistent memories. Front Mol Neurosci. 2015; 8: 50.

[310]

Wood MA, Kaplan MP, Park A, et al. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Mem. 2005; 12(2): 111-119.

[311]

Shukla S, Tekwani BL. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol. 2020; 11: 462398.

[312]

Bell R, Vendruscolo M. Modulation of the interactions between α-synuclein and lipid membranes by post-translational modifications. Front Neurol. 2021; 12: 661117.

[313]

Aksnes H, Drazic A, Marie M, Arnesen T. First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem Sci. 2016; 41(9): 746-760.

[314]

Paiva I, Pinho R, Pavlou MA, et al. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum Mol Genet. 2017; 26(12): 2231-2246.

[315]

Kontopoulos E, Parvin JD, Feany MB. α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006; 15(20): 3012-3023.

[316]

Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A. Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of α-synuclein. Neurotox Res. 2010; 17: 130-141.

[317]

Kaidery NA, Tarannum S, Thomas B. Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics. 2013; 10(4): 698-708.

[318]

Siddiqui A, Chinta SJ, Mallajosyula JK, et al. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med. 2012; 53(4): 993-1003.

[319]

Yu G, Wu Q, Gao Y, Chen M, Yang M. The epigenetics of aging in invertebrates. Int J Mol Sci. 2019; 20(18): 4535.

[320]

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011; 21(3): 381-395.

[321]

Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014; 13(5): 337-356.

[322]

Yakhine-Diop S, Niso Santano M, Rodríguez Arribas M, et al. Impaired mitophagy and protein acetylation levels in fibroblasts from Parkinson’s disease. Mol Neurobiol. 2019; 56(4): 2466-2481.

[323]

Yakhine-Diop SM, Martínez-Chacón G, Uribe-Carretero E, Niso-Santano M, González-Polo RA, Fuentes JM. The paradigm of protein acetylation in Parkinson’s disease. Neural Regen Res. 2019; 14(6): 975-976.

[324]

Park G, Tan J, Garcia G, Kang Y, Salvesen G, Zhang Z. Regulation of histone acetylation by autophagy in Parkinson disease. J Biol Chem. 2016; 291(7): 3531-3540.

[325]

Dong S-Y, Guo Y-J, Feng Y, et al. The epigenetic regulation of HIF-1α by SIRT1 in MPP+ treated SH-SY5Y cells. Biochem Biophys Res Commun. 2016; 470(2): 453-459.

[326]

Kanthasamy A, Jin H, Anantharam V, et al. Emerging neurotoxic mechanisms in environmental factors-induced neurodegeneration. Neurotoxicology. 2012; 33(4): 833-837.

[327]

Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy A. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology. 2011; 32(5): 586-595.

[328]

Feng Y, Liu T, Dong SY, et al. Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT 1 and H3K9 acetylation in SH-SY 5Y cells. J Neurochem. 2015; 134(4): 668-676.

[329]

Ryu Y-K, Park H-Y, Go J, et al. Effects of histone acetyltransferase inhibitors on l-DOPA-induced dyskinesia in a murine model of Parkinson’s disease. J Neural Transm (Vienna). 2018; 125: 1319-1331.

[330]

Arancibia-Opazo S, Contreras-Riquelme JS, Sánchez M, et al. Transcriptional and histone acetylation changes associated with CRE elements expose key factors governing the regulatory circuit in the early stage of Huntington’s disease models. Int J Mol Sci. 2023; 24(13): 10848.

[331]

Lee J, Hwang YJ, Kim KY, Kowall NW, Ryu H. Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics. 2013; 10(4): 664-676.

[332]

Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet. 2003; 19(5): 233-238.

[333]

Sahafnejad Z, Ramazi S, Allahverdi A. An update of epigenetic drugs for the treatment of cancers and brain diseases: a comprehensive review. Genes. 2023; 14(4): 873.

[334]

Cha JH. Transcriptional dysregulation in Huntington’s disease. Trends Neurosci. 2000; 23(9): 387-392.

[335]

Dunah AW, Jeong H, Griffin A, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science. 2002; 296(5576): 2238-2243.

[336]

Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA. 2000; 97(12): 6763-6768.

[337]

Nucifora Jr FC, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science. 2001; 291(5512): 2423-2428.

[338]

Gardian G, Browne SE, Choi D-K, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005; 280(1): 556-563.

[339]

Ryu H, Smith K, Camelo SI, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005; 93(5): 1087-1098.

[340]

Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ. 2021; 28(2): 439-454.

[341]

Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res Rev. 2020; 61: 101078.

[342]

Carregari VC. Understanding PTMs in Neurodegenerative Diseases. Vol. 1382. Springer Nature; 2022.

[343]

Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020; 19: 1-19.

[344]

Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020; 5(1): 11.

[345]

Zhong Q, Xiao X, Qiu Y, et al. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm. 2023; 4(3): e261.

[346]

Schmidt MF, Gan ZY, Komander D, Dewson G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ. 2021; 28(2): 570-590.

[347]

Zheng Q, Huang T, Zhang L, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci. 2016; 8: 303.

[348]

Dimant H, Zhu L, Kibuuka LN, Fan Z, Hyman BT, McLean PJ. Direct visualization of CHIP-mediated degradation of alpha-synuclein in vivo: implications for PD therapeutics. PLoS One. 2014; 9(3): e92098.

[349]

Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and proteostasis in Parkinson’s disease. Int J Mol Sci. 2022; 23(12): 6808.

[350]

Tofaris GK, Kim HT, Hourez R, Jung J-W, Kim KP, Goldberg AL. Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal–lysosomal pathway. Proc Natl Acad Sci USA. 2011; 108(41): 17004-17009.

[351]

Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015; 85(2): 257-273.

[352]

Wang Y, Shan B, Liang Y, Wei H, Yuan J. Parkin regulates NF-κB by mediating site-specific ubiquitination of RIPK1. Cell Death Dis. 2018; 9(7): 732.

[353]

Lee SB, Kim JJ, Han S-A, et al. The AMPK–Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol. 2019; 21(8): 940-951.

[354]

Koelsch G. BACE1 function and inhibition: implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules. 2017; 22(10): 1723.

[355]

Singh AK, Pati U. CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase. Aging Cell. 2015; 14(4): 595-604.

[356]

Petrucelli L, Dickson D, Kehoe K, et al. CHIP and Hsp70 regulate Tau ubiquitination, degradation and aggregation. Hum Mol Genet. 2004; 13(7): 703-714.

[357]

Yasukawa T, Tsutsui A, Tomomori-Sato C, et al. NRBP1-containing CRL2/CRL4A regulates amyloid β production by targeting BRI2 and BRI3 for degradation. Cell Rep. 2020; 30(10): 3478-3491. e6.

[358]

Almeida J, Mota I, Skoda J, Sousa E, Cidade H, Saraiva L. Deciphering the role of p53 and TAp73 in neuroblastoma: from pathogenesis to treatment. Cancers. 2022; 14(24): 6212.

[359]

Li Y, Yang H, He T, Zhang L, Liu C. Post-translational modification of Cav1. 2 and its role in neurodegenerative diseases. Front Pharmacol. 2022; 12: 775087.

[360]

Lai YJ, Zhu BL, Sun F, et al. Estrogen receptor α promotes Cav1. 2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice. Aging Cell. 2019; 18(4): e12961.

[361]

Fiorillo A, Morea V, Colotti G, Ilari A. Huntingtin ubiquitination mechanisms and novel possible therapies to decrease the toxic effects of mutated Huntingtin. J Pers Med. 2021; 11(12): 1309.

[362]

Burchfiel ET, Vihervaara A, Guertin MJ, Gomez-Pastor R, Thiele DJ. Comparative interactomes of HSF1 in stress and disease reveal a role for CTCF in HSF1-mediated gene regulation. J Biol Chem. 2021; 296: 100097.

[363]

Rotblat B, Southwell AL, Ehrnhoefer DE, et al. HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proc Natl Acad Sci USA. 2014; 111(8): 3032-3037.

[364]

Ehrnhoefer DE, Southwell AL, Sivasubramanian M, et al. HACE1 is essential for astrocyte mitochondrial function and influences Huntington disease phenotypes in vivo. Hum Mol Genet. 2018; 27(2): 239-253.

[365]

Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington’s disease. Front Mol Biosci. 2023; 10: 1107323.

[366]

Ochaba J, Monteys AM, O’Rourke JG, et al. PIAS1 regulates mutant huntingtin accumulation and Huntington’s disease-associated phenotypes in vivo. Neuron. 2016; 90(3): 507-520.

[367]

Alexopoulou Z, Lang J, Perrett RM, et al. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci USA. 2016; 113(32): E4688-E4697.

[368]

Anisimov S, Takahashi M, Kakihana T, et al. G3BP1 inhibits ubiquitinated protein aggregations induced by p62 and USP10. Sci Rep. 2019; 9(1): 12896.

[369]

Thayer JA. The Characterization of the PARK10 Gene USP24 in Autophagy and Mitophagy. University of Maryland, Baltimore; 2019.

[370]

Thayer JA, Awad O, Hegdekar N, et al. The PARK10 gene USP24 is a negative regulator of autophagy and ULK1 protein stability. Autophagy. 2020; 16(1): 140-153.

[371]

Niu K, Fang H, Chen Z, et al. USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy. Autophagy. 2020; 16(4): 724-734.

[372]

Wang P, Joberty G, Buist A, et al. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol. 2017; 133: 731-749.

[373]

Huo Y, Khatri N, Hou Q, Gilbert J, Wang G, Man HY. The deubiquitinating enzyme USP 46 regulates AMPA receptor ubiquitination and trafficking. J Neurochem. 2015; 134(6): 1067-1080.

[374]

Hodul M, Dahlberg CL, Juo P. Function of the deubiquitinating enzyme USP46 in the nervous system and its regulation by WD40-repeat proteins. Front Synaptic Neurosci. 2017; 9: 16.

[375]

Evers MM, Toonen LJ, van Roon-Mom WM. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol. 2014; 49: 1513-1531.

[376]

Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry. 2023; 13(1): 154.

[377]

Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019; 15(6): 346-366.

[378]

Sytnyk V, Leshchyns’ ka I, Schachner M. Neural glycomics: the sweet side of nervous system functions. Cell Mol Life Sci. 2021; 78: 93-116.

[379]

Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry. 2018; 8(2): 51.

[380]

Haukedal H, Freude KK. Implications of glycosylation in Alzheimer’s disease. Front Neurosci. 2021; 14: 625348.

[381]

Kobeissy F, Kobaisi A, Peng W, et al. Glycomic and glycoproteomic techniques in neurodegenerative disorders and neurotrauma: towards personalized markers. Cells. 2022; 11(3): 581.

[382]

Akasaka-Manya K, Manya H. The role of APP O-glycosylation in Alzheimer’s disease. Biomolecules. 2020; 10(11): 1569.

[383]

Akasaka-Manya K, Kawamura M, Tsumoto H, et al. Excess APP O-glycosylation by GalNAc-T6 decreases Aβ production. J Biochem. 2016:mvw056.

[384]

Chen G-F, Xu T-H, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017; 38(9): 1205-1235.

[385]

Frenkel-Pinter M, Stempler S, Tal-Mazaki S, et al. Altered protein glycosylation predicts Alzheimer’s disease and modulates its pathology in disease model Drosophila. Neurobiol Aging. 2017; 56: 159-171.

[386]

Chen Z, Wang D, Yu Q, et al. In-depth site-specific O-glycosylation analysis of glycoproteins and endogenous peptides in cerebrospinal fluid (CSF) from healthy individuals, mild cognitive impairment (MCI), and Alzheimer’s disease (AD) patients. ACS Chem Bio. 2021; 17(11): 3059-3068.

[387]

Chen Z, Yu Q, Yu Q, et al. In-depth site-specific analysis of N-glycoproteome in human cerebrospinal fluid and glycosylation landscape changes in Alzheimer’s disease. Mol Cell Proteomics. 2021; 20: 100081.

[388]

Quaranta A, Karlsson I, Ndreu L, Marini F, Ingelsson M, Thorsén G. Glycosylation profiling of selected proteins in cerebrospinal fluid from Alzheimer’s disease and healthy subjects. Analytical Methods. 2019; 11(26): 3331-3340.

[389]

Zhang Q, Ma C, Chin L-S, Li L. Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic network alterations in Alzheimer’s disease. Sci Adv. 2020; 6(40): eabc5802.

[390]

Losev Y, Frenkel-Pinter M, Abu-Hussien M, et al. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer’s disease-related neurodegeneration. Cell Mol Life Sci. 2021; 78: 2231-2245.

[391]

Zhao J, Lang M. New insight into protein glycosylation in the development of Alzheimer’s disease. Cell Death Discov. 2023; 9(1): 314.

[392]

Gao X, Chen H, Fung TT, et al. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr. 2007; 86(5): 1486-1494.

[393]

Viana SD, Valero J, Rodrigues-Santos P, et al. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson’s disease. J Neurochem. 2016; 138(4): 598-609.

[394]

Sandyk R. The relationship between diabetes mellitus and Parkinson’s disease. Int J Neurosci. 1993; 69(1-4): 125-130.

[395]

Yamagishi S-i, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med. 2015; 21: S32-S40.

[396]

Juan et al. paper: Altered cortical palmitoylation induces widespread molecular disturbances in Parkinson’s disease, International Journal of Molecular Sciences: 23(22), https://www.mdpi.com/1422-0067/23/22/14018#:∼:text=Moreover%2C%20some%20of%20the%20proteins, to%20pathological%20mechanisms%20causing%20PD,

[397]

Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med. 2000; 28(12): 1708-1716.

[398]

Farrer LA. Diabetes mellitus in Huntington disease. Clin Genet. 1985; 27(1): 62-67.

[399]

Schönberger SJ, Jezdic D, Faull RL, Cooper GJ. Proteomic analysis of the human brain in Huntington’s Disease indicates pathogenesis by molecular processes linked to other neurodegenerative diseases and to type-2 diabetes. J Huntingtons Dis. 2013; 2(1): 89-99.

[400]

Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med. 2017; 7(7): a024240.

[401]

Nambron R, Silajdžić E, Kalliolia E, et al. A metabolic study of Huntington’s disease. PLoS One. 2016; 11(1): e0146480.

[402]

Montojo MT, Aganzo M, González N. Huntington’s disease and diabetes: Chronological sequence of its association. J Huntingtons Dis. 2017; 6(3): 179-188.

[403]

Potkin KT, Potkin SG. New directions in therapeutics for Huntington disease. Future Neurol. 2018; 13(2): 101-121.

[404]

Liao D, Huang Y, Liu D, et al. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol. 2024; 14: 1342830.

[405]

Ramzan F, Abrar F, Mishra GG, Liao LMQ, Martin DD. Lost in traffic: consequences of altered palmitoylation in neurodegeneration. Front Physiol. 2023; 14: 1166125.

[406]

Cervilla-Martínez JF, Rodríguez-Gotor JJ, Wypijewski KJ, et al. Altered cortical palmitoylation induces widespread molecular disturbances in Parkinson’s disease. Int J Mol Sci. 2022; 23(22): 14018.

[407]

Spinelli M, Fusco S, Grassi C. Nutrient-dependent changes of protein palmitoylation: impact on nuclear enzymes and regulation of gene expression. Int J Mol Sci. 2018; 19(12): 3820.

[408]

Dai X, Ren T, Zhang Y, Nan N. Methylation multiplicity and its clinical values in cancer. Expert Rev Mol Med. 2021; 23: e2.

[409]

Chenarani N, Emamjomeh A, Allahverdi A, Mirmostafa S, Afsharinia MH, Zahiri J. Bioinformatic tools for DNA methylation and histone modification: A survey. Genom. 2021; 113(3): 1098-1113.

[410]

Younesian S, Yousefi A-M, Momeny M, Ghaffari SH, Bashash D. The DNA methylation in neurological diseases. Cells. 2022; 11(21): 3439.

[411]

Xia Y, Bell BM, Giasson BI. Tau lysine pseudomethylation regulates microtubule binding and enhances prion-like Tau aggregation. Int J Mol Sci. 2023; 24(9): 8286.

[412]

Balmik AA, Chinnathambi S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer’s disease. Cell Commun Signal. 2021; 19(1): 1-13.

[413]

Thomas SN, Funk KE, Wan Y, et al. Dual modification of Alzheimer’s disease PHF-Tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta neuropathol. 2012; 123: 105-117.

[414]

Bichmann M, Prat Oriol N, Ercan-Herbst E, et al. SETD7-mediated monomethylation is enriched on soluble Tau in Alzheimer’s disease. Mol Neurodegener. 2021; 16(1): 1-18.

[415]

Funk KE, Thomas SN, Schafer KN, et al. Lysine methylation is an endogenous post-translational modification of Tau protein in human brain and a modulator of aggregation propensity. Biochem J. 2014; 462(1): 77-88.

[416]

Bichmann M, Prat Oriol N, Ercan-Herbst E, et al. SETD7-mediated monomethylation is enriched on soluble Tau in Alzheimer’s disease. Mol Neurodegener. 2021; 16: 1-18.

[417]

Shams H, Matsunaga A, Ma Q, Mofrad MR, Didonna A. Methylation at a conserved lysine residue modulates Tau assembly and cellular functions. Mol Cell Neurosci. 2022; 120: 103707.

[418]

Kim D-S, Challa S, Jones A, Kraus WL. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev. 2020; 34(5-6): 302-320.

[419]

Liu C, Yu X. ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci. 2015; 16(6): 491-501.

[420]

Gupte R, Liu Z, Kraus WL. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 2017; 31(2): 101-126.

[421]

Liu C, Fang Y. New insights of poly (ADP-ribosylation) in neurodegenerative diseases: a focus on protein phase separation and pathologic aggregation. Biochem Pharmacol. 2019; 167: 58-63.

[422]

Mao K, Zhang G. The role of PARP-1 in neurodegenerative diseases and aging. FEBS J. 2022; 289(8): 2013-2024.

[423]

Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014; 171(8): 2000-2016.

[424]

Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP. Poly (ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol. 2012; 46: 78-84.

[425]

Park H, Kam T-I, Dawson TM, Dawson VL. Poly (ADP-ribose)(PAR)-dependent cell death in neurodegenerative diseases. Int Rev Cell Mol Biol. 2020; 353: 1-29.

[426]

Kam T-I, Mao X, Park H, et al. Poly (ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science. 2018; 362(6414): eaat8407.

[427]

Lengyel-Zhand Z, Puentes LN, Mach RH. PARkinson’s: From cellular mechanisms to potential therapeutics. Pharmacol Ther. 2022; 230: 107968.

[428]

Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S-i, Lipton SA. Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron. 2013; 78(4): 596-614.

[429]

Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 2016; 37(1): 73-84.

[430]

Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer’s disease: Mechanistic insights and potential therapies. Front Neural Circuits. 2023; 17: 1099467.

[431]

Nakamura T, Oh C-K, Liao L, et al. Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer’s disease. Science. 2021; 371(6526): eaaw0843.

[432]

Andreyev AY, Yang H, Doulias PT, et al. Metabolic bypass rescues aberrant S-nitrosylation-induced TCA cycle inhibition and synapse loss in Alzheimer’s disease human neurons. Adv Sci. 2024; 11(12): 2306469.

[433]

Sircar E, Rai SR, Wilson MA, Schlossmacher MG, Sengupta R. Neurodegeneration: impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson’s disease. Arch Biochem Biophys. 2021; 704: 108869.

[434]

Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson’s disease. Mov Disord. 2013; 28(1): 24-30.

[435]

Chen X, Wang Q, Li S, Li X-J, Yang W. Mitochondrial-dependent and independent functions of PINK1. Front Cell Dev Biol. 2022; 10: 954536.

[436]

Oh C-K, Sultan A, Platzer J, et al. S-Nitrosylation of PINK1 attenuates PINK1/Parkin-dependent mitophagy in hiPSC-based Parkinson’s disease models. Cell Rep. 2017; 21(8): 2171-2182.

[437]

Rizza S, Cardaci S, Montagna C, et al. S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc Natl Acad Sci USA. 2018; 115(15): E3388-E3397.

[438]

Ozawa K, Tsumoto H, Miura Y, et al. DJ-1 is indispensable for the S-nitrosylation of Parkin, which maintains function of mitochondria. Sci Rep. 2020; 10(1): 4377.

[439]

Zhong Y, Li X, Du X, et al. The S-nitrosylation of parkin attenuated the ubiquitination of divalent metal transporter 1 in MPP+-treated SH-SY5Y cells. Sci Rep. 2020; 10(1): 15542.

[440]

Ni C-L, Seth D, Fonseca FV, et al. Polyglutamine tract expansion increases S-nitrosylation of huntingtin and ataxin-1. PLos One. 2016; 11(9): e0163359.

[441]

Haun F, Nakamura T, Shiu AD, et al. S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington’s disease. Antioxid Redox Signal. 2013; 19(11): 1173-1184.

[442]

Wang C, Cui W, Yu B, et al. Role of succinylation modification in central nervous system diseases. Ageing Res Rev. 2024; 95: 102242.

[443]

Nishida Y, Rardin MJ, Carrico C, et al. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell. 2015; 59(2): 321-332.

[444]

Hansen GE, Gibson GE. The α-ketoglutarate dehydrogenase complex as a hub of plasticity in neurodegeneration and regeneration. Int J Mol Sci. 2022; 23(20): 12403.

[445]

Yang Y, Tapias V, Acosta D, et al. Altered succinylation of mitochondrial proteins, APP and Tau in Alzheimer’s disease. Nat Commun. 2022; 13(1): 159.

[446]

Rebak A, Hendriks I, Nielsen M. Characterizing citrullination by mass spectrometry-based proteomics. Philos Trans R Soc Lond B Biol Sci. 2023; 378(1890): 20220237.

[447]

Zhang S, Dong H, Bian J, Li D, Liu C. Targeting amyloid proteins for clinical diagnosis of neurodegenerative diseases. Fundam Res. 2023; 3(4): 505-519.

[448]

Azevedo R, Jacquemin C, Villain N, Fenaille F, Lamari F, Becher F. Mass spectrometry for neurobiomarker discovery: the relevance of post-translational modifications. Cells. 2022; 11(8): 1279.

[449]

Kim YS, Kundukad B, Allahverdi A, Nordensköld L, Doyle PS, van der Maarel JRC. Gelation of the genome by topoisomerase II targeting anticancer agents. J Soft Matter. 2013; 9(5): 1656-1663.

[450]

Asil SM, Ahlawat J, Barroso GG, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci. 2020; 8(15): 4109-4128.

[451]

Guo Y, Li S, Zeng L-H, Tan J. Tau-targeting therapy in Alzheimer’s disease: critical advances and future opportunities. Ageing Neur Dis. 2022; 2(11).

[452]

Menalled L, Brunner D. Animal models of Huntington’s disease for translation to the clinic: best practices. Mov Disord. 2014; 29(11): 1375-1390.

[453]

Kumar D, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of Huntington’s disease: molecular and clinical approaches. Biochem Biophys Res Commun. 2023; 655: 18-24.

[454]

Longhena F, Faustini G, Brembati V, Pizzi M, Bellucci A. The good and bad of therapeutic strategies that directly target α-synuclein. IUBMB life. 2020; 72(4): 590-600.

[455]

Magalhães P, Lashuel HA. Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson’s disease and other synucleinopathies. npj Parkinson Dis. 2022; 8(1): 93.

[456]

Joly-Amado A, Davtyan H, Serraneau K, et al. Active immunization with Tau epitope in a mouse model of tauopathy induced strong antibody response together with improvement in short memory and pSer396-Tau pathology. Neurobiol Dis. 2020; 134: 104636.

[457]

Singh H, Das A, Khan MM, Pourmotabbed T. New insights into the therapeutic approaches for the treatment of tauopathies. Neural Regen Res. 2024; 19(5): 1020-1026.

[458]

Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau. P301L mice that model tauopathy. PLoS One. 2013; 8(8): e72301.

[459]

Sandusky-Beltran L, Sigurdsson E. Tau immunotherapies: Lessons learned, current status and future considerations. Neuropharmacology. 2020; 175: 108104.

[460]

Luca W, Foster K, McClure K, Ahlijanian M, Jefson M. A phase 1 single-ascending-dose trial in healthy volunteers to evaluate the safety, tolerability, pharmacokinetics, and immunogenicity of intravenous PNT001, a novel mid-domain Tau antibody targeting cis-pT231 Tau. J Prev Alzheimers Dis. 2024; 11(2): 366-374.

[461]

Taleski G, Sontag E. Protein phosphatase 2A and tau: an orchestrated ‘Pas de Deux’. FEBS Lett. 2018; 592(7): 1079-1095.

[462]

Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson’s disease therapy? Front Mol Neurosci. 2023; 16: 1197853.

[463]

Vijayakumaran S, Nakamura Y, Henley JM, Pountney DL. Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci. 2019; 101: 103416.

[464]

Fukuda I, Ito A, Hirai G, et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol. 2009; 16(2): 133-140.

[465]

Bowie LE, Maiuri T, Alpaugh M, et al. N6-Furfuryladenine is protective in Huntington’s disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci USA. 2018; 115(30): E7081-E7090.

[466]

Zhai L-H, Chen K-F, Hao B-B, Tan M-J. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin. 2022; 43(12): 3112-3129.

[467]

Leutert M, Entwisle SW, Villén J. Decoding post-translational modification crosstalk with proteomics. Mol Cell Proteomics. 2021; 20: 100129.

[468]

Urulangodi M, Mohanty A. DNA damage response and repair pathway modulation by non-histone protein methylation: Implications in neurodegeneration. J Cell Commun Signal. 2020; 14(1): 31-45.

[469]

Ye J, Wan H, Chen S, Liu G-P. Targeting Tau in Alzheimer’s disease: from mechanisms to clinical therapy. Neural Regen Res. 2024; 19(7): 1489-1498.

[470]

Alquezar C, Arya S, Kao AW. Tau post-translational modifications: dynamic transformers of Tau function, degradation, and aggregation. Front Neurol. 2021; 11: 595532.

[471]

Yang J, Shen N, Shen J, Yang Y, Li H-L. Complicated role of post-translational modification and protease-cleaved fragments of Tau in Alzheimer’s Disease and other tauopathies. Mol Neurobiol. 2024; 61(7): 4712-4731.

[472]

Santiago JA, Potashkin JA. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Front Aging Neurosci. 2023; 15: 1185671.

[473]

Mondal P, Samajdar S, Acharyya S, Mondal S. Protein phosphatase 2A activation for the treatment of Alzheimer disease-promises and challenges. Int J Pharm Investig. 2023; 13(4): 711.

[474]

Fang Y, Wang J, Zhao M, et al. Progress and challenges in targeted protein degradation for neurodegenerative disease therapy. J Med Chem. 2022; 65(17): 11454-11477.

[475]

Alabi SB, Crews CM. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem. 2021; 296: 100647.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/