CRISPR technology in human diseases

Qiang Feng , Qirong Li , Hengzong Zhou , Zhan Wang , Chao Lin , Ziping Jiang , Tianjia Liu , Dongxu Wang

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e672

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e672 DOI: 10.1002/mco2.672
REVIEW

CRISPR technology in human diseases

Author information +
History +
PDF

Abstract

Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)–CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.

Keywords

clinical research / CRISPR–Cas9 / gene editing technology / gene therapy / human diseases / sickle cell disease

Cite this article

Download citation ▾
Qiang Feng, Qirong Li, Hengzong Zhou, Zhan Wang, Chao Lin, Ziping Jiang, Tianjia Liu, Dongxu Wang. CRISPR technology in human diseases. MedComm, 2024, 5(8): e672 DOI:10.1002/mco2.672

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020; 5(1): 1.

[2]

Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013; 31(7): 397-405.

[3]

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213): 1258096.

[4]

Ledford H. CRISPR, the disruptor. Nature. 2015; 522(7554): 20-24.

[5]

Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci. 2019; 24(12): 1102-1125.

[6]

Perčulija V, Lin J, Zhang B, Ouyang S. Functional features and current applications of the RNA-targeting type VI CRISPR-Cas systems. Adv Sci (Weinh). 2021; 8(13): 2004685.

[7]

Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019; 20(8): 490-507.

[8]

Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021; 595(7866): 295-302.

[9]

Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 2021; 29(2): 571-586.

[10]

Wei W, Gao C. Gene editing: from technologies to applications in research and beyond. Sci China Life Sci. 2022; 65(4): 657-659.

[11]

Sternberg SH, Richter H, Charpentier E, Qimron U. Adaptation in CRISPR-Cas systems. Mol Cell. 2016; 61(6): 797-808.

[12]

van Beljouw SPB, Sanders J, Rodríguez-Molina A, Brouns SJJ. RNA-targeting CRISPR-Cas systems. Nat Rev Micro. 2023; 21(1): 21-34.

[13]

Zhang D, Hussain A, Manghwar H, et al. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J. 2020; 18(8): 1651-1669.

[14]

Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 2017; 168(1-2): 20-36.

[15]

Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020; 19(12): 839-859.

[16]

Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Micro. 2022; 20(11): 641-656.

[17]

Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Micro. 2020; 18(2): 67-83.

[18]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-821.

[19]

Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016; 351(6268): 84-88.

[20]

Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015; 523(7561): 481-485.

[21]

Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121): 819-823.

[22]

Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016; 529(7587): 490-495.

[23]

Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017; 550(7676): 407-410.

[24]

Vakulskas CA, Dever DP, Rettig GR, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018; 24(8): 1216-1224.

[25]

Casini A, Olivieri M, Petris G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018; 36(3): 265-271.

[26]

Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018; 556(7699): 57-63.

[27]

Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018; 361(6408): 1259-1262.

[28]

Miller SM, Wang T, Randolph PB, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 2020; 38(4): 471-481.

[29]

Lee JK, Jeong E, Lee J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun. 2018; 9(1): 3048.

[30]

Wright AV, Sternberg SH, Taylor DW, et al. Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA. 2015; 112(10): 2984-2989.

[31]

Zhang D, Zhang B. SpRY: engineered CRISPR/Cas9 harnesses new genome-editing power. Trends Genet. 2020; 36(8): 546-548.

[32]

Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015; 520(7546): 186-191.

[33]

Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. 2015; 33(12): 1293-1298.

[34]

Tan Y, Chu AHY, Bao S, et al. Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. Proc Natl Acad Sci USA. 2019; 116(42): 20969-20976.

[35]

Xie H, Ge X, Yang F, et al. High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biol. 2020; 18(7): e3000747.

[36]

Chatterjee P, Jakimo N, Jacobson JM. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci Adv. 2018; 4(10): eaau0766.

[37]

Hirano H, Gootenberg JS, Horii T, et al. Structure and Engineering of Francisella novicida Cas9. Cell. 2016; 164(5): 950-961.

[38]

Hou Z, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA. 2013; 110(39): 15644-15649.

[39]

Edraki A, Mir A, Ibraheim R, et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell. 2019; 73(4): 714-726.e4.

[40]

Meijers AS, Troost R, Ummels R, et al. Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9. Tuberculosis (Edinb). 2020; 124: 101983.

[41]

Xu K, Ren C, Liu Z, et al. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Cell Mol Life Sci. 2015; 72(2): 383-399.

[42]

Harrington LB, Paez-Espino D, Staahl BT, et al. A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. 2017; 8(1): 1424.

[43]

Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. 2017; 8: 14500.

[44]

Gao N, Zhang C, Hu Z, et al. Characterization of Brevibacillus laterosporus Cas9 (BlatCas9) for mammalian genome editing. Front Cell Dev Biol. 2020; 8: 583164.

[45]

Hu Z, Wang S, Zhang C, et al. A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol. 2020; 18(3): e3000686.

[46]

Chatterjee P, Lee J, Nip L, et al. A Cas9 with PAM recognition for adenine dinucleotides. Nat Commun. 2020; 11(1): 2474.

[47]

Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013; 10(11): 1116-1121.

[48]

Chatterjee P, Jakimo N, Lee J, et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat Biotechnol. 2020; 38(10): 1154-1158.

[49]

Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015; 163(3): 759-771.

[50]

Yamano T, Nishimasu H, Zetsche B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell. 2016; 165(4): 949-962.

[51]

Kleinstiver BP, Sousa AA, Walton RT, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol. 2019; 37(3): 276-282.

[52]

Zhang L, Zuris JA, Viswanathan R, et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat Commun. 2021; 12(1): 3908.

[53]

Gao L, Cox DBT, Yan WX, et al. Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol. 2017; 35(8): 789-792.

[54]

Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 2016; 532(7600): 517-521.

[55]

Tóth E, Varga É, Kulcsár PI, et al. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Res. 2020; 48(7): 3722-3733.

[56]

Jianwei L, Jobichen C, Machida S, et al. Structures of apo Cas12a and its complex with crRNA and DNA reveal the dynamics of ternary complex formation and target DNA cleavage. PLoS Biol. 2023; 21(3): e3002023.

[57]

Tran MH, Park H, Nobles CL, et al. A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. Mol Ther Nucleic Acids. 2021; 24: 40-53.

[58]

Jacobsen T, Ttofali F, Liao C, Manchalu S, Gray BN, Beisel CL. Characterization of Cas12a nucleases reveals diverse PAM profiles between closely-related orthologs. Nucleic Acids Res. 2020; 48(10): 5624-5638.

[59]

Teng F, Cui T, Feng G, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 2018; 4: 63.

[60]

Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun. 2019; 10(1): 212.

[61]

Ming M, Ren Q, Pan C, et al. CRISPR-Cas12b enables efficient plant genome engineering. Nat Plants. 2020; 6(3): 202-208.

[62]

Yang H, Gao P, Rajashankar KR, Patel DJ. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell. 2016; 167(7): 1814-1828.e12.

[63]

Zhang B, Lin J, Perčulija V, et al. Structural insights into target DNA recognition and cleavage by the CRISPR-Cas12c1 system. Nucleic Acids Res. 2022; 50(20): 11820-11833.

[64]

Kurihara N, Nakagawa R, Hirano H, et al. Structure of the type V-C CRISPR-Cas effector enzyme. Mol Cell. 2022; 82(10): 1865-1877.e4.

[65]

Burstein D, Harrington LB, Strutt SC, et al. New CRISPR-Cas systems from uncultivated microbes. Nature. 2017; 542(7640): 237-241.

[66]

Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. 2019; 566(7743): 218-223.

[67]

Tsuchida CA, Zhang S, Doost MS, et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell. 2022; 82(6): 1199-1209.e6.

[68]

Karvelis T, Bigelyte G, Young JK, et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 2020; 48(9): 5016-5023.

[69]

Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018; 362(6416): 839-842.

[70]

Xu X, Chemparathy A, Zeng L, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell. 2021; 81(20): 4333-4345.e4.

[71]

Bigelyte G, Young JK, Karvelis T, et al. Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells. Nat Commun. 2021; 12(1): 6191.

[72]

Yan WX, Hunnewell P, Alfonse LE, et al. Functionally diverse type V CRISPR-Cas systems. Science. 2019; 363(6422): 88-91.

[73]

Pausch P, Al-Shayeb B, Bisom-Rapp E, et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science. 2020; 369(6501): 333-337.

[74]

Zhou B, Yang R, Sohail M, et al. CRISPR/Cas14 provides a promising platform in facile and versatile aptasensing with improved sensitivity. Talanta. 2023; 254: 124120.

[75]

Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature. 2017; 550(7675): 280-284.

[76]

Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016; 353(6299): aaf5573.

[77]

Kannan S, Altae-Tran H, Jin X, et al. Compact RNA editors with small Cas13 proteins. Nat Biotechnol. 2022; 40(2): 194-197.

[78]

Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science. 2017; 358(6366): 1019-1027.

[79]

Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. 2017; 65(4): 618-630.e7.

[80]

Huynh N, Depner N, Larson R, King-Jones K. A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biol. 2020; 21(1): 279.

[81]

Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018; 173(3): 665-676.e14.

[82]

Yan WX, Chong S, Zhang H, et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell. 2018; 70(2): 327-339.e5.

[83]

Xu C, Zhou Y, Xiao Q, et al. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods. 2021; 18(5): 499-506.

[84]

Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 landscape: current state and future perspectives. Int J Mol Sci. 2023; 24(22): 16077.

[85]

Chen C, Wang Z, Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Exp Hematol Oncol. 2023; 12(1): 95.

[86]

Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121): 823-826.

[87]

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6): 1262-1278.

[88]

Ren B, Liu L, Li S, et al. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. Mol Plant. 2019; 12(7): 1015-1026.

[89]

Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018; 36(8): 765-771.

[90]

Yang B, Li X, Lei L, Chen J. APOBEC: From mutator to editor. J Genet Genomics. 2017; 44(9): 423-437.

[91]

Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018; 19(12): 770-788.

[92]

Hess GT, Tycko J, Yao D, Bassik MC. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell. 2017; 68(1): 26-43.

[93]

Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017; 551(7681): 464-471.

[94]

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016; 533(7603): 420-424.

[95]

Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. 2017; 3(8): eaao4774.

[96]

Li X, Wang Y, Liu Y, et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. 2018; 36(4): 324-327.

[97]

Gehrke JM, Cervantes O, Clement MK, et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. 2018; 36(10): 977-982.

[98]

Chen L, Park JE, Paa P, et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun. 2021; 12(1): 1384.

[99]

Zhao D, Li J, Li S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021; 39(1): 35-40.

[100]

Tong H, Wang X, Liu Y, et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol. 2023; 41(8): 1080-1084.

[101]

Chu SH, Packer M, Rees H, et al. Rationally designed base editors for precise editing of the sickle cell disease mutation. Crispr J. 2021; 4(2): 169-177.

[102]

Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020; 38(7): 883-891.

[103]

Lapinaite A, Knott GJ, Palumbo CM, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor. Science. 2020; 369(6503): 566-571.

[104]

Li J, Yu W, Huang S, et al. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity. Nat Commun. 2021; 12(1): 2287.

[105]

Gaudelli NM, Lam DK, Rees HA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020; 38(7): 892-900.

[106]

Chen L, Zhang S, Xue N, et al. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol. 2023; 19(1): 101-110.

[107]

Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol. 2020; 38(7): 865-869.

[108]

Zhang X, Zhu B, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol. 2020; 38(7): 856-860.

[109]

Liang Y, Xie J, Zhang Q, et al. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res. 2022; 50(9): 5384-5399.

[110]

Billon P, Bryant EE, Joseph SA, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell. 2017; 67(6): 1068-1079.e4.

[111]

Zong Y, Wang Y, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. 2017; 35(5): 438-440.

[112]

Doman JL, Raguram A, Newby GA, Liu DR. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. 2020; 38(5): 620-628.

[113]

Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. 2017; 35(4): 371-376.

[114]

Zong Y, Song Q, Li C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol. 2018;36:950–953.

[115]

Han D, Xiao Q, Wang Y, et al. Development of miniature base editors using engineered IscB nickase. Nat Methods. 2023; 20(7): 1029-1036.

[116]

Yuan T, Yan N, Fei T, et al. Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nat Commun. 2021; 12(1): 4902.

[117]

Kurt IC, Zhou R, Iyer S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol. 2021; 39(1): 41-46.

[118]

Chen L, Zhu B, Ru G, et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat Biotechnol. 2022; 41(5): 663-672.

[119]

Tong H, Liu N, Wei Y, et al. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl Sci Rev. 2023; 10(8): nwad143.

[120]

Jeong YK, Lee S, Hwang GH, et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat Biotechnol. 2021; 39(11): 1426-1433.

[121]

Grünewald J, Zhou R, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol. 2020; 38(7): 861-864.

[122]

Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019; 576(7785): 149-157.

[123]

Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. 2019; 364(6437): 289-292.

[124]

Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023; 24(3): 161-177.

[125]

Kim DY, Moon SB, Ko JH, Kim YS, Kim D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 2020; 48(18): 10576-10589.

[126]

Chen PJ, Hussmann JA, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021; 184(22): 5635-5652.e29.

[127]

Zhuang Y, Liu J, Wu H, et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat Chem Biol. 2022; 18(1): 29-37.

[128]

Anzalone AV, Gao XD, Podracky CJ, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022; 40(5): 731-740.

[129]

Doman JL, Pandey S, Neugebauer ME, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell. 2023; 186(18): 3983-4002.e26.

[130]

Yan J, Oyler-Castrillo P, Ravisankar P, et al. Improving prime editing with an endogenous small RNA-binding protein. Nature. 2024; 628(8008): 639-647.

[131]

Bin Moon S, Lee JM, Kang JG, et al. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3’-overhang. Nat Commun. 2018; 9(1): 3651.

[132]

Zetsche B, Heidenreich M, Mohanraju P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol. 2017; 35(1): 31-34.

[133]

Zaidi SS, Mahfouz MM, Mansoor S. CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci. 2017; 22(7): 550-553.

[134]

Khan MZ, Haider S, Mansoor S, Amin I. Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends Biotechnol. 2019; 37(8): 800-804.

[135]

Lin J, Feng M, Zhang H, She Q. Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase. Cell Discov. 2020; 6: 29.

[136]

Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas Č, Siksnys V. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol Cell. 2016; 62(2): 295-306.

[137]

van Beljouw SPB, Haagsma AC, Rodríguez-Molina A, van den Berg DF, Vink JNA, Brouns SJJ. The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science. 2021; 373(6561): 1349-1353.

[138]

Kato K, Zhou W, Okazaki S, et al. Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell. 2022; 185(13): 2324-2337.e16.

[139]

Wang X, Yu G, Wen Y, et al. Target RNA-guided protease activity in type III-E CRISPR-Cas system. Nucleic Acids Res. 2022; 50(22): 12913-12923.

[140]

Alvarez-Argote J, Dlugi TA, Sundararajan T, et al. Pathophysiological characterization of the Townes mouse model for sickle cell disease. Transl Res. 2023; 254: 77-91.

[141]

Rosanwo TO, Bauer DE. Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy. Mol Ther. 2021; 29(11): 3163-3178.

[142]

Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016; 539(7629): 384-389.

[143]

Charlesworth CT, Camarena J, Cromer MK, et al. Priming human repopulating hematopoietic stem and progenitor cells for Cas9/sgRNA gene targeting. Mol Ther Nucleic Acids. 2018; 12: 89-104.

[144]

Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005; 106(5): 1565-1573.

[145]

DeWitt MA, Magis W, Bray NL, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016; 8(360): 360ra134.

[146]

Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997; 278(5339): 873-876.

[147]

Wu LC, Sun CW, Ryan TM, Pawlik KM, Ren J, Townes TM. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood. 2006; 108(4): 1183-1188.

[148]

Wilkinson AC, Dever DP, Baik R, et al. Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nat Commun. 2021; 12(1): 686.

[149]

McIntosh BE, Brown ME, Duffin BM, et al. Nonirradiated NOD, B6.SCID Il2rγ-/-Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep. 2015; 4(2): 171-180.

[150]

Antoniou P, Hardouin G, Martinucci P, et al. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat Commun. 2022; 13(1): 6618.

[151]

Peterson KR, Navas PA, Stamatoyannopoulos G. beta-YAC transgenic mice for studying LCR function. Ann N Y Acad Sci. 1998; 850: 28-37.

[152]

Kemper C, Leung M, Stephensen CB, et al. Membrane cofactor protein (MCP; CD46) expression in transgenic mice. Clin Exp Immunol. 2001; 124(2): 180-189.

[153]

Li C, Psatha N, Sova P, et al. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood. 2018; 131(26): 2915-2928.

[154]

Li C, Georgakopoulou A, Newby GA, et al. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies. JCI Insight. 2022; 7(19): e162939.

[155]

Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E, Lieber A. In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol Ther. 2021; 29(2): 822-837.

[156]

Esteghamat F, Gillemans N, Bilic I, et al. Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood. 2013; 121(13): 2553-2562.

[157]

Cui MH, Billett HH, Suzuka SM, et al. Corrected cerebral blood flow and reduced cerebral inflammation in berk sickle mice with higher fetal hemoglobin. Transl Res. 2022; 244: 75-87.

[158]

Annarapu GK, Nolfi-Donegan D, Reynolds M, Wang Y, Shiva S. Mitochondrial reactive oxygen species scavenging attenuates thrombus formation in a murine model of sickle cell disease. J Thromb Haemost. 2021; 19(9): 2256-2262.

[159]

Arumugam PI, Mullins ES, Shanmukhappa SK, et al. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice. Blood. 2015; 126(15): 1844-1855.

[160]

Ohno K, Tanaka H, Samata N, et al. Platelet activation biomarkers in Berkeley sickle cell mice and the response to prasugrel. Thromb Res. 2014; 134(4): 889-894.

[161]

Woodard KJ, Doerfler PA, Mayberry KD, et al. Limitations of mouse models for sickle cell disease conferred by their human globin transgene configurations. Dis Model Mech. 2022; 15(6): dmm049463.

[162]

Khasabova II, Juliette J, Rogness VM, et al. A model of painful vaso-occlusive crisis in mice with sickle cell disease. Blood. 2022; 140(16): 1826-1830.

[163]

Cain DM, Vang D, Simone DA, Hebbel RP, Gupta K. Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness. Br J Haematol. 2012; 156(4): 535-544.

[164]

Kollander R, Solovey A, Milbauer LC, Abdulla F, Kelm RJ Jr, Hebbel RP. Nuclear factor-kappa B (NFkappaB) component p50 in blood mononuclear cells regulates endothelial tissue factor expression in sickle transgenic mice: implications for the coagulopathy of sickle cell disease. Transl Res. 2010; 155(4): 170-177.

[165]

Beuzard Y. Transgenic mouse models of sickle cell disease. Curr Opin Hematol. 1996; 3(2): 150-155.

[166]

Cannon PM, Kiem HP. The genome-editing decade. Mol Ther. 2021; 29(11): 3093-3094.

[167]

Maynard LH, Humbert O, Peterson CW, Kiem HP. Genome editing in large animal models. Mol Ther. 2021; 29(11): 3140-3152.

[168]

Shepherd BE, Kiem HP, Lansdorp PM, et al. Hematopoietic stem-cell behavior in nonhuman primates. Blood. 2007; 110(6): 1806-1813.

[169]

Koelle SJ, Espinoza DA, Wu C, et al. Quantitative stability of hematopoietic stem and progenitor cell clonal output in rhesus macaques receiving transplants. Blood. 2017; 129(11): 1448-1457.

[170]

Demirci S, Zeng J, Wu Y, et al. BCL11A enhancer-edited hematopoietic stem cells persist in rhesus monkeys without toxicity. J Clin Invest. 2020; 130(12): 6677-6687.

[171]

Uchida N, Li L, Nassehi T, et al. Preclinical evaluation for engraftment of CD34(+) cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Rep Med. 2021; 2(4): 100247.

[172]

Ajami M, Atashi A, Kaviani S, Kiani J, Soleimani M. Generation of an in vitro model of β-thalassemia using the CRISPR/Cas9 genome editing system. J Cell Biochem. 2020; 121(2): 1420-1430.

[173]

Lu D, Gong X, Fang Y, et al. Correction of RNA splicing defect in β(654)-thalassemia mice using CRISPR/Cas9 gene-editing technology. Haematologica. 2022; 107(6): 1427-1437.

[174]

Lu D, Gong X, Guo X, et al. Therapeutic effects of hematopoietic stem cell derived from gene-edited mice on β654-thalassemia. Stem Cells. 2024; 42(3): 278-289.

[175]

Yang Y, Kang X, Hu S, et al. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. J Biol Chem. 2021; 296: 100464.

[176]

Humbert O, Radtke S, Samuelson C, et al. Therapeutically relevant engraftment of a CRISPR-Cas9-edited HSC-enriched population with HbF reactivation in nonhuman primates. Sci Transl Med. 2019; 11(503): eaaw3768.

[177]

Wang Z, Cormier RT. Golden Syrian hamster models for cancer research. Cells. 2022; 11(15): 2395.

[178]

Miao J, Li R, Wettere AJV, et al. Cancer spectrum in TP53-deficient golden Syrian hamsters: a new model for Li-Fraumeni syndrome. J Carcinog. 2021; 20: 18.

[179]

van der Mijn JC, Laursen KB, Fu L, et al. Novel genetically engineered mouse models for clear cell renal cell carcinoma. Sci Rep. 2023; 13(1): 8246.

[180]

Sergouniotis PI, Davidson AE, Mackay DS, et al. Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis. Am J Hum Genet. 2011; 89(1): 183-190.

[181]

Zhong H, Chen Y, Li Y, Chen R, Mardon G. CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes. Sci Rep. 2015; 5: 8366.

[182]

Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med. 2017; 9(418): eaan8081.

[183]

Song Y, Sui T, Zhang Y, et al. Genetic deletion of a short fragment of glucokinase in rabbit by CRISPR/Cas9 leading to hyperglycemia and other typical features seen in MODY-2. Cell Mol Life Sci. 2020; 77(16): 3265-3277.

[184]

Schmidt JK, Strelchenko N, Park MA, et al. Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos. Sci Rep. 2020; 10(1): 18457.

[185]

Kattamis A. An energy booster for thalassaemic red blood cells. Lancet. 2022; 400(10351): 470-471.

[186]

Kato GJ, Piel FB, Reid CD, et al. Sickle cell disease. Nat Rev Dis Primers. 2018; 4: 18010.

[187]

Fujikura K, Cheng AL, Suriany S, Detterich J, Arai AE, Wood JC. Myocardial iron overload causes subclinical myocardial dysfunction in sickle cell disease. JACC Cardiovasc Imaging. 2022; 15(8): 1510-1512.

[188]

Walker I, Trompeter S, Howard J, et al. Guideline on the peri-operative management of patients with sickle cell disease: guideline from the Association of Anaesthetists. Anaesthesia. 2021; 76(6): 805-817.

[189]

Conran N. Pain mechanisms in sickle cell disease. Are we closer to a breakthrough? Haematologica. 2023; 108(3): 663-664.

[190]

Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017; 390(10091): 311-323.

[191]

Ataga KI, Saraf SL, Derebail VK. The nephropathy of sickle cell trait and sickle cell disease. Nat Rev Nephrol. 2022; 18(6): 361-377.

[192]

Vats R, Kaminski TW, Brzoska T, et al. Liver-to-lung microembolic NETs promote gasdermin D-dependent inflammatory lung injury in sickle cell disease. Blood. 2022; 140(9): 1020-1037.

[193]

Kaur K, Huang Y, Raman SV, Kraut E, Desai P. Myocardial injury and coronary microvascular disease in sickle cell disease. Haematologica. 2021; 106(7): 2018-2021.

[194]

Gladwin MT. Cardiovascular complications and risk of death in sickle-cell disease. Lancet. 2016; 387(10037): 2565-2574.

[195]

Liggett LA, Cato LD, Weinstock JS, et al. Clonal hematopoiesis in sickle cell disease. J Clin Invest. 2022; 132(4): e156060.

[196]

Ozuah PO. Gene Therapy for Sickle Cell Disease-A Debt to Be Paid. JAMA Pediatr. 2021; 175(6): 565-566.

[197]

Hoogenboom WS, Alamuri TT, McMahon DM, et al. Clinical outcomes of COVID-19 in patients with sickle cell disease and sickle cell trait: A critical appraisal of the literature. Blood Rev. 2022; 53: 100911.

[198]

Xu JZ, Thein SL. The carrier state for sickle cell disease is not completely harmless. Haematologica. 2019; 104(6): 1106-1111.

[199]

Tampaki A, Gavriilaki E, Varelas C, Anagnostopoulos A, Vlachaki E. Complement in sickle cell disease and targeted therapy: I know one thing, that I know nothing. Blood Rev. 2021; 48: 100805.

[200]

Sundd P, Gladwin MT, Novelli EM. Pathophysiology of sickle cell disease. Annu Rev Pathol. 2019; 14: 263-292.

[201]

Ellsworth P, Little JA. Sevuparin trial for acute pain in sickle cell disease: the dog that did not bark. Lancet Haematol. 2021; 8(5): e307-e309.

[202]

Tisdale J. Improvements in haploidentical transplantation for sickle cell disease and β-thalassaemia. Lancet Haematol. 2019; 6(4): e168-e169.

[203]

Pincez T, Lo KS, D’Orengiani A, et al. Variation and impact of polygenic hematologic traits in monogenic sickle cell disease. Haematologica. 2023; 108(3): 870-881.

[204]

Steinberg MH. Fetal hemoglobin in sickle cell anemia. Blood. 2020; 136(21): 2392-2400.

[205]

Lewis J, Greenway SC, Khan F, Singh G, Bhatia M, Guilcher GMT. Assessment of donor cell engraftment after hematopoietic stem cell transplantation for sickle cell disease: A review of current and future methods. Am J Hematol. 2022; 97(10): 1359-1371.

[206]

de la Fuente J, Gluckman E, Makani J, Telfer P, Faulkner L, Corbacioglu S. The role of haematopoietic stem cell transplantation for sickle cell disease in the era of targeted disease-modifying therapies and gene editing. Lancet Haematol. 2020; 7(12): e902-e911.

[207]

Stenger EO, Shenoy S, Krishnamurti L. How I treat sickle cell disease with hematopoietic cell transplantation. Blood. 2019; 134(25): 2249-2260.

[208]

Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer. 2018; 18(5): 283-295.

[209]

Redjoul R, Beckerich F, de Luna G, et al. ABO blood barrier to engraftment after allogeneic stem cell transplantation in sickle cell disease: A case-story with two successive HLA-matched sibling donors. Am J Hematol. 2023; 98(4): 692-696.

[210]

Meisel R. Secondary malignancies after allogeneic hematopoietic stem cell transplantation for sickle cell disease inform gene therapy approaches. J Clin Oncol. 2023; 41(17): 3272-3273.

[211]

Eapen M, Brazauskas R, Williams DA, et al. Secondary neoplasms after hematopoietic cell transplant for sickle cell disease. J Clin Oncol. 2023; 41(12): 2227-2237.

[212]

Charlesworth CT, Hsu I, Wilkinson AC, Nakauchi H. Immunological barriers to haematopoietic stem cell gene therapy. Nat Rev Immunol. 2022; 22(12): 719-733.

[213]

Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020; 578(7794): 229-236.

[214]

White SL, Hart K, Kohn DB. Diverse approaches to gene therapy of sickle cell disease. Annu Rev Med. 2023; 74: 473-487.

[215]

Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021; 384(3): 252-260.

[216]

Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet. 2021; 22(4): 216-234.

[217]

Romero Z, Lomova A, Said S, et al. Editing the sickle cell disease mutation in human hematopoietic stem cells: comparison of endonucleases and homologous donor templates. Mol Ther. 2019; 27(8): 1389-1406.

[218]

Doerfler PA, Sharma A, Porter JS, Zheng Y, Tisdale JF, Weiss MJ. Genetic therapies for the first molecular disease. J Clin Invest. 2021; 131(8): e146394.

[219]

Martyn GE, Wienert B, Yang L, et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet. 2018; 50(4): 498-503.

[220]

Papizan JB, Porter SN, Sharma A, Pruett-Miller SM. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies. J Biomed Res. 2020; 35(2): 115-134.

[221]

Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013; 31(9): 827-832.

[222]

Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G. COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther Nucleic Acids. 2014; 3(12): e214.

[223]

Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015; 33(2): 187-197.

[224]

Park SH, Lee CM, Dever DP, et al. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019; 47(15): 7955-7972.

[225]

Fitzhugh CD, Cordes S, Taylor T, et al. At least 20% donor myeloid chimerism is necessary to reverse the sickle phenotype after allogeneic HSCT. Blood. 2017; 130(17): 1946-1948.

[226]

Lattanzi A, Camarena J, Lahiri P, et al. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med. 2021; 13(598): eabf2444.

[227]

Chen Y, Wen R, Yang Z, Chen Z. Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Ther. 2022; 29(5): 207-216.

[228]

Park S, Gianotti-Sommer A, Molina-Estevez FJ, et al. A comprehensive, ethnically diverse library of sickle cell disease-specific induced pluripotent stem cells. Stem Cell Rep. 2017; 8(4): 1076-1085.

[229]

Martin RM, Ikeda K, Cromer MK, et al. Highly efficient and marker-free genome editing of human pluripotent stem cells by CRISPR-Cas9 RNP and AAV6 donor-mediated homologous recombination. Cell Stem Cell. 2019; 24(5): 821-828.e5.

[230]

Everette KA, Newby GA, Levine RM, et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng. 2023; 7: 616-628.

[231]

Crunkhorn S. Base editing rescues sickle cell disease. Nat Rev Drug Discov. 2021; 20(7): 508.

[232]

Lettre G, Bauer DE. Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies. Lancet. 2016; 387(10037): 2554-2564.

[233]

Esrick EB, Lehmann LE, Biffi A, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021; 384(3): 205-215.

[234]

Drysdale CM, Nassehi T, Gamer J, Yapundich M, Tisdale JF, Uchida N. Hematopoietic-stem-cell-targeted gene-addition and gene-editing strategies for β-hemoglobinopathies. Cell Stem Cell. 2021; 28(2): 191-208.

[235]

Shariati L, Khanahmad H, Salehi M, et al. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system. J Gene Med. 2016; 18(10): 294-301.

[236]

Antoniani C, Meneghini V, Lattanzi A, et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood. 2018; 131(17): 1960-1973.

[237]

Yang Y, Ren R, Ly LC, et al. Structural basis for human ZBTB7A action at the fetal globin promoter. Cell Rep. 2021; 36(13): 109759.

[238]

Hossain MA, Bungert J. Genome editing for sickle cell disease: a little BCL11A goes a long way. Mol Ther. 2017; 25(3): 561-562.

[239]

Kaiser J. Tweaking genes with CRISPR or viruses fixes blood disorders. Science. 2020; 370(6522): 1254-1255.

[240]

Makani J, Luzzatto L. Of mice and men: From hematopoiesis in mouse models to curative gene therapy for sickle cell disease. Cell. 2022; 185(8): 1261-1265.

[241]

Park SH, Bao G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfus Apher Sci. 2021; 60(1): 103060.

[242]

Zarghamian P, Klermund J, Cathomen T. Clinical genome editing to treat sickle cell disease—a brief update. Front Med (Lausanne). 2022; 9: 1065377.

[243]

Wu Y, Zeng J, Roscoe BP, et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med. 2019; 25(5): 776-783.

[244]

Métais JY, Doerfler PA, Mayuranathan T, et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 2019; 3(21): 3379-3392.

[245]

Zeng J, Wu Y, Ren C, et al. Therapeutic base editing of human hematopoietic stem cells. Nat Med. 2020; 26(4): 535-541.

[246]

Cheng L, Li Y, Qi Q, et al. Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nat Genet. 2021; 53(6): 869-880.

[247]

Ramadier S, Chalumeau A, Felix T, et al. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Mol Ther. 2022; 30(1): 145-163.

[248]

Liu N, Hargreaves VV, Zhu Q, et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell. 2018; 173(2): 430-442.e17.

[249]

Traxler EA, Yao Y, Wang YD, et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016; 22(9): 987-990.

[250]

Weber L, Frati G, Felix T, et al. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv. 2020; 6(7): eaay9392.

[251]

Braghini CA, Costa FC, Fedosyuk H, et al. Original Research: Generation of non-deletional hereditary persistence of fetal hemoglobin β-globin locus yeast artificial chromosome transgenic mouse models: -175 Black HPFH and -195 Brazilian HPFH. Exp Biol Med (Maywood). 2016; 241(7): 697-705.

[252]

Himadewi P, Wang XQD, Feng F, et al. 3’HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression. eLife. 2021; 10: e70557.

[253]

Ravi NS, Wienert B, Wyman SK, et al. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. eLife. 2022; 11: e65421.

[254]

Topfer SK, Feng R, Huang P, et al. Disrupting the adult globin promoter alleviates promoter competition and reactivates fetal globin gene expression. Blood. 2022; 139(14): 2107-2118.

[255]

Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet. 2018; 391(10116): 155-167.

[256]

The Lancet Global H. Homing in on haemoglobinopathies. Lancet Glob Health. 2022; 10(1): e1.

[257]

Kattamis A, Kwiatkowski JL, Aydinok Y. Thalassaemia. Lancet. 2022; 399(10343): 2310-2324.

[258]

Locatelli F, Cavazzana M, Frangoul H, Fuente J, Algeri M, Meisel R. Autologous gene therapy for hemoglobinopathies: From bench to patient’s bedside. Mol Ther. 2024; 32(5): 1202-1218.

[259]

Musallam KM, Cappellini MD, Coates TD, et al. Αlpha-thalassemia: a practical overview. Blood Rev. 2024; 64: 101165.

[260]

Weatherall DJ. The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev. 2012; 26(Suppl 1): S3-S6.

[261]

Taher AT, Cappellini MD, Kattamis A, et al. Luspatercept for the treatment of anaemia in non-transfusion-dependent β-thalassaemia (BEYOND): a phase 2, randomised, double-blind, multicentre, placebo-controlled trial. Lancet Haematol. 2022; 9(10): e733-e744.

[262]

Platzbecker U, Morison JK. Luspatercept in patients with non-transfusion dependent β-thalassaemia. Lancet Haematol. 2022; 9(10): e709-e711.

[263]

Kuo KHM, Layton DM, Lal A, et al. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent α-thalassaemia or β-thalassaemia: an open-label, multicentre, phase 2 study. Lancet. 2022; 400(10351): 493-501.

[264]

Farmakis D, Porter J, Taher A, Domenica Cappellini M, Angastiniotis M, Eleftheriou A. 2021 Thalassaemia International Federation Guidelines for the management of transfusion-dependent thalassemia. Hemasphere. 2022; 6(8): e732.

[265]

Horvei P, MacKenzie T, Kharbanda S. Advances in the management of α-thalassemia major: reasons to be optimistic. Hematology Am Soc Hematol Educ Program. 2021; 2021(1): 592-599.

[266]

Payen E. Efficacy and safety of gene therapy for β-thalassemia. N Engl J Med. 2022; 386(5): 488-490.

[267]

Maggio A, Kattamis A, Felisi M, et al. Evaluation of the efficacy and safety of deferiprone compared with deferasirox in paediatric patients with transfusion-dependent haemoglobinopathies (DEEP-2): a multicentre, randomised, open-label, non-inferiority, phase 3 trial. Lancet Haematol. 2020; 7(6): e469-e478.

[268]

Willan J, King AJ, Hayes S, Collins GP, Peniket A. Care of haematology patients in a COVID-19 epidemic. Br J Haematol. 2020; 189(2): 241-243.

[269]

Musallam KM, Cappellini MD, Viprakasit V, Kattamis A, Rivella S, Taher AT. Revisiting the non-transfusion-dependent (NTDT) vs. transfusion-dependent (TDT) thalassemia classification 10 years later. Am J Hematol. 2021; 96(2): E54-E56.

[270]

Harteveld CL, Achour A, Arkesteijn SJG, et al. The hemoglobinopathies, molecular disease mechanisms and diagnostics. Int J Lab Hematol. 2022; 44(Suppl 1): 28-36.

[271]

Stephanou C, Petrou M, Kountouris P, et al. Unravelling the complexity of the +33 C>G [HBB:c.-18C>G] variant in beta thalassemia. Biomedicines. 2024; 12(2): 296.

[272]

Magrin E, Semeraro M, Hebert N, et al. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial. Nat Med. 2022; 28(1): 81-88.

[273]

Boulad F, Maggio A, Wang X, et al. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat Med. 2022; 28(1): 63-70.

[274]

Rubin R. New gene therapy for β-thalassemia. JAMA. 2022; 328(11): 1030.

[275]

Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018; 378(16): 1479-1493.

[276]

Locatelli F, Thompson AA, Kwiatkowski JL, et al. Betibeglogene autotemcel gene therapy for non-β(0)/β(0) genotype β-thalassemia. N Engl J Med. 2022; 386(5): 415-427.

[277]

The Lancet H. Beta-thalassaemia: all roads lead to a cure? Lancet Haematol. 2018; 5(10): e430.

[278]

Prakobkaew N, Fucharoen S, Fuchareon G, Siriratmanawong N. Phenotypic expression of Hb F in common high Hb F determinants in Thailand: roles of α-thalassemia, 5’ δ-globin BCL11A binding region and 3’ β-globin enhancer. Eur J Haematol. 2014; 92(1): 73-79.

[279]

Humbert O, Samuelson C, Kiem HP. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. Br J Haematol. 2021; 192(1): 33-49.

[280]

Cai L, Bai H, Mahairaki V, et al. A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med. 2018; 7(1): 87-97.

[281]

Xie F, Ye L, Chang JC, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014; 24(9): 1526-1533.

[282]

Liu Y, Yang Y, Kang X, et al. One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific iPSCs without drug selection. Mol Ther Nucleic Acids. 2017; 6: 57-67.

[283]

Gabr H, El Ghamrawy MK, Almaeen AH, Abdelhafiz AS, Hassan AOS, El Sissy MH. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Stem Cell Res Ther. 2020; 11(1): 390.

[284]

Xu S, Luk K, Yao Q, et al. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood. 2019; 133(21): 2255-2262.

[285]

Yang F, Xu S, Huang C, et al. Therapeutic genome editing of an aberrant splice site in β-thalassemia by CRISPR/Cas9 with multiple sgRNAs. Genes Dis. 2024; 11(1): 15-18.

[286]

Zhang H, Sun R, Fei J, Chen H, Lu D. Correction of beta-thalassemia IVS-II-654 mutation in a mouse model using prime editing. Int J Mol Sci. 2022; 23(11): 5948.

[287]

Pavani G, Fabiano A, Laurent M, et al. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood Adv. 2021; 5(5): 1137-1153.

[288]

Liang P, Ding C, Sun H, et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell. 2017; 8(11): 811-822.

[289]

Yang Y, He L, Xie Y, et al. In situ correction of various β-thalassemia mutations in human hematopoietic stem cells. Front Cell Dev Biol. 2023; 11: 1276890.

[290]

Wattanapanitch M, Damkham N, Potirat P, et al. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system. Stem Cell Res Ther. 2018; 9(1): 46.

[291]

Badat M, Ejaz A, Hua P, et al. Direct correction of haemoglobin E β-thalassaemia using base editors. Nat Commun. 2023; 14(1): 2238.

[292]

Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet. 2023; 142(12): 1677-1703.

[293]

Finotti A, Gambari R. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: treatment with HbF inducers and CRISPR-Cas9 based genome editing. Front Genome Ed. 2023; 5: 1204536.

[294]

Lu D, Xu Z, Peng Z, et al. Induction of fetal hemoglobin by introducing natural hereditary persistence of fetal hemoglobin mutations in the γ-globin gene promoters for genome editing therapies for β-thalassemia. Front Genet. 2022; 13: 881937.

[295]

Wakabayashi A, Kihiu M, Sharma M, et al. Identification and characterization of RBM12 as a novel regulator of fetal hemoglobin expression. Blood Adv. 2022; 6(23): 5956-5968.

[296]

Paschoudi K, Yannaki E, Psatha N. Precision editing as a therapeutic approach for β-hemoglobinopathies. Int J Mol Sci. 2023; 24(11): 9527.

[297]

Lamsfus-Calle A, Daniel-Moreno A, Antony JS, et al. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34(+) HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin. Sci Rep. 2020; 10(1): 10133.

[298]

Han W, Qiu HY, Sun S, et al. Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell. 2023; 30(12): 1624-1639.e8.

[299]

Khosravi MA, Abbasalipour M, Concordet JP, et al. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol. 2019; 854: 398-405.

[300]

Cosenza LC, Gasparello J, Romanini N, et al. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β(0)39-thalassemia patients. Mol Ther Methods Clin Dev. 2021; 21: 507-523.

[301]

Cosenza LC, Zuccato C, Zurlo M, Gambari R, Finotti A. Co-treatment of erythroid cells from β-thalassemia patients with CRISPR-Cas9-based β(0)39-globin gene editing and induction of fetal hemoglobin. Genes (Basel). 2022; 13(10): 1727.

[302]

Psatha N, Georgakopoulou A, Li C, et al. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood. 2021; 138(17): 1540-1553.

[303]

Liao J, Chen S, Hsiao S, et al. Therapeutic adenine base editing of human hematopoietic stem cells. Nat Commun. 2023; 14(1): 207.

[304]

Mayuranathan T, Newby GA, Feng R, et al. Potent and uniform fetal hemoglobin induction via base editing. Nat Genet. 2023; 55(7): 1210-1220.

[305]

Wang L, Li L, Ma Y, et al. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Cell Res. 2020; 30(3): 276-278.

[306]

Li C, Georgakopoulou A, Mishra A, et al. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv. 2021; 5(4): 1122-1135.

[307]

Pellagatti A, Dolatshad H, Yip BH, Valletta S, Boultwood J. Application of genome editing technologies to the study and treatment of hematological disease. Adv Biol Regul. 2016; 60: 122-134.

[308]

Jäger U, Chomienne C, Cools J, Smand C. Blood disorders stepping into the limelight. Haematologica. 2016; 101(2): 101-103.

[309]

Rosenquist R, Bernard E, Erkers T, et al. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med. 2023; 294(4): 413-436.

[310]

Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther. 2023; 8(1): 306.

[311]

Patel SA. Functional genomic approaches in acute myeloid leukemia: Insights into disease models and the therapeutic potential of reprogramming. Cancer Lett. 2022; 533: 215579.

[312]

Su R, Qing Y, Chen J. Targeting differentiation blockade in AML: New hope from cell-surface-based CRISPR screens. Cell Stem Cell. 2021; 28(4): 585-587.

[313]

Lin S, Larrue C, Scheidegger NK, et al. An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer Discov. 2022; 12(2): 432-449.

[314]

Soares F, Chen B, Lee JB, et al. CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood. 2021; 137(16): 2171-2181.

[315]

Harfmann M, Schröder T, Głów D, et al. CD45-directed CAR-T cells with CD45 knockout efficiently kill myeloid leukemia and lymphoma cells in vitro even after extended culture. Cancers (Basel). 2024; 16(2): 334.

[316]

Calviño C, Ceballos C, Alfonso A, et al. Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia. Front Immunol. 2023; 14: 1270843.

[317]

Kim MY, Yu KR, Kenderian SS, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018; 173(6): 1439-1453.e19.

[318]

Ureña-Bailén G, Dobrowolski JM, Hou Y, et al. Preclinical evaluation of CRISPR-edited CAR-NK-92 cells for off-the-shelf treatment of AML and B-ALL. Int J Mol Sci. 2022; 23(21): 12828.

[319]

Cowan AJ, Green DJ, Kwok M, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022; 327(5): 464-477.

[320]

Silberstein J, Tuchman S, Grant SJ. What is multiple myeloma? JAMA. 2022; 327(5): 497.

[321]

de Matos Simoes R, Shirasaki R, Downey-Kopyscinski SL, et al. Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias. Nat Cancer. 2023; 4(5): 754-773.

[322]

Bohl SR, Schmalbrock LK, Bauhuf I, et al. Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Adv. 2021; 5(9): 2391-2402.

[323]

Morton LT, Reijmers RM, Wouters AK, et al. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic. Mol Ther. 2020; 28(1): 64-74.

[324]

Bexte T, Alzubi J, Reindl LM, et al. CRISPR-Cas9 based gene editing of the immune checkpoint NKG2A enhances NK cell mediated cytotoxicity against multiple myeloma. Oncoimmunology. 2022; 11(1): 2081415.

[325]

de Leval L, Jaffe ES. Lymphoma classification. Cancer J. 2020; 26(3): 176-185.

[326]

Sehn LH, Salles G. Diffuse large B-cell lymphoma. N Engl J Med. 2021; 384(9): 842-858.

[327]

Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021; 35(9): 2460-2468.

[328]

Brice P, de Kerviler E, Friedberg JW. Classical Hodgkin lymphoma. Lancet. 2021; 398(10310): 1518-1527.

[329]

Allemailem KS, Alsahli MA, Almatroudi A, et al. Innovative strategies of reprogramming immune system cells by targeting CRISPR/Cas9-based genome-editing tools: a new era of cancer management. Int J Nanomedicine. 2023; 18: 5531-5559.

[330]

Wellhausen N, O’Connell RP, Lesch S, et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci Transl Med. 2023; 15(714): eadi1145.

[331]

Zhang J, Hu Y, Yang J, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature. 2022; 609(7926): 369-374.

[332]

Zhou J, Toh SH, Tan TK, et al. Super-enhancer-driven TOX2 mediates oncogenesis in natural killer/T cell lymphoma. Mol Cancer. 2023; 22(1): 69.

[333]

Wei W, Lin Y, Song Z, et al. A20 and RBX1 regulate brentuximab vedotin sensitivity in Hodgkin lymphoma models. Clin Cancer Res. 2020; 26(15): 4093-4106.

[334]

Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nat Rev Cancer. 2022; 22(5): 259-279.

[335]

Liu Z, Shi M, Ren Y, et al. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer. 2023; 22(1): 35.

[336]

Jefremow A, Neurath MF, Waldner MJ. CRISPR/Cas9 in gastrointestinal malignancies. Front Cell Dev Biol. 2021; 9: 727217.

[337]

Huang L, Liao Z, Liu Z, Chen Y, Huang T, Xiao H. Application and prospect of CRISPR/Cas9 technology in reversing drug resistance of non-small cell lung cancer. Front Pharmacol. 2022; 13: 900825.

[338]

Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, et al. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett. 2022; 27(1): 49.

[339]

Dubrot J, Du PP, Lane-Reticker SK, et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat Immunol. 2022; 23(10): 1495-1506.

[340]

Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer. 2022; 21(1): 78.

[341]

Hosseini SA, Salehifard Jouneghani A, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. CRISPR/Cas9 as precision and high-throughput genetic engineering tools in gastrointestinal cancer research and therapy. Int J Biol Macromol. 2022; 223(Pt A): 732-754.

[342]

Dennison L, Ruggieri A, Mohan A, et al. Context-dependent immunomodulatory effects of MEK inhibition are enhanced with t-cell agonist therapy. Cancer Immunol Res. 2021; 9(10): 1187-1201.

[343]

Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021; 27(8): 1345-1356.

[344]

Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020; 26(5): 732-740.

[345]

Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021; 17(4): 245-261.

[346]

Makhov P, Sohn JA, Serebriiskii IG, et al. CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. Br J Cancer. 2020; 123(12): 1749-1756.

[347]

den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet. 2006; 79(3): 556-561.

[348]

Georgiou M, Robson AG, Fujinami K, et al. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes. Prog Retin Eye Res. 2024; 100: 101244.

[349]

Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10. Mol Ther. 2017; 25(2): 331-341.

[350]

Jo DH, Song DW, Cho CS, et al. CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis. Sci Adv. 2019; 5(10): eaax1210.

[351]

Jo DH, Jang HK, Cho CS, et al. Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing. Mol Ther Nucleic Acids. 2023; 31: 16-27.

[352]

Bez Batti Angulski A, Hosny N, Cohen H, et al. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol. 2023; 14: 1183101.

[353]

Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003; 2(12): 731-740.

[354]

Min YL, Bassel-Duby R, Olson EN. CRISPR correction of duchenne muscular dystrophy. Annu Rev Med. 2019; 70: 239-255.

[355]

Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov. 2023; 22(11): 917-934.

[356]

Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015; 6: 6244.

[357]

Zhang Y, Long C, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv. 2017; 3(4): e1602814.

[358]

Wang P, Li H, Zhu M, Han RY, Guo S, Han R. Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping. Mol Ther Methods Clin Dev. 2023; 28: 40-50.

[359]

Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021; 7(18): eabg4910.

[360]

Kenjo E, Hozumi H, Makita Y, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun. 2021; 12(1): 7101.

[361]

Wang X, Zhang R, Yang D, et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv Sci (Weinh). 2023; 10(17): e2206813.

[362]

Harreiter J, Roden M. [Diabetes mellitus: definition, classification, diagnosis, screening and prevention (Update 2023)]. Wien Klin Wochenschr. 2023; 135(Suppl 1): 7-17.

[363]

American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018; 41(Suppl 1): S13-S27.

[364]

American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45(Suppl 1): S17-S38.

[365]

DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018; 391(10138): 2449-2462.

[366]

The L. Diabetes: a dynamic disease. Lancet. 2017; 389(10085): 2163.

[367]

Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016; 37(3): 278-316.

[368]

Fralick M, Jenkins AJ, Khunti K, Mbanya JC, Mohan V, Schmidt MI. Global accessibility of therapeutics for diabetes mellitus. Nat Rev Endocrinol. 2022; 18(4): 199-204.

[369]

The prevention of diabetes mellitus. JAMA. 2021; 325(2): 190.

[370]

Cai EP, Ishikawa Y, Zhang W, et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat Metab. 2020; 2(9): 934-945.

[371]

Rottner AK, Ye Y, Navarro-Guerrero E, et al. A genome-wide CRISPR screen identifies CALCOCO2 as a regulator of beta cell function influencing type 2 diabetes risk. Nat Genet. 2023; 55(1): 54-65.

[372]

Maxwell KG, Augsornworawat P, Velazco-Cruz L, et al. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med. 2020; 12(540): eaax9106.

[373]

Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006; 368(9534): 489-504.

[374]

Pauza CD, Huang K, Bordon J. Advances in cell and gene therapy for HIV disease: it is good to be specific. Curr Opin HIV AIDS. 2021; 16(2): 83-87.

[375]

Carbone A, Vaccher E, Gloghini A. Hematologic cancers in individuals infected by HIV. Blood. 2022; 139(7): 995-1012.

[376]

Cohen J. Mapping where HIV hides suggests cure strategy. Science. 2022; 375(6577): 130-131.

[377]

Kitawi R, Ledger S, Kelleher AD, Ahlenstiel CL. Advances in HIV gene therapy. Int J Mol Sci. 2024; 25(5): 2771.

[378]

Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas cure for HIV/AIDS. Int J Mol Sci. 2023; 24(2): 1563.

[379]

Churchill MJ, Deeks SG, Margolis DM, Siliciano RF, Swanstrom R. HIV reservoirs: what, where and how to target them. Nat Rev Micro. 2016; 14(1): 55-60.

[380]

Dash PK, Kaminski R, Bella R, et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 2019; 10(1): 2753.

[381]

Dash PK, Chen C, Kaminski R, et al. CRISPR editing of CCR5 and HIV-1 facilitates viral elimination in antiretroviral drug-suppressed virus-infected humanized mice. Proc Natl Acad Sci USA. 2023; 120(19): e2217887120.

[382]

Wang G, Zhao N, Berkhout B, Das AT. A combinatorial CRISPR-Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Rep. 2016; 17(11): 2819-2826.

[383]

Fan M, Bao Y, Berkhout B, Herrera-Carrillo E. CRISPR-Cas12b enables a highly efficient attack on HIV proviral DNA in T cell cultures. Biomed Pharmacother. 2023; 165: 115046.

[384]

Yin L, Zhao F, Sun H, et al. CRISPR-Cas13a inhibits HIV-1 infection. Mol Ther Nucleic Acids. 2020; 21: 147-155.

[385]

Kupferschmidt K. Shadowed by past, gene-editing summit looks to future. Science. 2023; 379(6637): 1073-1074.

[386]

Naddaf M. The science events to watch for in 2023. Nature. 2023; 613(7942): 11-12.

[387]

Larkin HD. Gene therapy for sickle cell disease, β-thalassemia enters regulatory reviews. JAMA. 2022; 328(18): 1798.

[388]

Parums DV. Editorial: First regulatory approvals for CRISPR-Cas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Med Sci Monit. 2024; 30: e944204.

[389]

Wong C. UK first to approve CRISPR treatment for diseases: what you need to know. Nature. 2023; 623(7988): 676-677.

[390]

Hoy SM. Exagamglogene autotemcel: first approval. Mol Diagn Ther. 2024; 28(2): 133-139.

[391]

Can CRISPR cure sickle-cell disease?. Nature. 2021. doi: 10.1038/d41586-021-02255-6

[392]

Lydeard JR, Lin MI, Ge HG, et al. Development of a gene edited next-generation hematopoietic cell transplant to enable acute myeloid leukemia treatment by solving off-tumor toxicity. Mol Ther Methods Clin Dev. 2023; 31: 101135.

[393]

Scholler N, Perbost R, Locke FL, et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat Med. 2022; 28(9): 1872-1882.

[394]

Bruno B, Wäsch R, Engelhardt M, et al. European Myeloma Network perspective on CAR T-Cell therapies for multiple myeloma. Haematologica. 2021; 106(8): 2054-2065.

[395]

Caimi PF, Melenhorst JJ. Allogeneic CAR T cells: complex cellular therapy designs test the limits of our preclinical models. Cancer Immunol Res. 2024; 12(4): 385-386.

[396]

Degagné É, Donohoue PD, Roy S, et al. High-specificity CRISPR-mediated genome engineering in anti-BCMA allogeneic CAR T cells suppresses allograft rejection in preclinical models. Cancer Immunol Res. 2024; 12(4): 462-477.

[397]

Donohoue PD, Pacesa M, Lau E, et al. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells. Mol Cell. 2021; 81(17): 3637-3649.e5.

[398]

Lau E, Kwong G, Fowler TW, et al. Allogeneic chimeric antigen receptor-T cells with CRISPR-disrupted programmed death-1 checkpoint exhibit enhanced functional fitness. Cytotherapy. 2023; 25(7): 750-762.

[399]

Osborn MJ, Webber BR, Knipping F, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther. 2016; 24(3): 570-581.

[400]

Tran E, Ahmadzadeh M, Lu YC, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science. 2015; 350(6266): 1387-1390.

[401]

Palmer DC, Guittard GC, Franco Z, et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J Exp Med. 2015; 212(12): 2095-2113.

[402]

Dewulf J, Flieswasser T, Delahaye T, et al. Site-specific (68)Ga-labeled nanobody for PET imaging of CD70 expression in preclinical tumor models. EJNMMI Radiopharm Chem. 2023; 8(1): 8.

[403]

Kelsey R. Gene editing shows promise in LCA10. Nat Rev Neurol. 2019; 15(3): 126.

[404]

Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019; 25(2): 229-233.

[405]

Brusson M, Miccio A. Genome editing approaches to β-hemoglobinopathies. Prog Mol Biol Transl Sci. 2021; 182: 153-183.

[406]

Modarai SR, Kanda S, Bloh K, Opdenaker LM, Kmiec EB. Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples. Gene Ther. 2021; 28(1-2): 105-113.

[407]

Ruggiero E, Carnevale E, Prodeus A, et al. CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Sci Transl Med. 2022; 14(631): eabg8027.

[408]

Rosenblum D, Gutkin A, Dammes N, Peer D. Progress and challenges towards CRISPR/Cas clinical translation. Adv Drug Deliv Rev. 2020; 154-155: 176-186.

[409]

Boyle EA, Becker WR, Bai HB, Chen JS, Doudna JA, Greenleaf WJ. Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement. Sci Adv. 2021; 7(8): eabe5496.

[410]

Lee H, Kim JS. Unexpected CRISPR on-target effects. Nat Biotechnol. 2018; 36(8): 703-704.

[411]

Bao XR, Pan Y, Lee CM, Davis TH, Bao G. Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nat Protoc. 2021; 16(1): 10-26.

[412]

Clement K, Hsu JY, Canver MC, Joung JK, Pinello L. Technologies and computational analysis strategies for CRISPR applications. Mol Cell. 2020; 79(1): 11-29.

[413]

Kim D, Luk K, Wolfe SA, Kim JS. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu Rev Biochem. 2019; 88: 191-220.

[414]

Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nat Methods. 2014; 11(2): 122-123.

[415]

Xiao A, Cheng Z, Kong L, et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics. 2014; 30(8): 1180-1182.

[416]

Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014; 30(10): 1473-1475.

[417]

Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One. 2014; 9(9): e108424.

[418]

Dobson L, Reményi I, Tusnády GE. CCTOP: a consensus constrained TOPology prediction web server. Nucleic Acids Res. 2015; 43(W1): W408-W412.

[419]

Singh R, Kuscu C, Quinlan A, Qi Y, Adli M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res. 2015; 43(18): e118.

[420]

Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014; 42(Web Server issue): W401-W407.

[421]

Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016; 44(W1): W272-W276.

[422]

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019; 47(W1): W171-W174.

[423]

Jacquin ALS, Odom DT, Lukk M. Crisflash: open-source software to generate CRISPR guide RNAs against genomes annotated with individual variation. Bioinformatics. 2019; 35(17): 3146-3147.

[424]

Haeussler M, Schönig K, Eckert H, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016; 17(1): 148.

[425]

Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017; 13(10): e1005807.

[426]

Veres A, Gosis BS, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014; 15(1): 27-30.

[427]

Chiarle R, Zhang Y, Frock RL, et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011; 147(1): 107-119.

[428]

Yan WX, Mirzazadeh R, Garnerone S, et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun. 2017; 8: 15058.

[429]

Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015; 4(11): e264.

[430]

Nobles CL, Reddy S, Salas-McKee J, et al. iGUIDE: an improved pipeline for analyzing CRISPR cleavage specificity. Genome Biol. 2019; 20(1): 14.

[431]

Wienert B, Wyman SK, Richardson CD, et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science. 2019; 364(6437): 286-289.

[432]

Wienert B, Wyman SK, Yeh CD, Conklin BR, Corn JE. CRISPR off-target detection with DISCOVER-seq. Nat Protoc. 2020; 15(5): 1775-1799.

[433]

Zou RS, Liu Y, Gaido OER, et al. Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq. Nat Methods. 2023; 20(5): 706-713.

[434]

Turchiano G, Andrieux G, Klermund J, et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell. 2021; 28(6): 1136-1147.e5.

[435]

Zuo E, Sun Y, Wei W, et al. GOTI, a method to identify genome-wide off-target effects of genome editing in mouse embryos. Nat Protoc. 2020; 15(9): 3009-3029.

[436]

Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. 2017; 14(6): 607-614.

[437]

Park J, Childs L, Kim D, et al. Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. 2017; 14(6): 548-549.

[438]

Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015; 12(3): 237-243, 1 p following 243.

[439]

Kim D, Kang BC, Kim JS. Identifying genome-wide off-target sites of CRISPR RNA-guided nucleases and deaminases with Digenome-seq. Nat Protoc. 2021; 16(2): 1170-1192.

[440]

Kim D, Kim JS. DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res. 2018; 28(12): 1894-1900.

[441]

Cameron P, Fuller CK, Donohoue PD, et al. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat Methods. 2017; 14(6): 600-606.

[442]

Lazzarotto CR, Nguyen NT, Tang X, et al. Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq. Nat Protoc. 2018; 13(11): 2615-2642.

[443]

Lazzarotto CR, Malinin NL, Li Y, et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity. Nat Biotechnol. 2020; 38(11): 1317-1327.

[444]

Yaish O, Asif M, Orenstein Y. A systematic evaluation of data processing and problem formulation of CRISPR off-target site prediction. Brief Bioinform. 2022; 23(5): bbac157.

[445]

Jones SK Jr, Hawkins JA, Johnson NV, et al. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat Biotechnol. 2021; 39(1): 84-93.

[446]

Pan X, Qu K, Yuan H, et al. Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nat Commun. 2022; 13(1): 4049.

[447]

Kwon J, Kim M, Hwang W, et al. Extru-seq: a method for predicting genome-wide Cas9 off-target sites with advantages of both cell-based and in vitro approaches. Genome Biol. 2023; 24(1): 4.

[448]

Kim D, Lim K, Kim ST, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. 2017; 35(5): 475-480.

[449]

Liang P, Xie X, Zhi S, et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun. 2019; 10(1): 67.

[450]

Kim D, Kim DE, Lee G, Cho SI, Kim JS. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol. 2019; 37(4): 430-435.

[451]

Yu Z, Lu Z, Li J, et al. PEAC-seq adopts Prime Editor to detect CRISPR off-target and DNA translocation. Nat Commun. 2022; 13(1): 7545.

[452]

Kwon J, Kim M, Bae S, Jo A, Kim Y, Lee JK. TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nat Commun. 2022; 13(1): 7975.

[453]

Xin C, Yin J, Yuan S, et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nat Commun. 2022; 13(1): 5623.

[454]

Wilbie D, Walther J, Mastrobattista E. Delivery Aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res. 2019; 52(6): 1555-1564.

[455]

Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: trends and challenges. J Control Release. 2022; 342: 345-361.

[456]

Mout R, Ray M, Lee YW, Scaletti F, Rotello VM. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem. 2017; 28(4): 880-884.

[457]

Xu CF, Chen GJ, Luo YL, et al. Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev. 2021; 168: 3-29.

[458]

Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018; 25(1): 1234-1257.

[459]

Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013; 41(20): 9584-9592.

[460]

Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017; 266: 17-26.

[461]

Xu Z, Wang Q, Zhong H, et al. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration (Beijing). 2022; 2(2): 20210081.

[462]

Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res. 2019; 23: 8.

[463]

Li C, Yang T, Weng Y, et al. Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy. Bioact Mater. 2022; 9: 590-601.

[464]

Li CZ, Hu TY. Nanotechnology powered CRISPR-Cas systems for point of care diagnosis and therapeutic. Research (Wash D C). 2022; 2022: 9810237.

[465]

Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020; 15(4): 313-320.

[466]

Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021; 11(2): 614-648.

[467]

Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. J Control Release. 2020; 327: 788-800.

[468]

Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell. 2020; 181(1): 136-150.

[469]

Li A, Tanner MR, Lee CM, et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther. 2020; 28(6): 1432-1441.

[470]

Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013; 341(6148): 1233151.

[471]

Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 2017; 25(7): 1467-1475.

[472]

Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017; 1: 889-901.

[473]

Shahbazi R, Sghia-Hughes G, Reid JL, et al. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat Mater. 2019; 18(10): 1124-1132.

[474]

Rasys AM, Park S, Ball RE, Alcala AJ, Lauderdale JD, Menke DB. CRISPR-Cas9 gene editing in lizards through microinjection of unfertilized oocytes. Cell Rep. 2019; 28(9): 2288-2292.e3.

[475]

Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014; 370(10): 901-910.

[476]

Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun. 2017; 8: 14716.

[477]

Yang H, Qing K, Keeler GD, et al. Enhanced transduction of human hematopoietic stem cells by AAV6 vectors: implications in gene therapy and genome editing. Mol Ther Nucleic Acids. 2020; 20: 451-458.

[478]

Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014; 343(6166): 84-87.

[479]

Cousin C, Oberkampf M, Felix T, et al. Persistence of integrase-deficient lentiviral vectors correlates with the induction of STING-independent CD8(+) T cell responses. Cell Rep. 2019; 26(5): 1242-1257.e7.

[480]

Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med. 2017; 2(1): 43-57.

[481]

Zhang Y, Li Z, Milon Essola J, et al. Biosafety materials: Ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system. Biosaf Health. 2022; 4(2): 70-78.

[482]

Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020; 383(27): 2603-2615.

[483]

Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021; 384(5): 403-416.

[484]

Lee B, Lee K, Panda S, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018; 2(7): 497-507.

[485]

Huang J, Lin Q, Fei H, et al. Discovery of deaminase functions by structure-based protein clustering. Cell. 2023; 186(15): 3182-3195.e14.

[486]

Duan Z, Liang Y, Sun J, et al. An engineered Cas12i nuclease that is an efficient genome editing tool in animals and plants. Innovation (Camb). 2024; 5(2): 100564.

[487]

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873): 583-589.

[488]

Crossley M, Christakopoulos GE, Weiss MJ. Effective therapies for sickle cell disease: are we there yet? Trends Genet. 2022; 38(12): 1284-1298.

[489]

Burall S. Rethink public engagement for gene editing. Nature. 2018; 555(7697): 438-439.

[490]

Coller BS. Ethics of human genome editing. Annu Rev Med. 2019; 70: 289-305.

[491]

Take stock of research ethics in human genome editing. Nature. 2017; 549(7672): 307.

[492]

Shozi B, Kamwendo T, Kinderlerer J, Thaldar DW, Townsend B, Botes M. Future of global regulation of human genome editing: a South African perspective on the WHO Draft Governance Framework on Human Genome Editing. J Med Ethics. 2022; 48(3): 165-168.

[493]

Archard D, Dabrock P, Delfraissy JF. Human-genome editing: ethics councils call to governments worldwide. Nature. 2020; 579(7797): 29.

[494]

Townsend BA. Human genome editing: how to prevent rogue actors. BMC Med Ethics. 2020; 21(1): 95.

[495]

Isasi R, Kleiderman E, Knoppers BM. Genetic technology regulation. Editing policy to fit the genome? Science. 2016; 351(6271): 337-339.

[496]

Normile D. China tightens rules on gene editing. Science. 2019; 363(6431): 1023.

[497]

Mallapaty S. China focuses on ethics to deter another ‘CRISPR babies’ scandal. Nature. 2022; 605(7908): 15-16.

[498]

Akabayashi A, Nakazawa E, Caplan AL. Gene editing: who should decide? Nature. 2018; 564(7735): 190.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/