PDF
Abstract
Antibody–drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies’ targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Keywords
antibody–drug conjugates
/
cancer
/
clinical trials
/
cluster of differentiation
/
human epidermal growth factor receptor 2
/
mechanism
/
resistance
/
target antigen
Cite this article
Download citation ▾
Jun He, Xianghua Zeng, Chunmei Wang, Enwen Wang, Yongsheng Li.
Antibody–drug conjugates in cancer therapy: mechanisms and clinical studies.
MedComm, 2024, 5(8): e671 DOI:10.1002/mco2.671
| [1] |
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008; 8(6): 473-480.
|
| [2] |
Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023; 22(8): 641-661.
|
| [3] |
Ghose T, Cerini M, Carter M, Nairn RC. Immunoradioactive agent against cancer. Br Med J. 1967; 1(5532): 90-93.
|
| [4] |
Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001; 19(13): 3244-3254.
|
| [5] |
Swaminathan M, Cortes JE. Update on the role of gemtuzumab-ozogamicin in the treatment of acute myeloid leukemia. Ther Adv Hematol. 2023; 14: 20406207231154708.
|
| [6] |
Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012; 30(7): 631-637.
|
| [7] |
Amiri-Kordestani L, Blumenthal GM, Xu QC, et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014; 20(17): 4436-4441.
|
| [8] |
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022; 7(1): 93.
|
| [9] |
Sun T, Niu X, He Q, Liu M, Qiao S, Qi RQ. Development, efficacy and side effects of antibody-drug conjugates for cancer therapy (Review). Mol Clin Oncol. 2023; 18(6): 47.
|
| [10] |
Fujii T, Matsuda Y, Seki T, et al. AJICAP second generation: improved chemical site-specific conjugation technology for antibody-drug conjugate production. Bioconjug Chem. 2023; 34(4): 728-738.
|
| [11] |
Rassy E, Delaloge S. A second-generation antibody-drug conjugate to treat HER2-positive breast cancer. Lancet. 2023; 401(10371): 80-81.
|
| [12] |
Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008; 26(8): 925-932.
|
| [13] |
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol. 2024; 21(3): 203-223.
|
| [14] |
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021; 18(6): 327-344.
|
| [15] |
Tarantino P, Ricciuti B, Pradhan SM, Tolaney SM. Optimizing the safety of antibody-drug conjugates for patients with solid tumours. Nat Rev Clin Oncol. 2023; 20(8): 558-576.
|
| [16] |
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res. 2023; 46(5): 361-388.
|
| [17] |
Khoury R, Saleh K, Khalife N, et al. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci. 2023; 24(11): 9674.
|
| [18] |
Antibodie MihăilăRG. Bispecific antibodies and antibody-drug conjugates in oncohematology. Recent Pat Anticancer Drug Discov. 2020; 15(4): 272-292.
|
| [19] |
Goldmacher VS, Kovtun YV. Antibody-drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther Deliv. 2011; 2(3): 397-416.
|
| [20] |
Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975; 256(5517): 495-497.
|
| [21] |
Lakshman A, Kumar SK. Chimeric antigen receptor T-cells, bispecific antibodies, and antibody-drug conjugates for multiple myeloma: an update. Am J Hematol. 2022; 97(1): 99-118.
|
| [22] |
McDermott MSJ, O’Brien NA, Hoffstrom B, et al. Preclinical efficacy of the antibody-drug conjugate CLDN6-23-ADC for the treatment of CLDN6-positive solid tumors. Clin Cancer Res. 2023; 29(11): 2131-2143.
|
| [23] |
Feng Y, Lee J, Yang L, et al. Engineering CD276/B7-H3-targeted antibody-drug conjugates with enhanced cancer-eradicating capability. Cell Rep. 2023; 42(12): 113503.
|
| [24] |
Hong Y, Nam SM, Moon A. Antibody-drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Arch Pharm Res. 2023; 46(3): 131-148.
|
| [25] |
Ranchon F, Chatelut É, Lambert J, et al. [Antibody drug conjugates (ADC) and bispecific antibodies in oncology—report of the 2022 Saint Louis day]. Bull Cancer. 2023; 110(12): 1343-1351.
|
| [26] |
Falchi L, Vardhana SA, Salles GA. Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities. Blood. 2023; 141(5): 467-480.
|
| [27] |
Perez Bay AE, Faulkner D, DaSilva JO, et al. A bispecific METxMET antibody-drug conjugate with cleavable linker is processed in recycling and late endosomes. Mol Cancer Ther. 2023; 22(3): 357-370.
|
| [28] |
Andreev J, Thambi N, Perez Bay AE, et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther. 2017; 16(4): 681-693.
|
| [29] |
Matsuda Y, Mendelsohn BA. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther. 2021; 21(7): 963-975.
|
| [30] |
Inoue K, Mochizuki T, Kasamori N, Komori T. Determination of drug-to-antibody ratio of antibody-drug conjugate in biological samples using microflow-liquid chromatography/high-resolution mass spectrometry. Bioanalysis. 2022; 14(24): 1533-1545.
|
| [31] |
Matsuda Y, Mendelsohn BA. Recent advances in drug-antibody ratio determination of antibody-drug conjugates. Chem Pharm Bull (Tokyo). 2021; 69(10): 976-983.
|
| [32] |
Mahmood I. Clinical pharmacology of antibody-drug conjugates. Antibodies (Basel). 2021; 10(2): 20.
|
| [33] |
Matsuda Y. Current approaches for the purification of antibody-drug conjugates. J Sep Sci. 2022; 45(1): 27-37.
|
| [34] |
Dong W, Wang W, Cao C. The evolution of antibody-drug conjugates: toward accurate DAR and multi-specificity. ChemMedChem. 2024:e202400109.
|
| [35] |
Zhou Q, Kyazike J, Boudanova E, et al. Site-specific antibody conjugation to engineered double cysteine residues. Pharmaceuticals (Basel). 2021; 14(7): 672.
|
| [36] |
Zhou Q. Site-specific antibody conjugation with payloads beyond cytotoxins. Molecules. 2023; 28(3): 917.
|
| [37] |
Okojie J, McCollum S, Barrott J. The future of antibody drug conjugation by comparing various methods of site-specific conjugation. Discov Med. 2023; 35(179): 921-927.
|
| [38] |
Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003; 102(4): 1458-1465.
|
| [39] |
Kondrashov A, Sapkota S, Sharma A, Riano I, Kurzrock R, Adashek JJ. Antibody-drug conjugates in solid tumor oncology: an effectiveness payday with a targeted payload. Pharmaceutics. 2023; 15(8): 2160.
|
| [40] |
Peerzada MN, Dar MS, Verma S. Development of tubulin polymerization inhibitors as anticancer agents. Expert Opin Ther Pat. 2023; 33(11): 797-820.
|
| [41] |
Duan Y, Liu W, Tian L, Mao Y, Song C. Targeting tubulin-colchicine site for cancer therapy: inhibitors, antibody-drug conjugates and degradation agents. Curr Top Med Chem. 2019; 19(15): 1289-1304.
|
| [42] |
Swiderska KW, Szlachcic A, Czyrek A, Zakrzewska M, Otlewski J. Site-specific conjugation of fibroblast growth factor 2 (FGF2) based on incorporation of alkyne-reactive unnatural amino acid. Bioorg Med Chem. 2017; 25(14): 3685-3693.
|
| [43] |
Levengood MR, Zhang X, Hunter JH, et al. Orthogonal cysteine protection enables homogeneous multi-drug antibody-drug conjugates. Angew Chem Int Ed Engl. 2017; 56(3): 733-737.
|
| [44] |
Li Y, Su J, Tan S, Luo Y, Zhang L. Research progress on novel antibody drug conjugates in cancer therapy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024; 49(2): 296-304.
|
| [45] |
McKertish CM, Kayser V. A novel dual-payload ADC for the treatment of HER2+ breast and colon cancer. Pharmaceutics. 2023; 15(8): 2020.
|
| [46] |
Schlam I, Moges R, Morganti S, Tolaney SM, Tarantino P. Next-generation antibody-drug conjugates for breast cancer: moving beyond HER2 and TROP2. Crit Rev Oncol Hematol. 2023; 190: 104090.
|
| [47] |
Giugliano F, Corti C, Tarantino P, Michelini F, Curigliano G. Bystander effect of antibody-drug conjugates: fact or fiction? Curr Oncol Rep. 2022; 24(7): 809-817.
|
| [48] |
Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev. 2019; 48(16): 4361-4374.
|
| [49] |
Nicolaou KC, Rigol S, Pitsinos EN, et al. Uncialamycin-based antibody-drug conjugates: unique enediyne ADCs exhibiting bystander killing effect. Proc Natl Acad Sci USA. 2021; 118(25): e2107042118.
|
| [50] |
Duro-Sánchez S, Nadal-Serrano M, Lalinde-Gutiérrez M, et al. Therapy-induced senescence enhances the efficacy of HER2-targeted antibody-drug conjugates in breast cancer. Cancer Res. 2022; 82(24): 4670-4679.
|
| [51] |
Sheyi R, de la Torre BG, Albericio F. Linkers: an assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics. 2022; 14(2): 396.
|
| [52] |
Su D, Zhang D. Linker design impacts antibody-drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front Pharmacol. 2021; 12: 687926.
|
| [53] |
Edupuganti V, Tyndall J, Gamble AB. Self-immolative linkers in prodrugs and antibody drug conjugates in cancer treatment. Recent Pat Anticancer Drug Discov. 2021; 16(4): 479-497.
|
| [54] |
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New technologies bloom together for bettering cancer drug conjugates. Pharmacol Rev. 2022; 74(3): 680-711.
|
| [55] |
Pettinato MC. Introduction to antibody-drug conjugates. Antibodies (Basel). 2021; 10(4): 42.
|
| [56] |
Teicher BA, Morris J. Antibody-drug conjugate targets, drugs, and linkers. Curr Cancer Drug Targets. 2022; 22(6): 463-529.
|
| [57] |
Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017; 16(5): 315-337.
|
| [58] |
Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018; 9(1): 33-46.
|
| [59] |
Spangler B, Kline T, Hanson J, et al. Toward a ferrous iron-cleavable linker for antibody-drug conjugates. Mol Pharm. 2018; 15(5): 2054-2059.
|
| [60] |
Gray ME, Zielinski KM, Xu F, et al. A comparison of the activity, lysosomal stability, and efficacy of legumain-cleavable and cathepsin cleavable ADC linkers. Xenobiotica. 2024: 1-13.
|
| [61] |
Johan AN, Li Y. Development of photoremovable linkers as a novel strategy to improve the pharmacokinetics of drug conjugates and their potential application in antibody-drug conjugates for cancer therapy. Pharmaceuticals (Basel). 2022; 15(6): 655.
|
| [62] |
Su Z, Xiao D, Xie F, et al. Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B. 2021; 11(12): 3889-3907.
|
| [63] |
Kostova V, Désos P, Starck JB, Kotschy A. The chemistry behind ADCs. Pharmaceuticals (Basel). 2021; 14(5): 442.
|
| [64] |
Vozella F, Fazio F, Lapietra G, Petrucci MT, Martinelli G, Cerchione C. Monoclonal antibodies in multiple myeloma. Panminerva Med. 2021; 63(1): 21-27.
|
| [65] |
Hosseini SS, Khalili S, Baradaran B, et al. Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: recent advances and clinical trials. Int J Biol Macromol. 2021; 167: 1030-1047.
|
| [66] |
Chen W, Yuan Y, Jiang X. Antibody and antibody fragments for cancer immunotherapy. J Control Release. 2020; 328: 395-406.
|
| [67] |
Najjar MK, Manore SG, Regua AT, Lo HW. Antibody-drug conjugates for the treatment of HER2-positive breast cancer. Genes (Basel). 2022; 13(11): 2065.
|
| [68] |
Nicolò E, Tarantino P, Curigliano G. Biology and treatment of HER2-low breast cancer. Hematol Oncol Clin North Am. 2023; 37(1): 117-132.
|
| [69] |
Ferraro E, Drago JZ, Modi S. Implementing antibody-drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions. Breast Cancer Res. 2021; 23(1): 84.
|
| [70] |
Srideshikan SM, Brooks J, Zuro D, et al. ImmunoPET, [(64)Cu]Cu-DOTA-Anti-CD33 PET-CT, imaging of an AML xenograft model. Clin Cancer Res. 2019; 25(24): 7463-7474.
|
| [71] |
Smith LM, Nesterova A, Alley SC, Torgov MY, Carter PJ. Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol Cancer Ther. 2006; 5(6): 1474-1482.
|
| [72] |
Ingle GS, Chan P, Elliott JM, et al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008; 140(1): 46-58.
|
| [73] |
Yang T, Li W, Huang T, Zhou J. Antibody-drug conjugates for breast cancer treatment: emerging agents, targets and future directions. Int J Mol Sci. 2023; 24(15): 11903.
|
| [74] |
Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: combining targeting ability with cytotoxicity effectively. Cancer Med. 2021; 10(14): 4677-4696.
|
| [75] |
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: strategies for competitive advancement. Drug Resist Updat. 2024; 75: 101086.
|
| [76] |
Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers (Basel). 2023; 15(6): 1845.
|
| [77] |
Gebleux R, Wulhfard S, Casi G, Neri D. Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody-drug conjugates. Mol Cancer Ther. 2015; 14(11): 2606-2612.
|
| [78] |
Tivadar ST, McIntosh RS, Chua JX, et al. Monoclonal antibody targeting sialyl-di-Lewis(a)-containing internalizing and noninternalizing glycoproteins with cancer immunotherapy development potential. Mol Cancer Ther. 2020; 19(3): 790-801.
|
| [79] |
Umotoy JC, de Taeye SW. Antibody conjugates for targeted therapy against HIV-1 as an emerging tool for HIV-1 cure. Front Immunol. 2021; 12: 708806.
|
| [80] |
Pincus SH, Stackhouse M, Watt C, et al. Soluble CD4 and low molecular weight CD4-mimetic compounds sensitize cells to be killed by anti-HIV cytotoxic immunoconjugates. J Virol. 2023; 97(10): e0115423.
|
| [81] |
Punyakoti P, Behl T, Sehgal A, et al. Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer’s disease. Cell Signal. 2023; 102: 110539.
|
| [82] |
Huang Z, Braunstein Z, Chen J, et al. Precision medicine in rheumatic diseases: unlocking the potential of antibody-drug conjugates. Pharmacol Rev. 2024; 76(4): 579-598.
|
| [83] |
Johnson K, Delaney JC, Guillard T, et al. Development of an antibody fused with an antimicrobial peptide targeting Pseudomonas aeruginosa: a new approach to prevent and treat bacterial infections. PLoS Pathog. 2023; 19(9): e1011612.
|
| [84] |
Cappello E, Nieri P. From life in the sea to the clinic: the marine drugs approved and under clinical trial. Life (Basel). 2021; 11(12): 1390.
|
| [85] |
Choi Y, Choi Y, Hong S. Recent technological and intellectual property trends in antibody-drug conjugate research. Pharmaceutics. 2024; 16(2): 221.
|
| [86] |
FDA gives nod to T-DXd for HER2-mutant NSCLC. Cancer Discov. 2022; 12(10): 2224.
|
| [87] |
Goldenberg DM, Sharkey RM. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin Biol Ther. 2020; 20(8): 871-885.
|
| [88] |
Chang E, Weinstock C, Zhang L, et al. FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin Cancer Res. 2021; 27(4): 922-927.
|
| [89] |
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol. 2023; 14: 1274088.
|
| [90] |
Aghanejad A, Bonab SF, Sepehri M, et al. A review on targeting tumor microenvironment: the main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol. 2022; 207: 592-610.
|
| [91] |
Gébleux R, Stringhini M, Casanova R, Soltermann A, Neri D. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer. 2017; 140(7): 1670-1679.
|
| [92] |
Habban Akhter M, Sateesh Madhav N, Ahmad J. Epidermal growth factor receptor based active targeting: a paradigm shift towards advance tumor therapy. Artif Cells Nanomed Biotechnol. 2018; 46(sup2): 1188-1198.
|
| [93] |
Yan M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z, Kurzrock R. HER2 expression status in diverse cancers: review of results from 37, 992 patients. Cancer Metastasis Rev. 2015; 34(1): 157-164.
|
| [94] |
Marra A, Chandarlapaty S, Modi S. Management of patients with advanced-stage HER2-positive breast cancer: current evidence and future perspectives. Nat Rev Clin Oncol. 2024; 21(3): 185-202.
|
| [95] |
Nasioudis D, Gysler S, Latif N, et al. Molecular landscape of ERBB2/HER2 gene amplification among patients with gynecologic malignancies; clinical implications and future directions. Gynecol Oncol. 2024; 180: 1-5.
|
| [96] |
Odintsov I, Makarem M, Nishino M, et al. Prevalence and therapeutic targeting of high-level ERBB2 amplification in NSCLC. J Thorac Oncol. 2024; 19(5): 732-748.
|
| [97] |
Abelman RO, Medford A, Spring L, Bardia A. Antibody-drug conjugates in breast cancer: spotlight on HER2. Cancer J. 2022; 28(6): 423-428.
|
| [98] |
Jørgensen JT. The potential of trastuzumab deruxtecan as a tissue agnostic drug. Oncology. 2023; 101(12): 836-842.
|
| [99] |
Shi F, Liu Y, Zhou X, Shen P, Xue R, Zhang M. Disitamab vedotin: a novel antibody-drug conjugates for cancer therapy. Drug Deliv. 2022; 29(1): 1335-1344.
|
| [100] |
Deeks ED. Disitamab vedotin: first approval. Drugs. 2021; 81(16): 1929-1935.
|
| [101] |
Yip V, Saad OM, Leipold D, Li C, Kamath A, Shen BQ. Monomethyl auristatin E (MMAE), a payload for multiple antibody drug conjugates (ADCs), demonstrates differential red blood cell partitioning across human and animal species. Xenobiotica. 2024: 1-13.
|
| [102] |
Burris HA 3rd, Rugo HS, Vukelja SJ, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011; 29(4): 398-405.
|
| [103] |
Krop IE, Beeram M, Modi S, et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol. 2010; 28(16): 2698-2704.
|
| [104] |
Krop IE, Kim SB, Martin AG, et al. Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol. 2017; 18(6): 743-754.
|
| [105] |
Hurvitz SA, Martin M, Symmans WF, et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2018; 19(1): 115-126.
|
| [106] |
Hurvitz SA, Martin M, Jung KH, et al. Neoadjuvant trastuzumab emtansine and pertuzumab in human epidermal growth factor receptor 2-positive breast cancer: three-year outcomes from the phase III KRISTINE study. J Clin Oncol. 2019; 37(25): 2206-2216.
|
| [107] |
von Minckwitz G, Huang CS, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019; 380(7): 617-628.
|
| [108] |
Wu J, Fan D, Shao Z, et al. CACA guidelines for holistic integrative management of breast cancer. Holist Integr Oncol. 2022; 1(1): 7.
|
| [109] |
Modi S, Saura C, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020; 382(7): 610-621.
|
| [110] |
Keam SJ. Trastuzumab deruxtecan: first approval. Drugs. 2020; 80(5): 501-508.
|
| [111] |
André F, Hee Park Y, Kim SB, et al. Trastuzumab deruxtecan versus treatment of physician’s choice in patients with HER2-positive metastatic breast cancer (DESTINY-Breast02): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2023; 401(10390): 1773-1785.
|
| [112] |
Hurvitz SA, Hegg R, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. Lancet. 2023; 401(10371): 105-117.
|
| [113] |
T-DXd: new standard for HER2-low breast cancer. Cancer Discov. 2022; 12(8): 1828.
|
| [114] |
Narayan P, Dilawari A, Osgood C, et al. US Food and Drug Administration approval summary: fam-trastuzumab deruxtecan-nxki for human epidermal growth factor receptor 2-low unresectable or metastatic breast cancer. J Clin Oncol. 2023; 41(11): 2108-2116.
|
| [115] |
Mosele F, Deluche E, Lusque A, et al. Trastuzumab deruxtecan in metastatic breast cancer with variable HER2 expression: the phase 2 DAISY trial. Nat Med. 2023; 29(8): 2110-2120.
|
| [116] |
Hotta K, Aoe K, Kozuki T, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018; 13(2): 273-279.
|
| [117] |
Peters S, Stahel R, Bubendorf L, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non-small cell lung cancer: efficacy, safety, and biomarkers. Clin Cancer Res. 2019; 25(1): 64-72.
|
| [118] |
Tsurutani J, Iwata H, Krop I, et al. Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 2020; 10(5): 688-701.
|
| [119] |
Li BT, Smit EF, Goto Y, et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N Engl J Med. 2022; 386(3): 241-251.
|
| [120] |
Goto K, Goto Y, Kubo T, et al. Trastuzumab deruxtecan in patients with HER2-mutant metastatic non-small-cell lung cancer: primary results from the randomized, phase II DESTINY-Lung02 trial. J Clin Oncol. 2023; 41(31): 4852-4863.
|
| [121] |
Doi T, Shitara K, Naito Y, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 2017; 18(11): 1512-1522.
|
| [122] |
Shitara K, Iwata H, Takahashi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol. 2019; 20(6): 827-836.
|
| [123] |
Yamaguchi K, Bang YJ, Iwasa S, et al. Trastuzumab deruxtecan in anti-human epidermal growth factor receptor 2 treatment-naive patients with human epidermal growth factor receptor 2-low gastric or gastroesophageal junction adenocarcinoma: exploratory cohort results in a phase II trial. J Clin Oncol. 2023; 41(4): 816-825.
|
| [124] |
Cytryn SL, Janjigian YY. HER2 targeting in esophagogastric cancer: redefining the landscape and breaking barriers. J Natl Compr Canc Netw. 2023; 21(4): 423-429.
|
| [125] |
Xu Y, Wang Y, Gong J, et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer. 2021; 24(4): 913-925.
|
| [126] |
Peng Z, Liu T, Wei J, et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase II study. Cancer Commun (Lond). 2021; 41(11): 1173-1182.
|
| [127] |
Wang Y, Gong J, Wang A, et al. Disitamab vedotin (RC48) plus toripalimab for HER2-expressing advanced gastric or gastroesophageal junction and other solid tumours: a multicentre, open label, dose escalation and expansion phase 1 trial. EClinicalMedicine. 2024; 68: 102415.
|
| [128] |
Sartore-Bianchi A, Lonardi S, Martino C, et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: the phase II HERACLES-B trial. ESMO Open. 2020; 5(5): e000911.
|
| [129] |
Siena S, Di Bartolomeo M, Raghav K, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2021; 22(6): 779-789.
|
| [130] |
Yoshino T, Di Bartolomeo M, Raghav K, et al. Final results of DESTINY-CRC01 investigating trastuzumab deruxtecan in patients with HER2-expressing metastatic colorectal cancer. Nat Commun. 2023; 14(1): 3332.
|
| [131] |
de Vries EGE, Rüschoff J, Lolkema M, et al. Phase II study (KAMELEON) of single-agent T-DM1 in patients with HER2-positive advanced urothelial bladder cancer or pancreatic cancer/cholangiocarcinoma. Cancer Med. 2023; 12(11): 12071-12083.
|
| [132] |
Meric-Bernstam F, Makker V, Oaknin A, et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial. J Clin Oncol. 2024; 42(1): 47-58.
|
| [133] |
Lenárt S, Lenárt P, Šmarda J, Remšík J, Souček K, Beneš P. Trop2: jack of all trades, master of none. Cancers (Basel). 2020; 12(11): 3328.
|
| [134] |
Zeng P, Chen MB, Zhou LN, Tang M, Liu CY, Lu PH. Impact of TROP2 expression on prognosis in solid tumors: a systematic review and meta-analysis. Sci Rep. 2016; 6: 33658.
|
| [135] |
Dum D, Taherpour N, Menz A, et al. Trophoblast cell surface antigen 2 expression in human tumors: a tissue microarray study on 18, 563 tumors. Pathobiology. 2022; 89(4): 245-258.
|
| [136] |
Wen Y, Ouyang D, Zou Q, et al. A literature review of the promising future of TROP2: a potential drug therapy target. Ann Transl Med. 2022; 10(24): 1403.
|
| [137] |
Bardia A, Messersmith WA, Kio EA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann Oncol. 2021; 32(6): 746-756.
|
| [138] |
Cardillo TM, Govindan SV, Sharkey RM, et al. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015; 26(5): 919-931.
|
| [139] |
Starodub AN, Ocean AJ, Shah MA, et al. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015; 21(17): 3870-3878.
|
| [140] |
Heist RS, Guarino MJ, Masters G, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-Trop-2 drug conjugate, sacituzumab govitecan. J Clin Oncol. 2017; 35(24): 2790-2797.
|
| [141] |
Gray JE, Heist RS, Starodub AN, et al. Therapy of small cell lung cancer (SCLC) with a topoisomerase-I-inhibiting antibody-drug conjugate (ADC) targeting Trop-2, sacituzumab govitecan. Clin Cancer Res. 2017; 23(19): 5711-5719.
|
| [142] |
Loriot Y, Petrylak DP, Rezazadeh Kalebasty A, et al. TROPHY-U-01, a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors: updated safety and efficacy outcomes. Ann Oncol. 2024; 35(4): 392-401.
|
| [143] |
Kalinsky K, Diamond JR, Vahdat LT, et al. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: final results from a phase I/II, single-arm, basket trial. Ann Oncol. 2020; 31(12): 1709-1718.
|
| [144] |
Cheng Y, Yuan X, Tian Q, et al. Preclinical profiles of SKB264, a novel anti-TROP2 antibody conjugated to topoisomerase inhibitor, demonstrated promising antitumor efficacy compared to IMMU-132. Front Oncol. 2022; 12: 951589.
|
| [145] |
Okajima D, Yasuda S, Maejima T, et al. Datopotamab deruxtecan, a novel TROP2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol Cancer Ther. 2021; 20(12): 2329-2340.
|
| [146] |
Bardia A, Mayer IA, Diamond JR, et al. Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol. 2017; 35(19): 2141-2148.
|
| [147] |
Wahby S, Fashoyin-Aje L, Osgood CL, et al. FDA Approval summary: accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin Cancer Res. 2021; 27(7): 1850-1854.
|
| [148] |
Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021; 384(16): 1529-1541.
|
| [149] |
Rugo HS, Bardia A, Marmé F, et al. Sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2022; 40(29): 3365-3376.
|
| [150] |
Tagawa ST, Balar AV, Petrylak DP, et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021; 39(22): 2474-2485.
|
| [151] |
Shimizu T, Sands J, Yoh K, et al. First-in-human, phase I dose-escalation and dose-expansion study of trophoblast cell-surface antigen 2-directed antibody-drug conjugate datopotamab deruxtecan in non-small-cell lung cancer: tROPION-PanTumor01. J Clin Oncol. 2023; 41(29): 4678-4687.
|
| [152] |
Meric-Bernstam F, Spira AI, Lisberg AE, et al. TROPION-PanTumor01: dose analysis of the TROP2-directed antibody-drug conjugate (ADC) datopotamab deruxtecan (Dato-DXd, DS-1062) for the treatment (Tx) of advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 2021; 39(15): 9058-9058. suppl.
|
| [153] |
Majumder A, Sandhu M, Banerji D, Steri V, Olshen A, Moasser MM. The role of HER2 and HER3 in HER2-amplified cancers beyond breast cancers. Sci Rep. 2021; 11(1): 9091.
|
| [154] |
Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci USA. 2009; 106(51): 21608-21613.
|
| [155] |
Montero JC, Rodríguez-Barrueco R, Ocaña A, Díaz-Rodríguez E, Esparís-Ogando A, Pandiella A. Neuregulins and cancer. Clin Cancer Res. 2008; 14(11): 3237-3241.
|
| [156] |
Alimandi M, Romano A, Curia MC, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene. 1995; 10(9): 1813-1821.
|
| [157] |
Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007; 316(5827): 1039-1043.
|
| [158] |
Kunii K, Davis L, Gorenstein J, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008; 68(7): 2340-2348.
|
| [159] |
Liu J, Kern JA. Neuregulin-1 activates the JAK-STAT pathway and regulates lung epithelial cell proliferation. Am J Respir Cell Mol Biol. 2002; 27(3): 306-313.
|
| [160] |
Suenaga A, Takada N, Hatakeyama M, et al. Novel mechanism of interaction of p85 subunit of phosphatidylinositol 3-kinase and ErbB3 receptor-derived phosphotyrosyl peptides. J Biol Chem. 2005; 280(2): 1321-1326.
|
| [161] |
Xu B, Huo Z, Huang H, et al. The expression and prognostic value of the epidermal growth factor receptor family in glioma. BMC Cancer. 2021; 21(1): 451.
|
| [162] |
Kim H, Choi JY, Rah YC, et al. ErbB3, a possible prognostic factor of head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020; 129(4): 377-387.
|
| [163] |
Hashimoto Y, Koyama K, Kamai Y, et al. A novel HER3-targeting antibody-drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin Cancer Res. 2019; 25(23): 7151-7161.
|
| [164] |
Koganemaru S, Kuboki Y, Koga Y, et al. U3-1402, a novel HER3-targeting antibody-drug conjugate, for the treatment of colorectal cancer. Mol Cancer Ther. 2019; 18(11): 2043-2050.
|
| [165] |
Haratani K, Yonesaka K, Takamura S, et al. U3-1402 sensitizes HER3-expressing tumors to PD-1 blockade by immune activation. J Clin Invest. 2020; 130(1): 374-388.
|
| [166] |
Jänne PA, Baik C, Su WC, et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 2022; 12(1): 74-89.
|
| [167] |
Yu HA, Goto Y, Hayashi H, et al. HERTHENA-Lung01, a phase II trial of patritumab deruxtecan (HER3-DXd) in epidermal growth factor receptor-mutated non-small-cell lung cancer after epidermal growth factor receptor tyrosine kinase inhibitor therapy and platinum-based chemotherapy. J Clin Oncol. 2023; 41(35): 5363-5375.
|
| [168] |
Yu HA, Yang JC, Hayashi H, et al. HERTHENA-Lung01: a phase II study of patritumab deruxtecan (HER3-DXd) in previously treated metastatic EGFR-mutated NSCLC. Future Oncol. 2023; 19(19): 1319-1329.
|
| [169] |
Coleman N, Yap TA, Heymach JV, Meric-Bernstam F, Le X. Antibody-drug conjugates in lung cancer: dawn of a new era? NPJ Precis Oncol. 2023; 7(1): 5.
|
| [170] |
Mok T, Jänne PA, Nishio M, et al. HERTHENA-Lung02: phase III study of patritumab deruxtecan in advanced EGFR-mutated NSCLC after a third-generation EGFR TKI. Future Oncol. 2024; 20(15): 969-980.
|
| [171] |
Oliveira M, Falato C, Cejalvo JM, et al. Patritumab deruxtecan in untreated hormone receptor-positive/HER2-negative early breast cancer: final results from part A of the window-of-opportunity SOLTI TOT-HER3 pre-operative study. Ann Oncol. 2023; 34(8): 670-680.
|
| [172] |
Pascual T, Oliveira M, Ciruelos E, et al. SOLTI-1805 TOT-HER3 study concept: a window-of-opportunity trial of patritumab deruxtecan, a HER3 directed antibody drug conjugate, in patients with early breast cancer. Front Oncol. 2021; 11: 638482.
|
| [173] |
Krop IE, Masuda N, Mukohara T, et al. Patritumab deruxtecan (HER3-DXd), a human epidermal growth factor receptor 3-directed antibody-drug conjugate, in patients with previously treated human epidermal growth factor receptor 3-expressing metastatic breast cancer: a multicenter, phase I/II trial. J Clin Oncol. 2023; 41(36): 5550-5560.
|
| [174] |
Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020; 20(10): 815-834.
|
| [175] |
Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006; 366(1): 2-16.
|
| [176] |
Levantini E, Maroni G, Del Re M, Tenen DG. EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol. 2022; 85: 253-275.
|
| [177] |
Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: insight and foresight. Biochim Biophys Acta Rev Cancer. 2023; 1878(6): 188967.
|
| [178] |
Hsu R, Benjamin DJ. A narrative review of antibody-drug conjugates in EGFR-mutated non-small cell lung cancer. Front Oncol. 2023; 13: 1252652.
|
| [179] |
Yu J, Fang T, Yun C, Liu X, Cai X. Antibody-drug conjugates targeting the human epidermal growth factor receptor family in cancers. Front Mol Biosci. 2022; 9: 847835.
|
| [180] |
Phillips AC, Boghaert ER, Vaidya KS, et al. ABT-414, an antibody–drug conjugate targeting a tumor-selective EGFR epitope. Mol Cancer Ther. 2016; 15(4): 661-669.
|
| [181] |
van den Bent M, Gan HK, Lassman AB, et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol. 2017; 80(6): 1209-1217.
|
| [182] |
R-Xu H, M-Z Qiu, Zhang Y, Wei X-L, Hu C. First-in-human dose-escalation study of anti-EGFR ADC MRG003 in patients with relapsed/refractory solid tumors. J Clin Oncol. 2020; 38(15): 3550-3550. suppl.
|
| [183] |
Qiu MZ, Zhang Y, Guo Y, et al. Evaluation of safety of treatment with anti-epidermal growth factor receptor antibody drug conjugate MRG003 in patients with advanced solid tumors: a phase 1 nonrandomized clinical trial. JAMA Oncol. 2022; 8(7): 1042-1046.
|
| [184] |
Jangphattananont N, Sato H, Imamura R, et al. Distinct localization of mature HGF from its precursor form in developing and repairing the stomach. Int J Mol Sci. 2019; 20(12): 2955.
|
| [185] |
Liu X, Sun R, Chen J, et al. Crosstalk mechanisms between HGF/c-Met axis and ncRNAs in malignancy. Front Cell Dev Biol. 2020; 8: 23.
|
| [186] |
Lam BQ, Dai L, Qin Z. The role of HGF/c-MET signaling pathway in lymphoma. J Hematol Oncol. 2016; 9(1): 135.
|
| [187] |
Fu J, Su X, Li Z, et al. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene. 2021; 40(28): 4625-4651.
|
| [188] |
Mohan CD, Shanmugam MK, Gowda SGS, Chinnathambi A, Rangappa KS, Sethi G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. Phytomedicine. 2024; 128: 155379.
|
| [189] |
Zhao Y, Ye W, Wang YD, Chen WD. HGF/c-Met: a key promoter in liver regeneration. Front Pharmacol. 2022; 13: 808855.
|
| [190] |
Que W, Chen J, Chuang M, Jiang D. Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. Apmis. 2012; 120(3): 195-203.
|
| [191] |
Mer AH, Mirzaei Y, Misamogooe F, et al. Progress of antibody-drug conjugates (ADCs) targeting c-Met in cancer therapy; insights from clinical and preclinical studies. Drug Deliv Transl Res. 2024.
|
| [192] |
Strickler JH, Weekes CD, Nemunaitis J, et al. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 2018; 36(33): 3298-3306.
|
| [193] |
Camidge DR, Morgensztern D, Heist RS, et al. Phase I study of 2-or 3-week dosing of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, monotherapy in patients with advanced non-small cell lung carcinoma. Clin Cancer Res. 2021; 27(21): 5781-5792.
|
| [194] |
Waqar SN, Redman MW, Arnold SM, et al. A phase II study of telisotuzumab vedotin in patients with c-MET-positive stage IV or recurrent squamous cell lung cancer (LUNG-MAP Sub-study S1400K, NCT03574753). Clin Lung Cancer. 2021; 22(3): 170-177.
|
| [195] |
Camidge DR, Barlesi F, Goldman JW, et al. Phase Ib study of telisotuzumab vedotin in combination with erlotinib in patients with c-Met protein-expressing non-small-cell lung cancer. J Clin Oncol. 2023; 41(5): 1105-1115.
|
| [196] |
Reymond N, Fabre S, Lecocq E, Adelaïde J, Dubreuil P, Lopez M. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem. 2001; 276(46): 43205-43215.
|
| [197] |
Samanta D, Almo SC. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci. 2015; 72(4): 645-658.
|
| [198] |
Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 2008; 9(8): 603-615.
|
| [199] |
Fabre S, Reymond N, Cocchi F, et al. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C′-C″-D beta-strands of the nectin1 V domain. J Biol Chem. 2002; 277(30): 27006-27013.
|
| [200] |
Liu R, Zhao K, Wang K, et al. Prognostic value of nectin-4 in human cancers: a meta-analysis. Front Oncol. 2023; 13: 1081655.
|
| [201] |
Deng H, Shi H, Chen L, Zhou Y, Jiang J. Over-expression of Nectin-4 promotes progression of esophageal cancer and correlates with poor prognosis of the patients. Cancer Cell Int. 2019; 19: 106.
|
| [202] |
M-Rabet MR, Cabaud O, Josselin E, et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann Oncol. 2017; 28(4): 769-776.
|
| [203] |
Mayer M, Nachtsheim L, Prinz J, et al. Nectin-4 is frequently expressed in primary salivary gland cancer and corresponding lymph node metastases and represents an important treatment-related biomarker. Clin Exp Metastasis. 2023; 40(5): 395-405.
|
| [204] |
Nishiwada S, Sho M, Yasuda S, et al. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J Exp Clin Cancer Res. 2015; 34(1): 30.
|
| [205] |
Chang HK, Park YH, Choi JA, et al. Nectin-4 as a predictive marker for poor prognosis of endometrial cancer with mismatch repair impairment. Cancers (Basel). 2023; 15(10): 2865.
|
| [206] |
Takano A, Ishikawa N, Nishino R, et al. Identification of nectin-4 oncoprotein as a and therapeutic target for lung cancer. Cancer Res. 2009; 69(16): 6694-6703.
|
| [207] |
Zhang Y, Zhang J, Shen Q, et al. High expression of Nectin-4 is associated with unfavorable prognosis in gastric cancer. Oncol Lett. 2018; 15(6): 8789-8795.
|
| [208] |
Tomiyama E, Fujita K, Rodriguez Pena MDC, et al. Expression of Nectin-4 and PD-L1 in upper tract urothelial carcinoma. Int J Mol Sci. 2020; 21(15): 5390.
|
| [209] |
Chatterjee S, Sinha S, Kundu CN. Nectin cell adhesion molecule-4 (NECTIN-4): a potential target for cancer therapy. Eur J Pharmacol. 2021; 911: 174516.
|
| [210] |
Zhang Y, Liu S, Wang L, et al. A novel PI3K/AKT signaling axis mediates Nectin-4-induced gallbladder cancer cell proliferation, metastasis and tumor growth. Cancer Lett. 2016; 375(1): 179-189.
|
| [211] |
Zhang Y, Chen P, Yin W, Ji Y, Shen Q, Ni Q. Nectin-4 promotes gastric cancer progression via the PI3K/AKT signaling pathway. Hum Pathol. 2018; 72: 107-116.
|
| [212] |
Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003; 21(7): 778-784.
|
| [213] |
Challita-Eid PM, Satpayev D, Yang P, et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016; 76(10): 3003-3013.
|
| [214] |
Rosenberg J, Sridhar SS, Zhang J, et al. EV-101: a phase I study of single-agent enfortumab vedotin in patients with Nectin-4-positive solid tumors, including metastatic urothelial carcinoma. J Clin Oncol. 2020; 38(10): 1041-1049.
|
| [215] |
Rosenberg JE, O’Donnell PH, Balar AV, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019; 37(29): 2592-2600.
|
| [216] |
Yu EY, Petrylak DP, O’Donnell PH, et al. Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV-201): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2021; 22(6): 872-882.
|
| [217] |
Powles T, Rosenberg JE, Sonpavde GP, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021; 384(12): 1125-1135.
|
| [218] |
Rosenberg JE, Powles T, Sonpavde GP, et al. EV-301 long-term outcomes: 24-month findings from the phase III trial of enfortumab vedotin versus chemotherapy in patients with previously treated advanced urothelial carcinoma. Ann Oncol. 2023; 34(11): 1047-1054.
|
| [219] |
Powles T, Valderrama BP, Gupta S, et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N Engl J Med. 2024; 390(10): 875-888.
|
| [220] |
Thomas J, Klebanov A, John S, et al. CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer. 2023; 14: 12-29.
|
| [221] |
Sack TL, Gum JR, Low MG, Kim YS. Release of carcinoembryonic antigen from human colon cancer cells by phosphatidylinositol-specific phospholipase C. J Clin Invest. 1988; 82(2): 586-593.
|
| [222] |
Pakdel A, Naghibalhossaini F, Mokarram P, Jaberipour M, Hosseini A. Regulation of carcinoembryonic antigen release from colorectal cancer cells. Mol Biol Rep. 2012; 39(4): 3695-3704.
|
| [223] |
Hefta SA, Hefta LJ, Lee TD, Paxton RJ, Shively JE. Carcinoembryonic antigen is anchored to membranes by covalent attachment to a glycosylphosphatidylinositol moiety: identification of the ethanolamine linkage site. Proc Natl Acad Sci USA. 1988; 85(13): 4648-4652.
|
| [224] |
Kim KS, Kim JT, Lee SJ, et al. Overexpression and clinical significance of carcinoembryonic antigen-related cell adhesion molecule 6 in colorectal cancer. Clin Chim Acta. 2013; 415: 12-19.
|
| [225] |
Hammarström S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999; 9(2): 67-81.
|
| [226] |
Jothy S, Yuan SY, Shirota K. Transcription of carcinoembryonic antigen in normal colon and colon carcinoma. In situ hybridization study and implication for a new in vivo functional model. Am J Pathol. 1993; 143(1): 250-257.
|
| [227] |
Kodera Y, Isobe K, Yamauchi M, et al. Expression of carcinoembryonic antigen (CEA) and nonspecific crossreacting antigen (NCA) in gastrointestinal cancer; the correlation with degree of differentiation. Br J Cancer. 1993; 68(1): 130-136.
|
| [228] |
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013; 32(3-4): 643-671.
|
| [229] |
Decary S, Berne PF, Nicolazzi C, et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin Cancer Res. 2020; 26(24): 6589-6599.
|
| [230] |
Gazzah A, Bedard PL, Hierro C, et al. Safety, pharmacokinetics, and antitumor activity of the anti-CEACAM5-DM4 antibody-drug conjugate tusamitamab ravtansine (SAR408701) in patients with advanced solid tumors: first-in-human dose-escalation study. Ann Oncol. 2022; 33(4): 416-425.
|
| [231] |
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol. 2020; 13(1): 93.
|
| [232] |
Bajaj MS, Birktoft JJ, Steer SA, Bajaj SP. Structure and biology of tissue factor pathway inhibitor. Thromb Haemost. 2001; 86(4): 959-972.
|
| [233] |
Kocatürk B, Van den Berg YW, Tieken C, et al. Alternatively spliced tissue factor promotes breast cancer growth in a β1 integrin-dependent manner. Proc Natl Acad Sci USA. 2013; 110(28): 11517-11522.
|
| [234] |
Versteeg HH, Spek CA, Slofstra SH, Diks SH, Richel DJ, Peppelenbosch MP. FVIIa:tF induces cell survival via G12/G13-dependent Jak/STAT activation and BclXL production. Circ Res. 2004; 94(8): 1032-1040.
|
| [235] |
Nakasaki T, Wada H, Shigemori C, et al. Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer. Am J Hematol. 2002; 69(4): 247-254.
|
| [236] |
Yin YJ, Salah Z, Maoz M, et al. Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. Faseb J. 2003; 17(2): 163-174.
|
| [237] |
Milsom C, Magnus N, Meehan B, Al-Nedawi K, Garnier D, Rak J. Tissue factor and cancer stem cells: is there a linkage? Arterioscler Thromb Vasc Biol. 2009; 29(12): 2005-2014.
|
| [238] |
Poon RT, Lau CP, Ho JW, Yu WC, Fan ST, Wong J. Tissue factor expression correlates with tumor angiogenesis and invasiveness in human hepatocellular carcinoma. Clin Cancer Res. 2003; 9(14): 5339-5345.
|
| [239] |
Mueller BM, Reisfeld RA, Edgington TS, Ruf W. Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA. 1992; 89(24): 11832-11836.
|
| [240] |
Bromberg ME, Konigsberg WH, Madison JF, Pawashe A, Garen A. Tissue factor promotes melanoma metastasis by a pathway independent of blood coagulation. Proc Natl Acad Sci USA. 1995; 92(18): 8205-8209.
|
| [241] |
Breij EC, de Goeij BE, Verploegen S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014; 74(4): 1214-1226.
|
| [242] |
de Bono JS, Concin N, Hong DS, et al. Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): a first-in-human, multicentre, phase 1–2 trial. Lancet Oncol. 2019; 20(3): 383-393.
|
| [243] |
Markham A. Tisotumab vedotin: first approval. Drugs. 2021; 81(18): 2141-2147.
|
| [244] |
Luhrs CA, Slomiany BL. A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail. J Biol Chem. 1989; 264(36): 21446-21449.
|
| [245] |
Rothberg KG, Ying YS, Kolhouse JF, Kamen BA, Anderson RG. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol. 1990; 110(3): 637-649.
|
| [246] |
Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020; 17(6): 349-359.
|
| [247] |
Yao C, Evans CO, Stevens VL, Owens TR, Oyesiku NM. Folate receptor alpha regulates cell proliferation in mouse gonadotroph alphaT3-1 cells. Exp Cell Res. 2009; 315(18): 3125-3132.
|
| [248] |
Kelemen LE. The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer. 2006; 119(2): 243-250.
|
| [249] |
Siu MK, Kong DS, Chan HY, et al. Paradoxical impact of two folate receptors, FRα and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLoS One. 2012; 7(11): e47201.
|
| [250] |
Toffoli G, Russo A, Gallo A, et al. Expression of folate binding protein as a prognostic factor for response to platinum-containing chemotherapy and survival in human ovarian cancer. Int J Cancer. 1998; 79(2): 121-126.
|
| [251] |
Cheng X, Li J, Tanaka K, et al. MORAb-202, an antibody-drug conjugate utilizing humanized anti-human FRα farletuzumab and the microtubule-targeting agent eribulin, has potent antitumor activity. Mol Cancer Ther. 2018; 17(12): 2665-2675.
|
| [252] |
Shimizu T, Fujiwara Y, Yonemori K, et al. First-in-human phase 1 study of MORAb-202, an antibody–drug conjugate comprising farletuzumab linked to eribulin mesylate, in patients with folate receptor-α–positive advanced solid tumors. Clin Cancer Res. 2021; 27(14): 3905-3915.
|
| [253] |
Matsunaga Y, Yamaoka T, Ohba M, et al. Novel anti-FOLR1 antibody-drug conjugate MORAb-202 in breast cancer and non-small cell lung cancer cells. Antibodies (Basel). 2021; 10(1): 6.
|
| [254] |
Heo YA. Mirvetuximab soravtansine: first approval. Drugs. 2023; 83(3): 265-273.
|
| [255] |
Ab O, Whiteman KR, Bartle LM, et al. IMGN853, a folate receptor-α (FRα)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol Cancer Ther. 2015; 14(7): 1605-1613.
|
| [256] |
Kovtun YV, Audette CA, Ye Y, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006; 66(6): 3214-3221.
|
| [257] |
Moore KN, Martin LP, O’Malley DM, et al. Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase I expansion study. J Clin Oncol. 2017; 35(10): 1112-1118.
|
| [258] |
Moore KN, Oza AM, Colombo N, et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol. 2021; 32(6): 757-765.
|
| [259] |
Moore KN, Angelergues A, Konecny GE, et al. Phase III MIRASOL (GOG 3045/ENGOT-ov55) study: initial report of mirvetuximab soravtansine vs. investigator’s choice of chemotherapy in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-alpha expression. J Clin Oncol. 2023; 41(17). suppl. LBA5507-LBA5507.
|
| [260] |
Gilbert L, Oaknin A, Matulonis UA, et al. Safety and efficacy of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2023; 170: 241-247.
|
| [261] |
Bogani G, Coleman RL, Vergote I, et al. Mirvetuximab soravtansine-gynx: first antibody/antigen-drug conjugate (ADC) in advanced or recurrent ovarian cancer. Int J Gynecol Cancer. 2024; 34(4): 469-477.
|
| [262] |
Aschenbrenner DS. New drug treats female reproductive cancers. Am J Nurs. 2023; 123(4): 25.
|
| [263] |
Moore KN, O’Malley DM, Vergote I, et al. Safety and activity findings from a phase 1b escalation study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with carboplatin in patients with platinum-sensitive ovarian cancer. Gynecol Oncol. 2018; 151(1): 46-52.
|
| [264] |
Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet. 2011; 20(5): 905-916.
|
| [265] |
Ranallo N, Bocchini M, Menis J, et al. Delta-like ligand 3 (DLL3): an attractive actionable target in tumors with neuroendocrine origin. Expert Rev Anticancer Ther. 2022; 22(6): 597-603.
|
| [266] |
Kim JW, Ko JH, Sage J. DLL3 regulates Notch signaling in small cell lung cancer. iScience. 2022; 25(12): 105603.
|
| [267] |
Puca L, Gavyert K, Sailer V, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 2019; 11(484): eaav0891.
|
| [268] |
Jungk C, Mock A, Exner J, et al. Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone. BMC Med. 2016; 14(1): 170.
|
| [269] |
Matsuo K, Taniguchi K, Hamamoto H, et al. Delta-like 3 localizes to neuroendocrine cells and plays a pivotal role in gastrointestinal neuroendocrine malignancy. Cancer Sci. 2019; 110(10): 3122-3131.
|
| [270] |
George J, Walter V, Peifer M, et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun. 2018; 9(1): 1048.
|
| [271] |
Koshkin VS, Garcia JA, Reynolds J, et al. Transcriptomic and protein analysis of small-cell bladder cancer (SCBC) identifies prognostic biomarkers and DLL3 as a relevant therapeutic target. Clin Cancer Res. 2019; 25(1): 210-221.
|
| [272] |
Furuta M, Kikuchi H, Shoji T, et al. DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. Cancer Sci. 2019; 110(5): 1599-1608.
|
| [273] |
Rojo F, Corassa M, Mavroudis D, et al. International real-world study of DLL3 expression in patients with small cell lung cancer. Lung Cancer. 2020; 147: 237-243.
|
| [274] |
Lashari BH, Vallatharasu Y, Kolandra L, Hamid M, Uprety D. Rovalpituzumab tesirine: a novel DLL3-targeting antibody-drug conjugate. Drugs R D. 2018; 18(4): 255-258.
|
| [275] |
Rossi A. Rovalpituzumab tesirine and DLL3: a new challenge for small-cell lung cancer. Lancet Oncol. 2017; 18(1): 3-5.
|
| [276] |
Rudin CM, Pietanza MC, Bauer TM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017; 18(1): 42-51.
|
| [277] |
Morgensztern D, Besse B, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study. Clin Cancer Res. 2019; 25(23): 6958-6966.
|
| [278] |
Blackhall F, Jao K, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-High SCLC: results From the phase 3 TAHOE study. J Thorac Oncol. 2021; 16(9): 1547-1558.
|
| [279] |
Chapoval AI, Ni J, Lau JS, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001; 2(3): 269-274.
|
| [280] |
Sun M, Richards S, Prasad DV, Mai XM, Rudensky A, Dong C. Characterization of mouse and human B7-H3 genes. J Immunol. 2002; 168(12): 6294-6297.
|
| [281] |
Zhao B, Li H, Xia Y, et al. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol. 2022; 15(1): 153.
|
| [282] |
Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer. 2023; 22(1): 43.
|
| [283] |
Wang J, Duan J, Xing L, et al. ARTEMIS-001: phase 1 study of HS-20093, a B7-H3–targeting antibody-drug conjugate, in patients with advanced solid tumor. J Clin Oncol. 2023; 41(16): 3017-3017. suppl.
|
| [284] |
Feustel K, Martin J, Falchook GS. B7-H3 inhibitors in oncology clinical trials: a review. J Immunother Precis Oncol. 2024; 7(1): 53-66.
|
| [285] |
Yamato M, Hasegawa J, Maejima T, et al. DS-7300a, a DNA topoisomerase I inhibitor, DXd-based antibody-drug conjugate targeting B7-H3, exerts potent antitumor activities in preclinical models. Mol Cancer Ther. 2022; 21(4): 635-646.
|
| [286] |
Patel MR, Johnson ML, Falchook GS, et al. DS-7300 (B7-H3 DXd-ADC) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): a subgroup analysis of a phase 1/2 multicenter study. J Clin Oncol. 2022; 40(6): 87-87. suppl.
|
| [287] |
Scribner JA, Brown JG, Son T, et al. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol Cancer Ther. 2020; 19(11): 2235-2244.
|
| [288] |
Jang S, Powderly JD, Spira AI, et al. Phase 1 dose escalation study of MGC018, an anti-B7-H3 antibody-drug conjugate (ADC), in patients with advanced solid tumors. J Clin Oncol. 2021; 39(15): 2631-2631. suppl.
|
| [289] |
Powderly J, Kaminker P, Zhao E, Casey D, Shenderov E. 757 A phase 1/1b dose escalation and cohort expansion study of MGC018 in combination with lorigerlimab in patients with advanced solid tumors (AST). J ImmunoTher Cancer. 2022; 10(2): A789-A789. Suppl.
|
| [290] |
Li X, Ding Y, Zi M, et al. CD19, from bench to bedside. Immunol Lett. 2017; 183: 86-95.
|
| [291] |
Zammarchi F, Corbett S, Adams L, et al. ADCT-402, a PBD dimer-containing antibody drug conjugate targeting CD19-expressing malignancies. Blood. 2018; 131(10): 1094-1105.
|
| [292] |
Kahl BS, Hamadani M, Radford J, et al. A phase I study of ADCT-402 (loncastuximab tesirine), a novel pyrrolobenzodiazepine-based antibody-drug conjugate, in relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2019; 25(23): 6986-6994.
|
| [293] |
Hamadani M, Radford J, Carlo-Stella C, et al. Final results of a phase 1 study of loncastuximab tesirine in relapsed/refractory B-cell non-Hodgkin lymphoma. Blood. 2021; 137(19): 2634-2645.
|
| [294] |
Caimi PF, Ai WZ, Alderuccio JP, et al. Loncastuximab tesirine in relapsed/refractory diffuse large B-cell lymphoma: long-term efficacy and safety from the phase II LOTIS-2 study. Haematologica. 2024; 109(4): 1184-1193.
|
| [295] |
Caimi PF, Ai W, Alderuccio JP, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021; 22(6): 790-800.
|
| [296] |
Lee A. Loncastuximab tesirine: first approval. Drugs. 2021; 81(10): 1229-1233.
|
| [297] |
Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 1997; 15: 481-504.
|
| [298] |
Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol. 2011; 2: 96.
|
| [299] |
Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity. 2005; 22(1): 9-18.
|
| [300] |
Doody GM, Justement LB, Delibrias CC, et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science. 1995; 269(5221): 242-244.
|
| [301] |
Clark EA, Giltiay NV. CD22: a Regulator of innate and adaptive B cell responses and autoimmunity. Front Immunol. 2018; 9: 2235.
|
| [302] |
Ghosh S, Bandulet C, Nitschke L. Regulation of B cell development and B cell signalling by CD22 and its ligands alpha2, 6-linked sialic acids. Int Immunol. 2006; 18(4): 603-611.
|
| [303] |
Piccaluga PP, Arpinati M, Candoni A, et al. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leuk Lymphoma. 2011; 52(2): 325-327.
|
| [304] |
Thota S, Advani A. Inotuzumab ozogamicin in relapsed B-cell acute lymphoblastic leukemia. Eur J Haematol. 2017; 98(5): 425-434.
|
| [305] |
Advani A, Coiffier B, Czuczman MS, et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol. 2010; 28(12): 2085-2093.
|
| [306] |
Williams S, Kim M. Inotuzumab ozogamicin in relapsed or refractory B-cell acute lymphoblastic leukemia. J Adv Pract Oncol. 2018; 9(6): 670-676.
|
| [307] |
Advani A, Coiffier B, Czuczman MS, et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol. 2010; 28(12): 2085-2093.
|
| [308] |
Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017; 77(14): 1603-1610.
|
| [309] |
Stelljes M, Advani AS, DeAngelo DJ, et al. Time to first subsequent salvage therapy in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial. Clin Lymphoma Myeloma Leuk. 2022; 22(9): e836-e843.
|
| [310] |
Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016; 375(8): 740-753.
|
| [311] |
Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019; 125(14): 2474-2487.
|
| [312] |
Kantarjian HM, Stock W, Cassaday RD, et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE trial: cD22 pharmacodynamics, efficacy, and safety by baseline CD22. Clin Cancer Res. 2021; 27(10): 2742-2754.
|
| [313] |
Jabbour E, Short NJ, Senapati J, et al. Mini-hyper-CVD plus inotuzumab ozogamicin, with or without blinatumomab, in the subgroup of older patients with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphocytic leukaemia: long-term results of an open-label phase 2 trial. Lancet Haematol. 2023; 10(6): e433-e444.
|
| [314] |
Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol. 2018; 4(2): 230-234.
|
| [315] |
Dang NH, Ogura M, Castaigne S, et al. Randomized, phase 3 trial of inotuzumab ozogamicin plus rituximab versus chemotherapy plus rituximab for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Br J Haematol. 2018; 182(4): 583-586.
|
| [316] |
Wagner-Johnston ND, Goy A, Rodriguez MA, et al. A phase 2 study of inotuzumab ozogamicin and rituximab, followed by autologous stem cell transplant in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk Lymphoma. 2015; 56(10): 2863-2869.
|
| [317] |
Dürkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell. 1992; 68(3): 421-427.
|
| [318] |
Harlin H, Podack E, Boothby M, Alegre ML. TCR-independent CD30 signaling selectively induces IL-13 production via a TNF receptor-associated factor/p38 mitogen-activated protein kinase-dependent mechanism. J Immunol. 2002; 169(5): 2451-2459.
|
| [319] |
Zheng B, Fiumara P, Li YV, et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood. 2003; 102(3): 1019-1027.
|
| [320] |
Wright CW, Rumble JM, Duckett CS. CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells. J Biol Chem. 2007; 282(14): 10252-10262.
|
| [321] |
Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995; 85(1): 1-14.
|
| [322] |
Karube K, Kakimoto Y, Tonozuka Y, Ohshima K. The expression of CD30 and its clinico-pathologic significance in peripheral T-cell lymphomas. Expert Rev Hematol. 2021; 14(8): 777-787.
|
| [323] |
Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998; 10(6): 457-470.
|
| [324] |
Nakashima M, Uchimaru K. CD30 expression and its functions during the disease progression of adult T-cell leukemia/lymphoma. Int J Mol Sci. 2023; 24(10): 8731.
|
| [325] |
Faber ML, Oldham RAA, Thakur A, et al. Novel anti-CD30/CD3 bispecific antibodies activate human T cells and mediate potent anti-tumor activity. Front Immunol. 2023; 14: 1225610.
|
| [326] |
Van Der Weyden C, Dickinson M, Whisstock J, Prince HM. Brentuximab vedotin in T-cell lymphoma. Expert Rev Hematol. 2019; 12(1): 5-19.
|
| [327] |
Sutherland MS, Sanderson RJ, Gordon KA, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006; 281(15): 10540-10547.
|
| [328] |
Okeley NM, Miyamoto JB, Zhang X, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res. 2010; 16(3): 888-897.
|
| [329] |
Alpdogan O, Kartan S, Johnson W, Sokol K, Porcu P. Systemic therapy of cutaneous T-cell lymphoma (CTCL). Chin Clin Oncol. 2019; 8(1): 10.
|
| [330] |
Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010; 363(19): 1812-1821.
|
| [331] |
Connors JM, Jurczak W, Straus DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018; 378(4): 331-344.
|
| [332] |
Moskowitz CH, Walewski J, Nademanee A, et al. Five-year PFS from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse. Blood. 2018; 132(25): 2639-2642.
|
| [333] |
Nademanee A, Sureda A, Stiff P, et al. Safety analysis of brentuximab vedotin from the phase III AETHERA trial in Hodgkin lymphoma in the post-transplant consolidation setting. Biol Blood Marrow Transplant. 2018; 24(11): 2354-2359.
|
| [334] |
Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015; 385(9980): 1853-1862.
|
| [335] |
Horwitz S, O’Connor OA, Pro B, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol. 2022; 33(3): 288-298.
|
| [336] |
Horwitz S, O’Connor OA, Pro B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019; 393(10168): 229-240.
|
| [337] |
Killock D. ECHELON-2 - brentuximab raises PTCL outcomes to new levels. Nat Rev Clin Oncol. 2019; 16(3): 145.
|
| [338] |
Kim YH, Prince HM, Whittaker S, et al. Response to brentuximab vedotin versus physician’s choice by CD30 expression and large cell transformation status in patients with mycosis fungoides: an ALCANZA sub-analysis. Eur J Cancer. 2021; 148: 411-421.
|
| [339] |
Horwitz SM, Scarisbrick JJ, Dummer R, et al. Randomized phase 3 ALCANZA study of brentuximab vedotin vs physician’s choice in cutaneous T-cell lymphoma: final data. Blood Adv. 2021; 5(23): 5098-5106.
|
| [340] |
Suri A, Mould DR, Liu Y, Jang G, Venkatakrishnan K. Population PK and exposure-response relationships for the antibody-drug conjugate brentuximab vedotin in CTCL patients in the phase III ALCANZA study. Clin Pharmacol Ther. 2018; 104(5): 989-999.
|
| [341] |
Prince HM, Kim YH, Horwitz SM, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017; 390(10094): 555-566.
|
| [342] |
Simmons D, Seed B. Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J Immunol. 1988; 141(8): 2797-2800.
|
| [343] |
Hernández-Caselles T, Miguel RC, Ruiz-Alcaraz AJ, García-Peñarrubia P. CD33 (Siglec-3) inhibitory function: role in the NKG2D/DAP10 activating pathway. J Immunol Res. 2019; 2019: 6032141.
|
| [344] |
Paul SP, Taylor LS, Stansbury EK, McVicar DW. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood. 2000; 96(2): 483-490.
|
| [345] |
Walter RB, Raden BW, Zeng R, Häusermann P, Bernstein ID, Cooper JA. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J Leukoc Biol. 2008; 83(1): 200-211.
|
| [346] |
Schneider D, Xiong Y, Hu P, et al. A unique human immunoglobulin heavy chain variable domain-only CD33 CAR for the treatment of acute myeloid leukemia. Front Oncol. 2018; 8: 539.
|
| [347] |
Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer. 2017; 16(1): 13.
|
| [348] |
Niculescu-Duvaz I. Technology evaluation: gemtuzumab ozogamicin, Celltech Group. Curr Opin Mol Ther. 2000; 2(6): 691-696.
|
| [349] |
Williams JP, Handler HL. Antibody-targeted chemotherapy for the treatment of relapsed acute myeloid leukemia. Am J Manag Care. 2000; 6(18): S975-985. Suppl.
|
| [350] |
Röllig C. Gemtuzumab ozogamicin in AML: the next chapter. Blood. 2023; 142(20): 1673-1674.
|
| [351] |
Dowell JA, Korth-Bradley J, Liu H, King SP, Berger MS. Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol. 2001; 41(11): 1206-1214.
|
| [352] |
Miller JL. FDA approves antibody-directed cytotoxic agent for acute myeloid leukemia. Am J Health Syst Pharm. 2000; 57(13): 1202. 1204.
|
| [353] |
Sievers EL, Appelbaum FR, Spielberger RT, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999; 93(11): 3678-3784.
|
| [354] |
Moseley A, Othus M, Garcia-Manero G, Appelbaum FR, Erba HP, Walter RB. Predicting severe toxicities with intensive induction chemotherapy for adult acute myeloid leukemia: analysis of SWOG Cancer Research Network trials S0106 and S1203. Leuk Lymphoma. 2021; 62(7): 1774-1777.
|
| [355] |
Medeiros BC, Othus M, Tallman MS, et al. The relationship between clinical trial accrual volume and outcomes in acute myeloid leukemia: a SWOG/ECOG-ACRIN study (S0106 and E1900). Leuk Res. 2019; 78: 29-33.
|
| [356] |
Selby C, Yacko LR, Glode AE. Gemtuzumab ozogamicin: back again. J Adv Pract Oncol. 2019; 10(1): 68-82.
|
| [357] |
Abaza Y, Kantarjian H, Garcia-Manero G, et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood. 2017; 129(10): 1275-1283.
|
| [358] |
Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014; 32(27): 3021-3032.
|
| [359] |
Geisberger R, Crameri R, Achatz G. Models of signal transduction through the B-cell antigen receptor. Immunology. 2003; 110(4): 401-410.
|
| [360] |
Jumaa H, Caganova M, McAllister EJ, et al. Immunoglobulin expression in the endoplasmic reticulum shapes the metabolic fitness of B lymphocytes. Life Sci Alliance. 2020; 3(6): e202000700.
|
| [361] |
Phelan JD, Young RM, Webster DE, et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 2018; 560(7718): 387-391.
|
| [362] |
Tkachenko A, Kupcova K, Havranek O. B-cell receptor signaling and beyond: the role of Igα (CD79a)/Igβ (CD79b) in normal and malignant B cells. Int J Mol Sci. 2023; 25(1): 10.
|
| [363] |
Adachi T, Wienands J, Wakabayashi C, Yakura H, Reth M, Tsubata T. SHP-1 requires inhibitory co-receptors to down-modulate B cell antigen receptor-mediated phosphorylation of cellular substrates. J Biol Chem. 2001; 276(28): 26648-26655.
|
| [364] |
Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 2014; 193(1): 268-276.
|
| [365] |
Crute BW, Sheraden R, Ott VL, Harley ITW, Getahun A, Cambier JC. Inhibitory receptor trap: a platform for discovery of inhibitory receptors that utilize inositol lipid and phosphotyrosine phosphatase effectors. Front Immunol. 2020; 11: 592329.
|
| [366] |
Xu PP, Shen R, Shi ZY, et al. The prognostic significance of CD79B mutation in diffuse large B-cell lymphoma: a meta-analysis and systematic literature review. Clin Lymphoma Myeloma Leuk. 2022; 22(12): e1051-e1058.
|
| [367] |
Mehta A, Forero-Torres A. Development and integration of antibody-drug conjugate in non-Hodgkin lymphoma. Curr Oncol Rep. 2015; 17(9): 41.
|
| [368] |
Polson AG, Yu SF, Elkins K, et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood. 2007; 110(2): 616-623.
|
| [369] |
Hammood M, Craig AW, Leyton JV. Impact of endocytosis mechanisms for the receptors targeted by the currently approved antibody-drug conjugates (ADCs) – a necessity for future ADC research and development. Pharmaceuticals (Basel). 2021; 14(7): 674.
|
| [370] |
Deeks ED. Polatuzumab vedotin: first global approval. Drugs. 2019; 79(13): 1467-1475.
|
| [371] |
Dornan D, Bennett F, Chen Y, et al. Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009; 114(13):2721-2129.
|
| [372] |
Choi Y, Diefenbach CS. Polatuzumab vedotin: a new target for B cell malignancies. Curr Hematol Malig Rep. 2020; 15(2): 125-129.
|
| [373] |
Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015; 16(6): 704-715.
|
| [374] |
Sehn LH, Hertzberg M, Opat S, et al. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory DLBCL: survival update and new extension cohort data. Blood Adv. 2022; 6(2): 533-543.
|
| [375] |
Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020; 38(2): 155-165.
|
| [376] |
Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N Engl J Med. 2022; 386(4): 351-363.
|
| [377] |
Abelman RO, Wu B, Spring LM, Ellisen LW, Bardia A. Mechanisms of resistance to antibody-drug conjugates. Cancers (Basel). 2023; 15(4): 1278.
|
| [378] |
Loganzo F, Tan X, Sung M, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015; 14(4): 952-963.
|
| [379] |
Gandullo-Sánchez L, Ocaña A, Pandiella A. Generation of antibody-drug conjugate resistant models. Cancers (Basel). 2021; 13(18): 4631.
|
| [380] |
van der Velden VH, Boeckx N, Jedema I, et al. High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg) treatment in acute myeloid leukemia patients. Leukemia. 2004; 18(5): 983-988.
|
| [381] |
Rigakos G, Razis E, Koliou GA, et al. Evaluation of the role of p95 HER2 isoform in trastuzumab efficacy in metastatic breast cancer. Anticancer Res. 2021; 41(4): 1793-1802.
|
| [382] |
Wynn CS, Tang SC. Anti-HER2 therapy in metastatic breast cancer: many choices and future directions. Cancer Metastasis Rev. 2022; 41(1): 193-209.
|
| [383] |
Scaltriti M, Rojo F, Ocana A, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007; 99(8): 628-638.
|
| [384] |
Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Baselga J. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. 1999; 59(6): 1196-1201.
|
| [385] |
Mercogliano MF, Inurrigarro G, De Martino M, et al. Invasive micropapillary carcinoma of the breast overexpresses MUC4 and is associated with poor outcome to adjuvant trastuzumab in HER2-positive breast cancer. BMC Cancer. 2017; 17(1): 895.
|
| [386] |
Bruni S, Mauro FL, Proietti CJ, et al. Blocking soluble TNFα sensitizes HER2-positive breast cancer to trastuzumab through MUC4 downregulation and subverts immunosuppression. J Immunother Cancer. 2023; 11(3): e005325.
|
| [387] |
Negrón-Vega L, Cora EM, Pérez-Torres M, Tang SC, Maihle NJ, Ryu JS. Expression of EGFR isoform D is regulated by HER receptor activators in breast cancer cells. Biochem Biophys Rep. 2022; 31: 101326.
|
| [388] |
Phillips GD, Fields CT, Li G, et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014; 20(2): 456-468.
|
| [389] |
Bon G, Pizzuti L, Laquintana V, et al. Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER Study. J Exp Clin Cancer Res. 2020; 39(1): 279.
|
| [390] |
Grassart A, Meas-Yedid V, Dufour A, Olivo-Marin JC, Dautry-Varsat A, Sauvonnet N. Pak1 phosphorylation enhances cortactin-N-WASP interaction in clathrin-caveolin-independent endocytosis. Traffic. 2010; 11(8): 1079-1091.
|
| [391] |
Shin EY, Soung NK, Schwartz MA, Kim EG. Altered endocytosis in cellular senescence. Ageing Res Rev. 2021; 68: 101332.
|
| [392] |
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014: 3.
|
| [393] |
Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A. Clathrin-and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol. 2005; 168(3): 477-488.
|
| [394] |
Guidi L, Pellizzari G, Tarantino P, Valenza C, Curigliano G. Resistance to antibody-drug conjugates targeting HER2 in breast cancer: molecular landscape and future challenges. Cancers (Basel). 2023; 15(4): 1130.
|
| [395] |
Yang C, He B, Dai W, et al. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems. Acta Pharm Sin B. 2021; 11(4): 961-977.
|
| [396] |
Sung M, Tan X, Lu B, et al. Caveolae-mediated endocytosis as a novel mechanism of resistance to trastuzumab emtansine (T-DM1). Mol Cancer Ther. 2018; 17(1): 243-253.
|
| [397] |
Leyton JV. The endosomal-lysosomal system in ADC design and cancer therapy. Expert Opin Biol Ther. 2023; 23(11): 1067-1076.
|
| [398] |
Ríos-Luci C, García-Alonso S, Díaz-Rodríguez E, et al. Resistance to the antibody-drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017; 77(17): 4639-4651.
|
| [399] |
Zhang J, Fan J, Zeng X, et al. Targeting the autophagy promoted antitumor effect of T-DM1 on HER2-positive gastric cancer. Cell Death Dis. 2021; 12(4): 288.
|
| [400] |
Tomabechi R, Kishimoto H, Sato T, et al. SLC46A3 is a lysosomal proton-coupled steroid conjugate and bile acid transporter involved in transport of active catabolites of T-DM1. PNAS Nexus. 2022; 1(3): pgac063.
|
| [401] |
Kinneer K, Meekin J, Tiberghien AC, et al. SLC46A3 as a potential predictive biomarker for antibody-drug conjugates bearing noncleavable linked maytansinoid and pyrrolobenzodiazepine warheads. Clin Cancer Res. 2018; 24(24): 6570-6582.
|
| [402] |
Hamblett KJ, Jacob AP, Gurgel JL, et al. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 2015; 75(24): 5329-5340.
|
| [403] |
Wang H, Wang W, Xu Y, et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 2017; 108(7): 1458-1468.
|
| [404] |
Mandal D, Patel P, Verma SK, Sahu BR, Parija T. Proximal discrepancy in intrinsic atomic interaction arrests G2/M phase by inhibiting Cyclin B1/CDK1 to infer molecular and cellular biocompatibility of D-limonene. Sci Rep. 2022; 12(1): 18184.
|
| [405] |
Chen NP, Aretz J, Fässler R. CDK1-cyclin-B1-induced kindlin degradation drives focal adhesion disassembly at mitotic entry. Nat Cell Biol. 2022; 24(5): 723-736.
|
| [406] |
Egorshina AY, Zamaraev AV, Kaminskyy VO, Radygina TV, Zhivotovsky B, Kopeina GS. Necroptosis as a novel facet of mitotic catastrophe. Int J Mol Sci. 2022; 23(7): 3733.
|
| [407] |
Sazonova EV, Petrichuk SV, Kopeina GS, Zhivotovsky B. A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biol Direct. 2021; 16(1): 25.
|
| [408] |
Sethi G, Rath P, Chauhan A, et al. Apoptotic mechanisms of quercetin in liver cancer: recent trends and advancements. Pharmaceutics. 2023; 15(2): 712.
|
| [409] |
Sabbaghi M, Gil-Gomez G, Guardia C, et al. Defective cyclin B1 induction in trastuzumab-emtansine (T-DM1) acquired resistance in HER2-positive breast cancer. Clin Cancer Res. 2017; 23(22): 7006-7019.
|
| [410] |
Hosseini SA, Mirzaei SA, Kermani S, Yaghoobi H. Valproate modulates the activity of multidrug resistance efflux pumps, as a chemoresistance factor in gastric cancer cells. Mol Biol Rep. 2024; 51(1): 427.
|
| [411] |
Marin JJG, Monte MJ, Macias RIR, et al. Expression of chemoresistance-associated ABC proteins in hepatobiliary, pancreatic and gastrointestinal cancers. Cancers (Basel). 2022; 14(14): 3524.
|
| [412] |
Toledo B, González-Titos A, Hernández-Camarero P, Perán M. A brief review on chemoresistance; targeting cancer stem cells as an alternative approach. Int J Mol Sci. 2023; 24(5): 4487.
|
| [413] |
Choules MP, Zuo P, Otsuka Y, Garg A, Tang M, Bonate P. Physiologically based pharmacokinetic model to predict drug-drug interactions with the antibody-drug conjugate enfortumab vedotin. J Pharmacokinet Pharmacodyn. 2023.
|
| [414] |
Cabaud O, Berger L, Crompot E, et al. Overcoming resistance to anti-Nectin-4 antibody-drug conjugate. Mol Cancer Ther. 2022; 21(7): 1227-1235.
|
| [415] |
Díaz-Rodríguez E, Gandullo-Sánchez L, Ocaña A, Pandiella A. Novel ADCs and strategies to overcome resistance to anti-HER2 ADCs. Cancers (Basel). 2021; 14(1): 154.
|
| [416] |
Kalinovsky DV, Kholodenko IV, Svirshchevskaya EV, et al. Targeting GD2-positive tumor cells by pegylated scFv fragment-drug conjugates carrying maytansinoids DM1 and DM4. Curr Issues Mol Biol. 2023; 45(10): 8112-8125.
|
| [417] |
Takegawa N, Nonagase Y, Yonesaka K, et al. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 2017; 141(8): 1682-1689.
|
| [418] |
Prokop A, Wrasidlo W, Lode H, et al. Induction of apoptosis by enediyne antibiotic calicheamicin thetaII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene. 2003; 22(57): 9107-9120.
|
| [419] |
Walter RB, Raden BW, Cronk MR, Bernstein ID, Appelbaum FR, Banker DE. The peripheral benzodiazepine receptor ligand PK11195 overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood. 2004; 103(11): 4276-4284.
|
| [420] |
Moore J, Seiter K, Kolitz J, et al. A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res. 2006; 30(7): 777-783.
|
| [421] |
Rosen DB, Harrington KH, Cordeiro JA, et al. AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. PLoS One. 2013; 8(1): e53518.
|
| [422] |
Guardia C, Bianchini G, Arpí LO, et al. Preclinical and clinical characterization of fibroblast-derived neuregulin-1 on trastuzumab and pertuzumab activity in HER2-positive breast cancer. Clin Cancer Res. 2021; 27(18): 5096-5108.
|
| [423] |
Endo Y, Shen Y, Youssef LA, Mohan N, Wu WJ. T-DM1-resistant cells gain high invasive activity via EGFR and integrin cooperated pathways. MAbs. 2018; 10(7): 1003-1017.
|
| [424] |
Tsutsumi H, Iwama E, Ibusuki R, et al. Mutant forms of EGFR promote HER2 trafficking through efficient formation of HER2-EGFR heterodimers. Lung Cancer. 2023; 175: 101-111.
|
| [425] |
Gandullo-Sánchez L, Pandiella A. An anti-EGFR antibody-drug conjugate overcomes resistance to HER2-targeted drugs. Cancer Lett. 2023; 554: 216024.
|
| [426] |
Zoeller JJ, Vagodny A, Daniels VW, et al. Navitoclax enhances the effectiveness of EGFR-targeted antibody-drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Res. 2020; 22(1): 132.
|
| [427] |
Corbett S, Huang S, Zammarchi F, Howard PW, van Berkel PH, Hartley JA. The role of specific ATP-binding cassette transporters in the acquired resistance to pyrrolobenzodiazepine dimer-containing antibody-drug conjugates. Mol Cancer Ther. 2020; 19(9): 1856-1865.
|
| [428] |
Ocaña A, Amir E, Pandiella A. HER2 heterogeneity and resistance to anti-HER2 antibody-drug conjugates. Breast Cancer Res. 2020; 22(1): 15.
|
| [429] |
Migliorini F, Cini E, Dreassi E, et al. A pH-responsive crosslinker platform for antibody-drug conjugate (ADC) targeting delivery. Chem Commun (Camb). 2022; 58(75): 10532-10535.
|
| [430] |
Gera N, Fitzgerald KM, Ramesh V, et al. MYTX-011: a pH-dependent anti-cMET antibody-drug conjugate designed for enhanced payload delivery to cMET expressing tumor cells. Mol Cancer Ther. 2024.
|
| [431] |
de Goeij BE, Vink T, Ten Napel H, et al. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther. 2016; 15(11): 2688-2697.
|
| [432] |
Zhuang W, Zhang W, Wang L, et al. Generation of a novel SORT1×HER2 bispecific antibody-drug conjugate targeting HER2-low-expression tumor. Int J Mol Sci. 2023; 24(22): 16056.
|
| [433] |
Zhou Q. Site-specific antibody conjugation for ADC and beyond. Biomedicines. 2017; 5(4): 64.
|
| [434] |
Kühl L, Aschmoneit N, Kontermann RE, Seifert O. The eIg technology to generate Ig-like bispecific antibodies. MAbs. 2022; 14(1): 2063043.
|
| [435] |
Demetri GD, Luke JJ, Hollebecque A, et al. First-in-human phase I study of ABBV-085, an antibody-drug conjugate targeting LRRC15, in sarcomas and other advanced solid tumors. Clin Cancer Res. 2021; 27(13): 3556-3566.
|
| [436] |
Purcell JW, Tanlimco SG, Hickson J, et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res. 2018; 78(14): 4059-4072.
|
| [437] |
Wu K. Research highlights of clinical oncology early 2022. Holist Integr Oncol. 2022; 1(1): 6.
|
| [438] |
Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-oligonucleotide conjugates: a twist to antibody-drug conjugates. J Clin Med. 2021; 10(4): 838.
|
| [439] |
Brant MG, Garnett GAE, Guedia J, et al. Generation and structure-activity relationships of novel imidazo-thienopyridine based TLR7 agonists: application as payloads for immunostimulatory antibody drug-conjugates. Bioorg Med Chem Lett. 2023; 91: 129348.
|
| [440] |
Fu C, Tong W, Yu L, et al. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside? Pharmacol Res. 2024; 203: 107160.
|
| [441] |
Mullard A. Antibody-oligonucleotide conjugates enter the clinic. Nat Rev Drug Discov. 2022; 21(1): 6-8.
|
| [442] |
Ashman N, Bargh JD, Spring DR. Non-internalising antibody-drug conjugates. Chem Soc Rev. 2022; 51(22): 9182-9202.
|
RIGHTS & PERMISSIONS
2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.