Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives

Yingjie Wang , Hongyu Liu , Mengsha Zhang , Jing Xu , Liuxian Zheng , Pengpeng Liu , Jingyao Chen , Hongyu Liu , Chong Chen

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e670

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e670 DOI: 10.1002/mco2.670
REVIEW

Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives

Author information +
History +
PDF

Abstract

Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.

Keywords

biomarkers / DNA methylation / epigenetic / gastrointestinal cancer / histone modifications

Cite this article

Download citation ▾
Yingjie Wang, Hongyu Liu, Mengsha Zhang, Jing Xu, Liuxian Zheng, Pengpeng Liu, Jingyao Chen, Hongyu Liu, Chong Chen. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm, 2024, 5(9): e670 DOI:10.1002/mco2.670

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1): 57-70.

[2]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-674.

[3]

Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer. 2023; 23(10): 710-724.

[4]

Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012; 13(7): 484-492.

[5]

McKay JA, Mathers JC. Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf). 2011; 202(2): 103-118.

[6]

Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 2019; 79(7): 1285-1292.

[7]

Esteller M. Cancer epigenomics: dNA methylomes and histone-modification maps. Nat Rev Genet. 2007; 8(4): 286-298.

[8]

Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat Rev Cancer. 2021; 21(7): 413-430.

[9]

Khazaei S, Chen CCL, Andrade AF, et al. Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell. 2023; 186(6): 1162-1178. e1120.

[10]

Ben-Aharon I, van Laarhoven HWM, Fontana E, Obermannova R, Nilsson M, Lordick F. Early-onset cancer in the gastrointestinal tract is on the rise-evidence and implications. Cancer Discov. 2023; 13(3): 538-551.

[11]

Malfertheiner P, Camargo MC, El-Omar E, et al. Helicobacter pylori infection. Nat Rev Dis Primers. 2023; 9(1): 19.

[12]

Larsen K, Rydz E, Peters CE. Inequalities in environmental cancer risk and carcinogen exposures: a scoping review. Int J Environ Res Public Health. 2023; 20(9): 5718.

[13]

Zhou RW, Xu J, Martin TC, et al. A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma. Nat Commun. 2022; 13(1): 6041.

[14]

Della Chiara G, Gervasoni F, Fakiola M, et al. Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nat Commun. 2021; 12(1): 2340.

[15]

Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020; 159(1): 335-349. e315.

[16]

Wang DK, Zuo Q, He QY, Li B. Targeted immunotherapies in gastrointestinal cancer: from molecular mechanisms to implications. Front Immunol. 2021; 12: 705999.

[17]

Huang J, Lucero-Prisno DE 3rd, Zhang L, et al. Updated epidemiology of gastrointestinal cancers in East Asia. Nat Rev Gastroenterol Hepatol. 2023; 20(5): 271-287.

[18]

Grady WM, Yu M, Markowitz SD. Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer. Gastroenterology. 2021; 160(3): 690-709.

[19]

Cerrato F, Sparago A, Ariani F, et al. DNA methylation in the diagnosis of monogenic diseases. Genes (Basel). 2020; 11(4): 355.

[20]

Hitchins MP. The role of epigenetics in Lynch syndrome. Fam Cancer. 2013; 12(2): 189-205.

[21]

Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975; 187(4173): 226-232.

[22]

Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975; 14(1): 9-25.

[23]

Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009; 10(11): 805-811.

[24]

Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992; 69(6): 915-926.

[25]

Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999; 99(3): 247-257.

[26]

Harris RA, Wang T, Coarfa C, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010; 28(10): 1097-1105.

[27]

Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003; 300(5618): 455.

[28]

Yamashita S, Hosoya K, Gyobu K, Takeshima H, Ushijima T. Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Res. 2009; 16(5): 275-286.

[29]

Moarefi AH, Chédin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol. 2011; 409(5): 758-772.

[30]

van Holde K, Zlatanova J. Chromatin fiber structure: where is the problem now? Semin Cell Dev Biol. 2007; 18(5): 651-658.

[31]

Längst G, Manelyte L. Chromatin remodelers: from function to dysfunction. Genes (Basel). 2015; 6(2): 299-324.

[32]

Hirst M, Marra MA. Epigenetics and human disease. Int J Biochem Cell Biol. 2009; 41(1): 136-146.

[33]

Samadani AA, Norollahi SE, Rashidy-Pour A, et al. Cancer signaling pathways with a therapeutic approach: an overview in epigenetic regulations of cancer stem cells. Biomed Pharmacother. 2018; 108: 590-599.

[34]

Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009; 10(1): 32-42.

[35]

Anderson KA, Green MF, Huynh FK, Wagner GR, Hirschey MD. SnapShot: mammalian Sirtuins. Cell. 2014; 159(4): 956-956. e951.

[36]

Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer. 2015; 15(2): 110-124.

[37]

Murray K. The occurrence of epsilon-n-methyl lysine in histones. Biochemistry. 1964; 3: 10-15.

[38]

Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010; 285(5): 3341-3350.

[39]

Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics. 2019; 11(1): 81.

[40]

Zheng Q, Maksimovic I, Upad A, David Y. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell. 2020; 11(6): 401-416.

[41]

Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009; 78: 273-304.

[42]

Li W, Mills AA. Architects of the genome: cHD dysfunction in cancer, developmental disorders and neurological syndromes. Epigenomics. 2014; 6(4): 381-395.

[43]

Gangaraju VK, Bartholomew B. Mechanisms of ATP dependent chromatin remodeling. Mutat Res. 2007; 618(1-2): 3-17.

[44]

Ranjan A, Mizuguchi G, FitzGerald PC, et al. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell. 2013; 154(6): 1232-1245.

[45]

Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: the current state and clinical perspectives. Semin Cancer Biol. 2018; 51: 36-49.

[46]

Nagaraju GP, Kasa P, Dariya B, Surepalli N, Peela S, Ahmad S. Epigenetics and therapeutic targets in gastrointestinal malignancies. Drug Discov Today. 2021; 26(10): 2303-2314.

[47]

Grady WM, Willis J, Guilford PJ, et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000; 26(1): 16-17.

[48]

Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res. 2016; 76(12): 3446-3450.

[49]

Chibaya L, Murphy KC, DeMarco KD, et al. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nat Cancer. 2023; 4(6): 872-892.

[50]

Esteller M. Epigenetics in cancer. N Engl J Med. 2008; 358(11): 1148-1159.

[51]

An C, Choi IS, Yao JC, et al. Prognostic significance of CpG island methylator phenotype and microsatellite instability in gastric carcinoma. Clin Cancer Res. 2005; 11(2): 656-663. Pt 1.

[52]

Kusano M, Toyota M, Suzuki H, et al. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer. 2006; 106(7): 1467-1479.

[53]

Cheng Y, Zhang C, Zhao J, et al. Correlation of CpG island methylator phenotype with poor prognosis in hepatocellular carcinoma. Exp Mol Pathol. 2010; 88(1): 112-117.

[54]

Liu JB, Zhang YX, Zhou SH, et al. CpG island methylator phenotype in plasma is associated with hepatocellular carcinoma prognosis. World J Gastroenterol. 2011; 17(42): 4718-4724.

[55]

Shen L, Toyota M, Kondo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA. 2007; 104(47): 18654-18659.

[56]

Fu T, Pappou EP, Guzzetta AA, et al. CpG island methylator phenotype-positive tumors in the absence of MLH1 methylation constitute a distinct subset of duodenal adenocarcinomas and are associated with poor prognosis. Clin Cancer Res. 2012; 18(17): 4743-4752.

[57]

Miller BF, Sánchez-Vega F, Elnitski L. The emergence of pan-cancer CIMP and its elusive interpretation. Biomolecules. 2016; 6(4).

[58]

Oue N, Oshimo Y, Nakayama H, et al. DNA methylation of multiple genes in gastric carcinoma: association with histological type and CpG island methylator phenotype. Cancer Sci. 2003; 94(10): 901-905.

[59]

Matsusaka K, Kaneda A, Nagae G, et al. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 2011; 71(23): 7187-7197.

[60]

Moarii M, Reyal F, Vert JP. Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype. Hum Genomics. 2015; 9: 26.

[61]

Zouridis H, Deng N, Ivanova T, et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci Transl Med. 2012; 4(156): 156ra140.

[62]

Fennell L, Dumenil T, Wockner L, et al. Integrative genome-scale DNA methylation analysis of a large and unselected cohort reveals 5 distinct subtypes of colorectal adenocarcinomas. Cell Mol Gastroenterol Hepatol. 2019; 8(2): 269-290.

[63]

Zeng XQ, Wang J, Chen SY. Methylation modification in gastric cancer and approaches to targeted epigenetic therapy (Review). Int J Oncol. 2017; 50(6): 1921-1933.

[64]

Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002; 21(35): 5400-5413.

[65]

Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res. 2001; 61(7): 2847-2851.

[66]

Xi Y, Lin Y, Guo W, et al. Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma. Signal Transduct Target Ther. 2022; 7(1): 53.

[67]

Deng Q, Huang S. PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene. 2004; 23(28): 4903-4910.

[68]

Shu XS, Geng H, Li L, et al. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors. PLoS One. 2011; 6(11): e27346.

[69]

Duan Z, Person RE, Lee HH, et al. Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting tumor suppressor PRDM5. Mol Cell Biol. 2007; 27(19): 6889-6902.

[70]

Arrate MP, Rodriguez JM, Tran TM, Brock TA, Cunningham SA. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem. 2001; 276(49): 45826-45832.

[71]

Zhou D, Tang W, Zhang Y, An HX. JAM3 functions as a novel tumor suppressor and is inactivated by DNA methylation in colorectal cancer. Cancer Manag Res. 2019; 11: 2457-2470.

[72]

Müller HM, Fiegl H, Widschwendter A, Widschwendter M. Prognostic DNA methylation marker in serum of cancer patients. Ann N Y Acad Sci. 2004; 1022: 44-49.

[73]

Tamura G, Sato K, Akiyama S, et al. Molecular characterization of undifferentiated-type gastric carcinoma. Lab Invest. 2001; 81(4): 593-598.

[74]

Waki T, Tamura G, Sato M, Motoyama T. Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene. 2003; 22(26): 4128-4133.

[75]

Wang ZK, Liu J, Liu C, Wang FY, Chen CY, Zhang XH. Hypermethylation of adenomatous polyposis coli gene promoter is associated with novel Wnt signaling pathway in gastric adenomas. J Gastroenterol Hepatol. 2012; 27(10): 1629-1634.

[76]

Wang JS, Guo M, Montgomery EA, et al. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett’s esophagus. Am J Gastroenterol. 2009; 104(9): 2153-2160.

[77]

Keller G, Vogelsang H, Becker I, et al. Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am J Pathol. 1999; 155(2): 337-342.

[78]

Zhang B, Zhou J, Liu Z, et al. Clinical and biological significance of a -73A > C variation in the CDH1 promoter of patients with sporadic gastric carcinoma. Gastric Cancer. 2018; 21(4): 606-616.

[79]

Fitzgerald RC, Caldas C. Clinical implications of E-cadherin associated hereditary diffuse gastric cancer. Gut. 2004; 53(6): 775-778.

[80]

Fan Z, Chen R, Li M, Gu J, Li X, Wei W. Association between CDH1 methylation and esophageal cancer risk: a meta-analysis and bioinformatics study. Expert Rev Mol Diagn. 2022; 22(9): 895-903.

[81]

Gozuacik D, Bialik S, Raveh T, et al. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 2008; 15(12): 1875-1886.

[82]

Kang B, Lee HS, Jeon SW, et al. Progressive alteration of DNA methylation of Alu, MGMT, MINT2, and TFPI2 genes in colonic mucosa during colorectal cancer development. Cancer Biomark. 2021; 32(2): 231-236.

[83]

Ishii T, Murakami J, Notohara K, et al. Oesophageal squamous cell carcinoma may develop within a background of accumulating DNA methylation in normal and dysplastic mucosa. Gut. 2007; 56(1): 13-19.

[84]

Brabender J, Arbab D, Huan X, et al. Death-associated protein kinase (DAPK) promoter methylation and response to neoadjuvant radiochemotherapy in esophageal cancer. Ann Surg Oncol. 2009; 16(5): 1378-1383.

[85]

Haruki S, Imoto I, Kozaki K, et al. Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma. Carcinogenesis. 2010; 31(6): 1027-1036.

[86]

Hu X, Sui X, Li L, et al. Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. J Pathol. 2013; 229(1): 62-73.

[87]

Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998; 17(18): 2413-2417.

[88]

Ogino S, Cantor M, Kawasaki T, et al. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut. 2006; 55(7): 1000-1006.

[89]

Hitchins MP, Dámaso E, Alvarez R, et al. Constitutional MLH1 methylation is a major contributor to mismatch repair-deficient, MLH1-methylated colorectal cancer in patients aged 55 years and younger. J Natl Compr Canc Netw. 2023; 21(7): 743-752. e711.

[90]

Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett’s oesophagus patients at risk for malignant transformation. J Pathol. 2006; 208(1): 100-107.

[91]

Geddert H, Kiel S, Iskender E, et al. Correlation of hMLH1 and HPP1 hypermethylation in gastric, but not in esophageal and cardiac adenocarcinoma. Int J Cancer. 2004; 110(2): 208-211.

[92]

Eads CA, Lord RV, Wickramasinghe K, et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 2001; 61(8): 3410-3418.

[93]

Esteller M, Toyota M, Sanchez-Cespedes M, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 2000; 60(9): 2368-2371.

[94]

Shi J, Zhang G, Yao D, et al. Prognostic significance of aberrant gene methylation in gastric cancer. Am J Cancer Res. 2012; 2(1): 116-129.

[95]

Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA. Epigenetic mechanisms in gastric cancer. Epigenomics. 2012; 4(3): 279-294.

[96]

Oue N, Sentani K, Yokozaki H, Kitadai Y, Ito R, Yasui W. Promoter methylation status of the DNA repair genes hMLH1 and MGMT in gastric carcinoma and metaplastic mucosa. Pathobiology. 2001; 69(3): 143-149.

[97]

Smith E, De Young NJ, Pavey SJ, et al. Similarity of aberrant DNA methylation in Barrett’s esophagus and esophageal adenocarcinoma. Mol Cancer. 2008; 7: 75.

[98]

Pinto R, Hauge T, Jeanmougin M, et al. Targeted genetic and epigenetic profiling of esophageal adenocarcinomas and non-dysplastic Barrett’s esophagus. Clin Epigenetics. 2022; 14(1): 77.

[99]

Shen L, Kondo Y, Rosner GL, et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst. 2005; 97(18): 1330-1338.

[100]

Wojcieszyńska D, Hupert-Kocurek K, Guzik U. Flavin-dependent enzymes in cancer prevention. Int J Mol Sci. 2012; 13(12): 16751-16768.

[101]

Maiques-Diaz A, Somervaille TC. LSD1: biologic roles and therapeutic targeting. Epigenomics. 2016; 8(8): 1103-1116.

[102]

Huang J, Sengupta R, Espejo AB, et al. p53 is regulated by the lysine demethylase LSD1. Nature. 2007; 449(7158): 105-108.

[103]

Kharkar VJ, Ast A, Gupta SV, Sharma SK, LSD 2/KDM 1 B/AOF 1 and human cancer pathways : a literature review. Cancer Stud Ther J. 1(1): 1–5.

[104]

Liu YW, Xia R, Lu K, et al. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer. 2017; 16(1): 39.

[105]

van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res. 2011; 728(1-2): 23-34.

[106]

Chen C, Wei M, Wang C, et al. The histone deacetylase HDAC1 activates HIF1α/VEGFA signal pathway in colorectal cancer. Gene. 2020; 754: 144851.

[107]

Chervona Y, Costa M. Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res. 2012; 2(5): 589-597.

[108]

Song IS, Ha GH, Kim JM, et al. Human ZNF312b oncogene is regulated by Sp1 binding to its promoter region through DNA demethylation and histone acetylation in gastric cancer. Int J Cancer. 2011; 129(9): 2124-2133.

[109]

Li ST, Huang D, Shen S, et al. Myc-mediated SDHA acetylation triggers epigenetic regulation of gene expression and tumorigenesis. Nat Metab. 2020; 2(3): 256-269.

[110]

McDonald OG, Li X, Saunders T, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet. 2017; 49(3): 367-376.

[111]

Hou H, Chen D, Zhang K, et al. Gut microbiota-derived short-chain fatty acids and colorectal cancer: ready for clinical translation? Cancer Lett. 2022; 526: 225-235.

[112]

Hodgkinson K, El Abbar F, Dobranowski P, et al. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr. 2023; 42(2): 61-75.

[113]

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019; 574: 575-580.

[114]

Zhou J, Xu W, Wu Y, et al. GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway. Oncogene. 2023; 42(45): 3319-3330.

[115]

An YJ, Jo S, Kim JM, et al. Lactate as a major epigenetic carbon source for histone acetylation via nuclear LDH metabolism. Exp Mol Med. 2023; 55(10): 2238-2247.

[116]

Okabe A, Funata S, Matsusaka K, et al. Regulation of tumour related genes by dynamic epigenetic alteration at enhancer regions in gastric epithelial cells infected by Epstein-Barr virus. Sci Rep. 2017; 7(1): 7924.

[117]

Nacev BA, Feng L, Bagert JD, et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature. 2019; 567(7749): 473-478.

[118]

Bagert JD, Mitchener MM, Patriotis AL, et al. Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat Chem Biol. 2021; 17(4): 403-411.

[119]

Phillips RE, Soshnev AA, Allis CD. Epigenomic reprogramming as a driver of malignant glioma. Cancer Cell. 2020; 38(5): 647-660.

[120]

Nacev BA, Jones KB, Intlekofer AM, et al. The epigenomics of sarcoma. Nat Rev Cancer. 2020; 20(10): 608-623.

[121]

Wan YCE, Leung TCS, Ding D, et al. Cancer-associated histone mutation H2BG53D disrupts DNA-histone octamer interaction and promotes oncogenic phenotypes. Signal Transduct Target Ther. 2020; 5(1): 27.

[122]

Wang R, Chen M, Ye X, Poon K. Role and potential clinical utility of ARID1A in gastrointestinal malignancy. Mutat Res Rev Mutat Res. 2021; 787: 108360.

[123]

Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012; 44(5): 570-574.

[124]

Nargund AM, Xu C, Mandoli A, et al. Chromatin rewiring by mismatch repair protein MSH2 alters cell adhesion pathways and sensitivity to BET inhibition in gastric cancer. Cancer Res. 2022; 82(14): 2538-2551.

[125]

Yao B, Gui T, Zeng X, et al. PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med. 2021; 13(1): 58.

[126]

Wu J, Zhou Z, Li J, et al. CHD4 promotes acquired chemoresistance and tumor progression by activating the MEK/ERK axis. Drug Resist Updat. 2023; 66: 100913.

[127]

Wu Z, Zhou J, Zhang X, et al. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nat Genet. 2021; 53(6): 881-894.

[128]

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394-424.

[129]

Personal habits and indoor combustions. IARC Monogr Eval Carcinog Risks Hum. 2012; 100(Pt E): 1-538.

[130]

Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta. 2015; 448: 124-132.

[131]

Corso G, Carvalho J, Marrelli D, et al. Somatic mutations and deletions of the E-cadherin gene predict poor survival of patients with gastric cancer. J Clin Oncol. 2013; 31(7): 868-875.

[132]

Lavarone E, Barbieri CM, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019; 10(1): 1679.

[133]

Lu H, Jin W, Sun J, et al. New tumor suppressor CXXC finger protein 4 inactivates mitogen activated protein kinase signaling. FEBS Lett. 2014; 588(18): 3322-3326.

[134]

Tong Y, Li Y, Gu H, et al. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells. Biochem Biophys Res Commun. 2015; 467(4): 821-827.

[135]

Bernhart SH, Kretzmer H, Holdt LM, et al. Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Sci Rep. 2016; 6: 37393.

[136]

Liu Y, Liu H, Luo X, Deng J, Pan Y, Liang H. Overexpression of SMYD3 and matrix metalloproteinase-9 are associated with poor prognosis of patients with gastric cancer. Tumour Biol. 2015; 36(6): 4377-4386.

[137]

Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359-E386.

[138]

Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013; 381(9864): 400-412.

[139]

Wang M, An S, Wang D, Ji H, Guo X, Wang Z. Activation of PAR4 upregulates p16 through inhibition of DNMT1 and HDAC2 expression via MAPK signals in esophageal squamous cell carcinoma cells. J Immunol Res. 2018; 2018: 4735752.

[140]

Li S, Wang F, Qu Y, et al. HDAC2 regulates cell proliferation, cell cycle progression and cell apoptosis in esophageal squamous cell carcinoma EC9706 cells. Oncol Lett. 2017; 13(1): 403-409.

[141]

Xue L, Hou J, Wang Q, Yao L, Xu S, Ge D. RNAi screening identifies HAT1 as a potential drug target in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014; 7(7): 3898-3907.

[142]

Zeng LS, Yang XZ, Wen YF, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016; 8(6): 1236-1249.

[143]

Zou Z, Zheng W, Fan H, et al. Aspirin enhances the therapeutic efficacy of cisplatin in oesophageal squamous cell carcinoma by inhibition of putative cancer stem cells. Br J Cancer. 2021; 125(6): 826-838.

[144]

Abdelfatah E, Kerner Z, Nanda N, Ahuja N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol. 2016; 9(4): 560-579.

[145]

Nguyen H, Allali-Hassani A, Antonysamy S, et al. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2. J Biol Chem. 2015; 290(22): 13641-13653.

[146]

Guan X, Zhong X, Men W, Gong S, Zhang L, Han Y. Analysis of EHMT1 expression and its correlations with clinical significance in esophageal squamous cell cancer. Mol Clin Oncol. 2014; 2(1): 76-80.

[147]

Sun X, Qiu JJ, Zhu S, et al. Oncogenic features of PHF8 histone demethylase in esophageal squamous cell carcinoma. PLoS One. 2013; 8(10): e77353.

[148]

Yuan X, Kong J, Ma Z, et al. KDM4C, a H3K9me3 histone demethylase, is involved in the maintenance of human ESCC-initiating cells by epigenetically enhancing SOX2 expression. Neoplasia. 2016; 18(10): 594-609.

[149]

Kosumi K, Baba Y, Sakamoto A, et al. Lysine-specific demethylase-1 contributes to malignant behavior by regulation of invasive activity and metabolic shift in esophageal cancer. Int J Cancer. 2016; 138(2): 428-439.

[150]

Ix H, Ko E, Kim Y, et al. Association of global levels of histone modifications with recurrence-free survival in stage IIB and III esophageal squamous cell carcinomas. Cancer Epidemiol Biomarkers Prev. 2010; 19(2): 566-573.

[151]

Guo Z, Pan F, Peng L, et al. Systematic proteome and lysine succinylome analysis reveals enhanced cell migration by hyposuccinylation in esophageal squamous cell carcinoma. Mol Cell Proteomics. 2021; 20: 100053.

[152]

Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: an emerging therapeutic opportunity for personalized medicine. Genes Dis. 2021; 8(2): 133-145.

[153]

Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015; 21(11): 1350-1356.

[154]

Qin J, Wen B, Liang Y, Yu W, Li H. Histone modifications and their role in colorectal cancer (Review). Pathol Oncol Res. 2020; 26(4): 2023-2033.

[155]

Nemati M, Ajami N, Estiar MA, et al. Deregulated expression of HDAC3 in colorectal cancer and its clinical significance. Adv Clin Exp Med. 2018; 27(3): 305-311.

[156]

Wu S, Yun J, Tang W, et al. Therapeutic m(6)A eraser ALKBH5 mRNA-loaded exosome-liposome hybrid nanoparticles inhibit progression of colorectal cancer in preclinical tumor models. ACS Nano. 2023; 17(12): 11838-11854.

[157]

Qiu B, Li S, Li M, et al. KAT8 acetylation-controlled lipolysis affects the invasive and migratory potential of colorectal cancer cells. Cell Death Dis. 2023; 14(2): 164.

[158]

She X, Wu Q, Rao Z, et al. SETDB1 methylates MCT1 promoting tumor progression by enhancing the lactate shuttle. Adv Sci (Weinh). 2023; 10(28): e2301871.

[159]

Boonsanay V, Mosa MH, Looso M, et al. Loss of SUV420H2-dependent chromatin compaction drives right-sided colon cancer progression. Gastroenterology. 2023; 164(2): 214-227.

[160]

Rahier JF, Druez A, Faugeras L, et al. Circulating nucleosomes as new blood-based biomarkers for detection of colorectal cancer. Clin Epigenetics. 2017; 9: 53.

[161]

Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007; 57(1): 43-66.

[162]

Makarova-Rusher OV, Altekruse SF, McNeel TS, et al. Population attributable fractions of risk factors for hepatocellular carcinoma in the United States. Cancer. 2016; 122(11): 1757-1765.

[163]

Slowly M, Domingo-Relloso A, Santella RM, et al. Blood DNA methylation and liver cancer in American Indians: evidence from the Strong Heart Study. Cancer Causes Control. 2024; 35(4): 661-669.

[164]

Ortiz-Barahona V, Soler M, Davalos V, et al. Epigenetic inactivation of the 5-methylcytosine RNA methyltransferase NSUN7 is associated with clinical outcome and therapeutic vulnerability in liver cancer. Mol Cancer. 2023; 22(1): 83.

[165]

Charidemou E, Koufaris C, Louca M, Kirmizis A, Rubio-Tomás T. Histone methylation in pre-cancerous liver diseases and hepatocellular carcinoma: recent overview. Clin Transl Oncol. 2023; 25(6): 1594-1605.

[166]

Hong H, Chen X, Wang H, Gu X, Yuan Y, Zhang Z. Global profiling of protein lysine lactylation and potential target modified protein analysis in hepatocellular carcinoma. Proteomics. 2023; 23(9): e2200432.

[167]

Clavería-Cabello A, Herranz JM, Latasa MU, et al. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol. 2023; 79(4): 989-1005.

[168]

Goldstone SE, Lensing SY, Stier EA, et al. A randomized clinical trial of infrared coagulation ablation versus active monitoring of intra-anal high-grade dysplasia in adults with human immunodeficiency virus infection: an AIDS malignancy consortium trial. Clin Infect Dis. 2019; 68(7): 1204-1212.

[169]

Rozemeijer K, Dias Gonçalves Lima F, Ter Braak TJ, et al. Analytical validation and diagnostic performance of the ASCL1/ZNF582 methylation test for detection of high-grade anal intraepithelial neoplasia and anal cancer. Tumour Virus Res. 2024; 17: 200275.

[170]

van der Zee RP, Richel O, van Noesel CJM, et al. Host cell deoxyribonucleic acid methylation markers for the detection of high-grade anal intraepithelial neoplasia and anal cancer. Clin Infect Dis. 2019; 68(7): 1110-1117.

[171]

van der Zee RP, van Noesel CJM, Martin I, et al. DNA methylation markers have universal prognostic value for anal cancer risk in HIV-negative and HIV-positive individuals. Mol Oncol. 2021; 15(11): 3024-3036.

[172]

Kiran S, Dar A, Singh SK, Lee KY, Dutta A. The deubiquitinase USP46 is essential for proliferation and tumor growth of HPV-transformed cancers. Mol Cell. 2018; 72(5): 823-835. e825.

[173]

Hu WH, Miyai K, Sporn JC, et al. Loss of histone variant macroH2A2 expression associates with progression of anal neoplasm. J Clin Pathol. 2016; 69(7): 627-631.

[174]

Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014; 60(6): 1268-1289.

[175]

Cai Y, Cheng N, Ye H, Li F, Song P, Tang W. The current management of cholangiocarcinoma: a comparison of current guidelines. Biosci Trends. 2016; 10(2): 92-102.

[176]

Zhang C, Zhang B, Meng D, Ge C. Comprehensive analysis of DNA methylation and gene expression profiles in cholangiocarcinoma. Cancer Cell Int. 2019; 19: 352.

[177]

Lee K, Song YS, Shin Y, et al. Intrahepatic cholangiocarcinomas with IDH1/2 mutation-associated hypermethylation at selective genes and their clinicopathological features. Sci Rep. 2020; 10(1): 15820.

[178]

Morine Y, Shimada M, Iwahashi S, et al. Role of histone deacetylase expression in intrahepatic cholangiocarcinoma. Surgery. 2012; 151(3): 412-419.

[179]

Zhang M, Yin Y, Dorfman RG, et al. Down-regulation of HDAC3 inhibits growth of cholangiocarcinoma by inducing apoptosis. Oncotarget. 2017; 8(59): 99402-99413.

[180]

Kanthan R, Senger JL, Ahmed S, Kanthan SC. Gallbladder cancer in the 21st century. J Oncol. 2015; 2015: 967472.

[181]

Nimisha , Saluja SS, Sharma AK, et al. Molecular aspects of ABCB1 and ABCG2 in gallbladder cancer and its clinical relevance. Mol Cell Biochem. 2023; 478(10): 2379-2394.

[182]

Bharti A, Ansari MA, Tewari M, Narayan G, Singh S. Clinical significance of frequently down-regulated phosphatidylethanolamine-binding protein-1 in gallbladder cancer. Dig Dis Sci. 2024; 69(2): 502-509.

[183]

Li Y, Yang B, Miao H, et al. Nicotinamide N - methyltransferase promotes M2 macrophage polarization by IL6 and MDSC conversion by GM-CSF in gallbladder carcinoma. Hepatology. 2023; 78(5): 1352-1367.

[184]

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73(1): 17-48.

[185]

Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011; 378(9791): 607-620.

[186]

Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: advances and challenges. Cell. 2023; 186(8): 1729-1754.

[187]

Lomberk G, Blum Y, Nicolle R, et al. Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nat Commun. 2018; 9(1): 1978.

[188]

Somerville TDD, Xu Y, Miyabayashi K, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma. Cell Rep. 2018; 25(7): 1741-1755. e1747.

[189]

Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell. 2018; 33(3): 512-526. e518.

[190]

Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014; 1839(12): 1362-1372.

[191]

Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol. 2023; 39(6): 2437-2465.

[192]

Funata S, Matsusaka K, Yamanaka R, et al. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection. Oncotarget. 2017; 8(33): 55265-55279.

[193]

Meng CF, Zhu XJ, Peng G, Dai DQ. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J Gastroenterol. 2007; 13(46): 6166-6171.

[194]

Dong H, Lin W, Du L, et al. PTPRO suppresses lymph node metastasis of esophageal carcinoma by dephosphorylating MET. Cancer Lett. 2023; 567: 216283.

[195]

Kandimalla R, Xu J, Link A, et al. EpiPanGI Dx: a cell-free DNA methylation fingerprint for the early detection of gastrointestinal cancers. Clin Cancer Res. 2021; 27(22): 6135-6144.

[196]

Qin Y, Wu CW, Taylor WR, et al. Discovery, validation, and application of novel methylated DNA markers for detection of esophageal cancer in plasma. Clin Cancer Res. 2019; 25(24): 7396-7404.

[197]

Yang W, Guo C, Herman JG, et al. Epigenetic silencing of JAM3 promotes esophageal cancer development by activating Wnt signaling. Clin Epigenetics. 2022; 14(1): 164.

[198]

Sugita H, Iida S, Inokuchi M, et al. Methylation of BNIP3 and DAPK indicates lower response to chemotherapy and poor prognosis in gastric cancer. Oncol Rep. 2011; 25(2): 513-518.

[199]

Kato K, Iida S, Uetake H, et al. Methylated TMS1 and DAPK genes predict prognosis and response to chemotherapy in gastric cancer. Int J Cancer. 2008; 122(3): 603-608.

[200]

Bernal C, Aguayo F, Villarroel C, et al. Reprimo as a potential biomarker for early detection in gastric cancer. Clin Cancer Res. 2008; 14(19): 6264-6269.

[201]

Kim TY, Lee HJ, Hwang KS, et al. Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Invest. 2004; 84(4): 479-484.

[202]

Kolesnikova EV, Tamkovich SN, Bryzgunova OE, et al. Circulating DNA in the blood of gastric cancer patients. Ann N Y Acad Sci. 2008; 1137: 226-231.

[203]

Ng EK, Leung CP, Shin VY, et al. Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients. PLoS One. 2011; 6(7): e22233.

[204]

Abbaszadegan MR, Moaven O, Sima HR, et al. p16 promoter hypermethylation: a useful serum marker for early detection of gastric cancer. World J Gastroenterol. 2008; 14(13): 2055-2060.

[205]

Wang YC, Yu ZH, Liu C, et al. Detection of RASSF1A promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World J Gastroenterol. 2008; 14(19): 3074-3080.

[206]

Lee TL, Leung WK, Chan MW, et al. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin Cancer Res. 2002; 8(6): 1761-1766.

[207]

Yu J, Tao Q, Cheng YY, et al. Promoter methylation of the Wnt/beta-catenin signaling antagonist Dkk-3 is associated with poor survival in gastric cancer. Cancer. 2009; 115(1): 49-60.

[208]

Yu JL, Lv P, Han J, et al. Methylated TIMP-3 DNA in body fluids is an independent prognostic factor for gastric cancer. Arch Pathol Lab Med. 2014; 138(11): 1466-1473.

[209]

Yao D, Shi J, Shi B, et al. Quantitative assessment of gene methylation and their impact on clinical outcome in gastric cancer. Clin Chim Acta. 2012; 413(7-8): 787-794.

[210]

Han J, Lv P, Yu JL, et al. Circulating methylated MINT2 promoter DNA is a potential poor prognostic factor in gastric cancer. Dig Dis Sci. 2014; 59(6): 1160-1168.

[211]

Pimson C, Ekalaksananan T, Pientong C, et al. Aberrant methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer. PeerJ. 2016; 4: e2112.

[212]

Ling ZQ, Lv P, Lu XX, et al. Circulating methylated XAF1 DNA indicates poor prognosis for gastric cancer. PLoS One. 2013; 8(6): e67195.

[213]

Jee CD, Kim MA, Jung EJ, Kim J, Kim WH. Identification of genes epigenetically silenced by CpG methylation in human gastric carcinoma. Eur J Cancer. 2009; 45(7): 1282-1293.

[214]

Li WH, Zhou ZJ, Huang TH, et al. Detection of OSR2, VAV3, and PPFIA3 methylation in the serum of patients with gastric cancer. Dis Markers. 2016; 2016: 5780538.

[215]

Yang W, Mok MT, Li MS, et al. Epigenetic silencing of GDF1 disrupts SMAD signaling to reinforce gastric cancer development. Oncogene. 2016; 35(16): 2133-2144.

[216]

Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer. 2016; 23(3): R157-171.

[217]

Sun Y, Deng D, You WC, et al. Methylation of p16 CpG islands associated with malignant transformation of gastric dysplasia in a population-based study. Clin Cancer Res. 2004; 10(15): 5087-5093.

[218]

Wang H, Zheng Y, Lai J, Luo Q, Ke H, Chen Q. Methylation-sensitive melt curve analysis of the reprimo gene methylation in gastric cancer. PLoS One. 2016; 11(12): e0168635.

[219]

Macdonald JS. Carcinoembryonic antigen screening: pros and cons. Semin Oncol. 1999; 26(5): 556-560.

[220]

Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020; 12(524): eaax7533.

[221]

Niwa T, Toyoda T, Tsukamoto T, Mori A, Tatematsu M, Ushijima T. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent. Cancer Prev Res (Phila). 2013; 6(4): 263-270.

[222]

Chen XL, Wang FM, Li JJ, He XY, Liu XY, Ma LB. The effect of two nucleoside antitumor drugs on the proliferation and DNA methylation of human gastric cancer cells. Oncol Lett. 2015; 10(3): 1919-1923.

[223]

Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012; 3(3): 251-261.

[224]

Leodolter A, Alonso S, González B, et al. Somatic DNA hypomethylation in H. pylori-associated high-risk gastritis and gastric cancer: enhanced somatic hypomethylation associates with advanced stage cancer. Clin Transl Gastroenterol. 2015; 6(4): e85.

[225]

Zhu S, Zhu Y, Wang Q, Zhang Y, Guo X. CHK methylation is elevated in colon cancer cells and contributes to the oncogenic properties. Front Cell Dev Biol. 2021; 9: 708038.

[226]

Giri AK, Aittokallio T. DNMT inhibitors increase methylation in the cancer genome. Front Pharmacol. 2019; 10: 385.

[227]

Laranjeira ABA, Hollingshead MG, Nguyen D, Kinders RJ, Doroshow JH, Yang SX. DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Sci Rep. 2023; 13(1): 5964.

[228]

Li N, Zhao Z, Miao F, et al. Silencing of long non-coding RNA LINC01270 inhibits esophageal cancer progression and enhances chemosensitivity to 5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther. 2021; 28(5): 471-485.

[229]

Liu Y, Zhang M, He T, et al. Epigenetic silencing of IGFBPL1 promotes esophageal cancer growth by activating PI3K-AKT signaling. Clin Epigenetics. 2020; 12(1): 22.

[230]

El-Kenawi A, Berglund A, Estrella V, et al. Elevated methionine flux drives pyroptosis evasion in persister cancer cells. Cancer Res. 2023; 83(5): 720-734.

[231]

Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016; 17(10): 630-641.

[232]

Dong J, Zheng N, Wang X, et al. A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur J Pharmacol. 2018; 828: 67-79.

[233]

Zhang XH, Kang HQ, Tao YY, et al. Identification of novel 1, 3-diaryl-1, 2, 4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity. Eur J Med Chem. 2021; 218: 113392.

[234]

Wu SM, Jan YJ, Tsai SC, et al. Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer. Cell Biol Toxicol. 2023; 39(5): 1873-1896.

[235]

Zheng YC, Kang HQ, Wang B, et al. Curriculum vitae of HDAC6 in solid tumors. Int J Biol Macromol. 2023; 230: 123219.

[236]

Lee DH, Won HR, Ryu HW, Han JM, Kwon SH. The HDAC6 inhibitor ACY-1215 enhances the anticancer activity of oxaliplatin in colorectal cancer cells. Int J Oncol. 2018; 53(2): 844-854.

[237]

Ma S, Liu T, Xu L, et al. Histone deacetylases inhibitor MS-275 suppresses human esophageal squamous cell carcinoma cell growth and progression via the PI3K/Akt/mTOR pathway. J Cell Physiol. 2019; 234(12): 22400-22410.

[238]

Hu Z, Wei F, Su Y, et al. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther. 2023; 8(1): 11.

[239]

Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 2021; 81(24): 6233-6245.

[240]

Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007; 21(9): 1050-1063.

[241]

Emran AA, Marzese DM, Menon DR, et al. Commonly integrated epigenetic modifications of differentially expressed genes lead to adaptive resistance in cancer. Epigenomics. 2019; 11(7): 732-737.

[242]

Chae YC, Kim JY, Park JW, et al. FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucleic Acids Res. 2019; 47(4): 1692-1705.

[243]

Dai XJ, Liu Y, Xue LP, et al. Reversible lysine specific demethylase 1 (LSD1) inhibitors: a promising wrench to impair LSD1. J Med Chem. 2021; 64(5): 2466-2488.

[244]

Kubo Y, Tanaka K, Masuike Y, et al. Low mitochondrial DNA copy number induces chemotherapy resistance via epithelial-mesenchymal transition by DNA methylation in esophageal squamous cancer cells. J Transl Med. 2022; 20(1): 383.

[245]

Qiu H, Yashiro M, Shinto O, Matsuzaki T, Hirakawa K. DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 2009; 100(1): 181-188.

[246]

Wu FL, Li RT, Yang M, et al. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2’-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett. 2015; 363(1): 7-16.

[247]

Yang L, Chen X, Lee C, et al. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J Exp Clin Cancer Res. 2023; 42(1): 113.

[248]

Yamamoto Y, Shimada S, Akiyama Y, et al. RTP4 silencing provokes tumor-intrinsic resistance to immune checkpoint blockade in colorectal cancer. J Gastroenterol. 2023; 58(6): 540-553.

[249]

Dinardo CD, Luskin MR, Carroll M, et al. Validation of a clinical assay of multi-locus DNA methylation for prognosis of newly diagnosed AML. Am J Hematol. 2017; 92(2): E14-e15.

[250]

Lu T, Chen D, Wang Y, et al. Identification of DNA methylation-driven genes in esophageal squamous cell carcinoma: a study based on The Cancer Genome Atlas. Cancer Cell Int. 2019; 19: 52.

[251]

Xu L, Li X, Chu ES, et al. Epigenetic inactivation of BCL6B, a novel functional tumour suppressor for gastric cancer, is associated with poor survival. Gut. 2012; 61(7): 977-985.

[252]

Van Rijnsoever M, Elsaleh H, Joseph D, McCaul K, Iacopetta B. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin Cancer Res. 2003; 9(8): 2898-2903.

[253]

Juo YY, Johnston FM, Zhang DY, et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol. 2014; 25(12): 2314-2327.

[254]

Ghatak S, Satapathy SR, Sjölander A. DNA methylation and gene expression of the cysteinyl leukotriene receptors as a prognostic and metastatic factor for colorectal cancer patients. Int J Mol Sci. 2023; 24(4): 3409.

[255]

Wang Y, Wang S, Niu Y, Ma B, Li J. Data mining suggests that CXCL14 gene silencing in colon cancer is due to promoter methylation. Int J Mol Sci. 2023; 24(22): 16027.

[256]

Yoo CB, Cheng JC, Jones PA. Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans. 2004; 32(6): 910-912.

[257]

Lübbert M, Wijermans P, Kunzmann R, et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2’-deoxycytidine. Br J Haematol. 2001; 114(2): 349-357.

[258]

Yang JH, Hayano M, Griffin PT, et al. Loss of epigenetic information as a cause of mammalian aging. Cell. 2023; 186(2): 305-326. e327.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/