Autophagy-mediated activation of the AIM2 inflammasome enhances M1 polarization of microglia and exacerbates retinal neovascularization

Xianyang Liu , Qian Zhou , Jiayu Meng , Hangjia Zuo , Ruonan Li , Rui Zhang , Huiping Lu , Zhi Zhang , Hongshun Li , Shuhao Zeng , Meng Tian , Hong Wang , Ke Hu , Na Li , Liming Mao , Shengping Hou

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e668

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e668 DOI: 10.1002/mco2.668
ORIGINAL ARTICLE

Autophagy-mediated activation of the AIM2 inflammasome enhances M1 polarization of microglia and exacerbates retinal neovascularization

Author information +
History +
PDF

Abstract

Retinopathy of prematurity (ROP) is a retinal neovascularization (RNV) disease that is characterized by abnormal blood vessel development in the retina. Importantly, the etiology of ROP remains understudied. We re-analyzed previously published single-cell data and discovered a strong correlation between microglia and RNV diseases, particularly ROP. Subsequently, we found that reactive oxygen species reduced autophagy-dependent protein degradation of absent in melanoma 2 (AIM2) in hypoxic BV2 cells, leading to increased AIM2 protein accumulation. Furthermore, we engineered AIM2 knockout mice and observed that the RNV was significantly reduced compared to wild-type mice. In vitro vascular function assays also demonstrated diminished angiogenic capabilities following AIM2 knockdown in hypoxic BV2 cells. Mechanistically, AIM2 enhanced the M1-type polarization of microglia via the ASC/CASP1/IL-1β pathway, resulting in RNV. Notably, the administration of recombinant protein IL-1β exacerbated angiogenesis, while its inhibition ameliorated the condition. Taken together, our study provides a novel therapeutic target for ROP and offers insight into the interaction between pyroptosis and autophagy.

Keywords

AIM2 inflammasomes / autophagy / microglia / retinal angiogenesis / retinopathy of prematurity

Cite this article

Download citation ▾
Xianyang Liu, Qian Zhou, Jiayu Meng, Hangjia Zuo, Ruonan Li, Rui Zhang, Huiping Lu, Zhi Zhang, Hongshun Li, Shuhao Zeng, Meng Tian, Hong Wang, Ke Hu, Na Li, Liming Mao, Shengping Hou. Autophagy-mediated activation of the AIM2 inflammasome enhances M1 polarization of microglia and exacerbates retinal neovascularization. MedComm, 2024, 5(8): e668 DOI:10.1002/mco2.668

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sabri K, Ells AL, Lee EY, Dutta S, Vinekar A. Retinopathy of prematurity: a global perspective and recent developments. Pediatrics. 2022; 150(3): e2021053924.

[2]

Dammann O, Hartnett ME, Stahl A. Retinopathy of prematurity. Develop Med Child Neurol. 2023; 65(5): 625-631.

[3]

Chiang MF, Quinn GE, Fielder AR, et al. International classification of retinopathy of prematurity, third edition. Ophthalmology. 2021; 128(10): e51-e68.

[4]

VanderVeen DK, Melia M, Yang MB, Hutchinson AK, Wilson LB, Lambert SR. Anti-vascular endothelial growth factor therapy for primary treatment of type 1 retinopathy of prematurity: a report by the American Academy of Ophthalmology. Ophthalmology. 2017; 124(5): 619-633.

[5]

ElSheikh RH, Chauhan MZ, Sallam AB. Current and novel therapeutic approaches for treatment of neovascular age-related macular degeneration. Biomolecules. 2022; 12(11): 1629.

[6]

Fogli S, Del Re M, Rofi E, Posarelli C, Figus M, Danesi R. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye. 2018; 32(6): 1010-1020.

[7]

Chow SC, Lam PY, Lam WC, Fung NSK. The role of anti-vascular endothelial growth factor in treatment of retinopathy of prematurity—a current review. Eye. 2022; 36(8): 1532-1545.

[8]

Hartnett ME. Retinopathy of prematurity: evolving treatment with anti-vascular endothelial growth factor. Am J Ophthalmol. 2020; 218: 208-213.

[9]

Lückoff A, Caramoy A, Scholz R, Prinz M, Kalinke U, Langmann T. Interferon-beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Mol Med. 2016; 8(6): 670-678.

[10]

Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: functions and diseases. Immunology. 2022; 166(3): 268-286.

[11]

Lee HJ, Yoon CH, Kim HJ, et al. Ocular microbiota promotes pathological angiogenesis and inflammation in sterile injury-driven corneal neovascularization. Mucosal Immunol. 2022; 15(6): 1350-1362.

[12]

Hattori Y. The microglia-blood vessel interactions in the developing brain. Neurosci Res. 2023; 187: 58-66.

[13]

Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol. 2020; 11: 1024.

[14]

Gao X, Wang YS, Li XQ, et al. Macrophages promote vasculogenesis of retinal neovascularization in an oxygen-induced retinopathy model in mice. Cell Tissue Res. 2016; 364(3): 599-610.

[15]

Albornoz EA, Woodruff TM, Gordon R. Inflammasomes in CNS diseases. Exp Suppl (2012). 2018; 108: 41-60.

[16]

Li YK, Chen JG, Wang F. The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochem Int. 2021; 149: 105122.

[17]

Li H, Li B, Zheng Y. Role of microglia/macrophage polarisation in intraocular diseases (review). Int J Mol Med. 2024; 53(5): 45.

[18]

Beltramo E, Mazzeo A, Porta M. Release of pro-inflammatory/angiogenic factors by retinal microvascular cells is mediated by extracellular vesicles derived from M1-activated microglia. Int J Mol Sci. 2023; 25(1): 15.

[19]

Lin J, Wang J, Fang J, et al. The cytoplasmic sensor, the AIM2 inflammasome: a precise therapeutic target in vascular and metabolic diseases. Br J Pharmacol. 2024; 181(12): 1695-1719.

[20]

Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016; 16(7): 407-420.

[21]

Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science (New York, NY). 2011; 333(6048): 1456-1458.

[22]

Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm. 2023; 4(5): e391.

[23]

Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009; 458(7237): 514-518.

[24]

Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev. 2018; 281(1): 99-114.

[25]

Hsieh CY, Lin CC, Huang YW, et al. Macrophage secretory IL-1β promotes docetaxel resistance in head and neck squamous carcinoma via SOD2/CAT-ICAM1 signaling. JCI Insight. 2022; 7(23): e157285.

[26]

Su X, Huang L, Li S, et al. The RNA m6A modification might participate in microglial activation during hypoxic-ischemic brain damage in neonatal mice. Human Genom. 2023; 17(1): 78.

[27]

Shi S, Ding C, Zhu S, et al. PERK inhibition suppresses neovascularization and protects neurons during ischemia-induced retinopathy. Investig Ophthalmol Visual Sci. 2023; 64(11): 17.

[28]

Zhao C, Liu Y, Meng J, et al. LGALS3BP in microglia promotes retinal angiogenesis through PI3K/AKT pathway during hypoxia. Investig Ophthalmol Visual Sci. 2022; 63(8): 25.

[29]

Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem. 2017; 86: 123-128.

[30]

Siva Sankar D, Dengjel J. Protein complexes and neighborhoods driving autophagy. Autophagy. 2021; 17(10): 2689-2705.

[31]

Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy. 2018; 14(2): 207-215.

[32]

Liao J, Lai Z, Huang G, et al. Setanaxib mitigates oxidative damage following retinal ischemia–reperfusion via NOX1 and NOX4 inhibition in retinal ganglion cells. Biomed Pharmacother. 2024; 170: 116042.

[33]

Zheng H, Xu N, Zhang Z, Wang F, Xiao J, Ji X. Setanaxib (GKT137831) ameliorates doxorubicin-induced cardiotoxicity by inhibiting the NOX1/NOX4/reactive oxygen species/MAPK pathway. Front Pharmacol. 2022; 13: 823975.

[34]

O’Shea AE, Valdera FA, Ensley D, et al. Immunologic and dose dependent effects of rapamycin and its evolving role in chemoprevention. Clin Immunol. 2022; 245: 109095.

[35]

Artoni F, Grützmacher N, Demetriades C. Unbiased evaluation of rapamycin’s specificity as an mTOR inhibitor. Aging Cell. 2023; 22(8): e13888.

[36]

Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep. 2020; 30(5): 1271-1281.

[37]

Silverman SM, Wong WT. Microglia in the retina: roles in development, maturity, and disease. Ann Rev Vision Sci. 2018; 4: 45-77.

[38]

Kumari P, Russo AJ, Shivcharan S, Rathinam VA. AIM2 in health and disease: inflammasome and beyond. Immunol Rev. 2020; 297(1): 83-95.

[39]

Mantsounga CS, Lee C, Neverson J, et al. Macrophage IL-1β promotes arteriogenesis by autocrine STAT3-and NF-κB-mediated transcription of pro-angiogenic VEGF-A. Cell Rep. 2022; 38(5): 110309.

[40]

Chen H, Guan B, Chen S, Yang D, Shen J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med. 2021; 165: 171-183.

[41]

Campbell M, Doyle SL. Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochem Pharmacol. 2019; 164: 321-325.

[42]

Gimenez LG, Gili JA, Elias DE, et al. Genetic susceptibility for retinopathy of prematurity and its associated comorbidities. Pediatric Res. 2024.

[43]

García H, Villasis-Keever MA, Zavala-Vargas G, Bravo-Ortiz JC, Pérez-Méndez A, Escamilla-Núñez A. Global prevalence and severity of retinopathy of prematurity over the last four decades (1985–2021): a systematic review and meta-analysis. Arch Med Res. 2024; 55(2): 102967.

[44]

Stahl A, Sukgen EA, Wu WC, et al. Effect of intravitreal aflibercept vs laser photocoagulation on treatment success of retinopathy of prematurity: the FIREFLEYE randomized clinical trial. JAMA. 2022; 328(4): 348-359.

[45]

Sankar MJ, Sankar J, Chandra P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database System Rev. 2018; 1(1): CD009734.

[46]

Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: a review of pathophysiology and signaling pathways. Survey Ophthalmol. 2023; 68(2): 175-210.

[47]

Butturini E, Boriero D, Carcereri de Prati A, Mariotto S. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch Biochem Biophys. 2019; 669: 22-30.

[48]

He C, Liu Y, Huang Z, et al. A specific RIP3(+) subpopulation of microglia promotes retinopathy through a hypoxia-triggered necroptotic mechanism. Proc Natl Acad Sci U S A. 2021; 118(11): e2023290118.

[49]

Meng J, Liu X, Tang S, et al. METTL3 inhibits inflammation of retinal pigment epithelium cells by regulating NR2F1 in an m(6)A-dependent manner. Front Immunol. 2022; 13: 905211.

[50]

Han X, Li Q, Lan X, El-Mufti L, Ren H, Wang J. Microglial depletion with clodronate liposomes increases proinflammatory cytokine levels, induces astrocyte activation, and damages blood vessel integrity. Mol Neurobiol. 2019; 56(9): 6184-6196.

[51]

Wu X, Wan T, Gao X, et al. Microglia pyroptosis: a candidate target for neurological diseases treatment. Front Neurosci. 2022; 16: 922331.

[52]

Xu Q, Sun W, Zhang J, et al. Inflammasome-targeting natural compounds in inflammatory bowel disease: mechanisms and therapeutic potential. Front Immunol. 2022; 13: 963291.

[53]

Qiu Y, Huang Y, Chen M, Yang Y, Li X, Zhang W. Mitochondrial DNA in NLRP3 inflammasome activation. Int Immunopharmacol. 2022; 108: 108719.

[54]

Komada T, Chung H, Lau A, et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J Am Soc Nephrol. 2018; 29(4): 1165-1181.

[55]

Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021; 597(7876): 415-419.

[56]

Oh S, Lee J, Oh J, et al. Integrated NLRP3, AIM2, NLRC4, Pyrin inflammasome activation and assembly drive PANoptosis. Cell Mol Immunol. 2023; 20(12): 1513-1526.

[57]

Wang B, Tian Y, Yin Q. AIM2 inflammasome assembly and signaling. Adv Exp Med Biol. 2019; 1172: 143-155.

[58]

Malkova AM, Gubal AR, Petrova AL, et al. Pathogenetic role and clinical significance of interleukin-1β in cancer. Immunology. 2023; 168(2): 203-216.

[59]

Fan X, He L, Dai Q, et al. Interleukin-1β augments the angiogenesis of endothelial progenitor cells in an NF-κB/CXCR7-dependent manner. J Cell Mol Med. 2020; 24(10): 5605-5614.

[60]

Huang X, Yao J, Liu L, Luo Y, Yang A. Atg8-PE protein-based in vitro biochemical approaches to autophagy studies. Autophagy. 2022; 18(9): 2020-2035.

[61]

Xu J, Kitada M, Ogura Y, Koya D. Relationship between autophagy and metabolic syndrome characteristics in the pathogenesis of atherosclerosis. Front Cell Develop Biol. 2021; 9: 641852.

[62]

Zhang L, Sun Y, Fei M, et al. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy. 2014; 10(6): 1015-1035.

[63]

Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature. 2013; 497(7448): 217-223.

[64]

Hu L, Chen F, Wu C, et al. Rapamycin recruits SIRT2 for FKBP12 deacetylation during mTOR activity modulation in innate immunity. iScience. 2021; 24(11): 103177.

[65]

Wang L, Zhang S, Yi S, Ho MS. A new regulator of autophagy initiation in glia. Autophagy. 2024; 20(1): 207-209.

[66]

Zhu W, Gui X, Zhou Y, et al. Aurora kinase B disruption suppresses pathological retinal angiogenesis by affecting cell cycle progression. Exp Eye Res. 2024; 239: 109753.

[67]

Andreatta M, Carmona SJ. UCell: robust and scalable single-cell gene signature scoring. Comput Struct Biotechnol J. 2021; 19: 3796-3798.

[68]

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: J Integr Biol. 2012; 16(5): 284-287.

[69]

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013; 14: 7.

[70]

Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protocols. 2020; 15(4): 1484-1506.

[71]

Liu X, Meng J, Liao X, et al. A de novo missense mutation in MPP2 confers an increased risk of Vogt–Koyanagi–Harada disease as shown by trio-based whole-exome sequencing. Cell Mol Immunol. 2023; 20(11): 1379-1392.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/