Circular RNA-based neoantigen vaccine for hepatocellular carcinoma immunotherapy

Fei Wang , Guang Cai , Yingchao Wang , Qiuyu Zhuang , Zhixiong Cai , Yingying Li , Shaodong Gao , Fang Li , Cuilin Zhang , Bixing Zhao , Xiaolong Liu

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e667

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e667 DOI: 10.1002/mco2.667
ORIGINAL ARTICLE

Circular RNA-based neoantigen vaccine for hepatocellular carcinoma immunotherapy

Author information +
History +
PDF

Abstract

mRNA vaccines are regarded as a highly promising avenue for next-generation cancer therapy. Nevertheless, the intricacy of production, inherent instability, and low expression persistence of linear mRNA significantly restrict their extensive utilization. Circular RNAs (circRNAs) offer a novel solution to these limitations due to their efficient protein expression ability, which can be rapidly generated in vitro without the need for extra modifications. Here, we present a novel neoantigen vaccine based on circRNA that induces a potent anti-tumor immune response by expressing hepatocellular carcinoma-specific tumor neoantigens. By cyclizing linearRNA molecules, we were able to enhance the stability of RNA vaccines and form highly stable circRNA molecules with the capacity for sustained protein expression. We confirmed that neoantigen-encoded circRNA can promote dendritic cell (DC) activation and enhance DC-induced T-cell activation in vitro, thereby enhancing T-cell killing of tumor cells. Encapsulating neoantigen-encoded circRNA within lipid nanoparticles for in vivo expression has enabled the creation of a novel circRNA vaccine platform. This platform demonstrates superior tumor treatment and prevention in various murine tumor models, eliciting a robust T-cell immune response. Our circRNA neoantigen vaccine offers new options and application prospects for neoantigen immunotherapy in solid tumors.

Keywords

circRNA / hepatocellular carcinoma / immunotherapy / neoantigen / vaccine

Cite this article

Download citation ▾
Fei Wang, Guang Cai, Yingchao Wang, Qiuyu Zhuang, Zhixiong Cai, Yingying Li, Shaodong Gao, Fang Li, Cuilin Zhang, Bixing Zhao, Xiaolong Liu. Circular RNA-based neoantigen vaccine for hepatocellular carcinoma immunotherapy. MedComm, 2024, 5(8): e667 DOI:10.1002/mco2.667

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pastor F, Berraondo P, Etxeberria I, et al. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov. 2018; 17(10): 751-767.

[2]

Chu Y, Liu Q, Wei J, Liu B. Personalized cancer neoantigen vaccines come of age. Theranostics. 2018; 8(15): 4238-4246.

[3]

Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther. 2023; 8(1): 9.

[4]

Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021; 18(4): 215-229.

[5]

Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019; 18(1): 128.

[6]

He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: advances, trends and challenges. Acta Pharm Sin B. 2022; 12(7): 2969-2989.

[7]

Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K. Neo-antigen mRNA vaccines. Vaccines (Basel). 2020; 8(4): 776.

[8]

Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023; 618(7963): 144-150.

[9]

Gao X, Xia X, Li F, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021; 23(3): 278-291.

[10]

Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 2018; 9(1): 4475.

[11]

Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 2018; 9(1): 2629.

[12]

Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017; 27(5): 626-641.

[13]

Qu L, Yi Z, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 2022; 185(10):1728-1744.e16.

[14]

Chen H, Li Z, Qiu L, et al. Personalized neoantigen vaccine combined with PD-1 blockade increases CD8(+) tissue-resident memory T-cell infiltration in preclinical hepatocellular carcinoma models. J Immunother Cancer. 2022; 10(9): e004389.

[15]

Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495(7441): 333-338.

[16]

Li H, Peng K, Yang K, et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics. 2022; 12(14): 6422-6436.

[17]

Chen R, Wang SK, Belk JA, et al. Engineering circular RNA for enhanced protein production. Nat Biotechnol. 2023; 41(2): 262-272.

[18]

Petkovic S, Muller S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 2015; 43(4): 2454-2465.

[19]

Ma W, Yang Y, Zhu J, et al. Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv Mater. 2022; 34(46): e2109609.

[20]

Zhang T, Zhou M, Xiao D, et al. Myelosuppression alleviation and hematopoietic regeneration by tetrahedral-framework nucleic-acid nanostructures functionalized with osteogenic growth peptide. Adv Sci (Weinh). 2022; 9(27): e2202058.

[21]

Tian T, Zhang T, Shi S, Gao Y, Cai X, Lin Y. A dynamic DNA tetrahedron framework for active targeting. Nat Protoc. 2023; 18(4): 1028-1055.

[22]

Eygeris Y, Gupta M, Kim J, Sahay G. Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res. 2022; 55(1): 2-12.

[23]

Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y. Lipids and lipid derivatives for RNA delivery. Chem Rev. 2021; 121(20): 12181-12277.

[24]

Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer. 2020; 19(1): 8.

[25]

Kiaie SH, Majidi Zolbanin N, Ahmadi A, et al. Recent advances in mRNA–LNP therapeutics: immunological and pharmacological aspects. J Nanobiotechnol. 2022; 20(1): 276.

[26]

Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell. 2019; 74(3):508-520.e4.

[27]

Chen YG, Chen R, Ahmad S, et al. N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 2019; 76(1):96-109.e9.

[28]

Liu CX, Guo SK, Nan F, Xu YF, Yang L, Chen LL. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol Cell. 2022; 82(2):420-434.e6.

[29]

Hsiue EH, Wright KM, Douglass J, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021; 371(6533): eabc8697.

[30]

Poole A, Karuppiah V, Hartt A, et al. Therapeutic high affinity T cell receptor targeting a KRAS(G12D) cancer neoantigen. Nat Commun. 2022; 13(1): 5333.

[31]

Amaya L, Grigoryan L, Li Z, et al. Circular RNA vaccine induces potent T cell responses. Proc Natl Acad Sci U S A. 2023; 120(20): e2302191120.

[32]

Workman P, Aboagye EO, Balkwill F, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010; 102(11): 1555-1577.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/