Gallium complex K6 inhibits colorectal cancer by increasing ROS levels to induce DNA damage and enhance phosphatase and tensin homolog activity

Wei Li , Chuanyu Yang , Zhuo Cheng , Yuanyuan Wu , Sihan Zhou , Xiaowei Qi , Yi Zhang , Jinhui Hu , Mingjin Xie , Ceshi Chen

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e665

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e665 DOI: 10.1002/mco2.665
ORIGINAL ARTICLE

Gallium complex K6 inhibits colorectal cancer by increasing ROS levels to induce DNA damage and enhance phosphatase and tensin homolog activity

Author information +
History +
PDF

Abstract

Colorectal cancer (CRC) is one of the most common malignancies worldwide. In the clinical realm, platinum-based drugs hold an important role in the chemotherapy of CRC. Nonetheless, a multitude of patients, due to tumor protein 53 (TP53) gene mutations, experience the emergence of drug resistance. This phenomenon gravely impairs the effectiveness of therapy and long-term prognosis. Gallium, a metallic element akin to iron, has been reported that has the potential to be used to develop new metal anticancer drugs. In this study, we screened and established the gallium complex K6 as a potent antitumor agent in both in vitro and in vivo. K6 exhibited superior efficacy in impeding the growth, proliferation, and viability of CRC cells carrying TP53 mutations compared to oxaliplatin. Mechanistically, K6 escalated reactive oxygen species levels and led deoxyribonucleic acid (DNA) damage. Furthermore, K6 effectively suppressed the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/glycogen synthase kinase 3 beta (GSK3β) pathway, leading to the degradation of its downstream effectors myelocytomatosis (c-Myc) and Krueppel-like factor 5 (KLF5). Conversely, K6 diminished the protein expression of WW domain-containing protein 1 (WWP1) while activating phosphatase and tensin homolog (PTEN) through c-Myc degradation. This dual action further demonstrated the potential of K6 as a promising therapeutic compound for TP53-mutated CRC.

Keywords

colorectal cancer / deoxyribonucleic acid (DNA) damage / gallium complex k6 / phosphatase and tensin homolog (PTEN) / reactive oxygen species (ROS)

Cite this article

Download citation ▾
Wei Li, Chuanyu Yang, Zhuo Cheng, Yuanyuan Wu, Sihan Zhou, Xiaowei Qi, Yi Zhang, Jinhui Hu, Mingjin Xie, Ceshi Chen. Gallium complex K6 inhibits colorectal cancer by increasing ROS levels to induce DNA damage and enhance phosphatase and tensin homolog activity. MedComm, 2024, 5(8): e665 DOI:10.1002/mco2.665

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thanikachalam K, Khan G. Colorectal cancer and nutrition. Nutrients. 2019; 11(1): 164.

[2]

Elias D, Lefevre JH, Chevalier J, et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009; 27(5): 681-685.

[3]

Nagasaka T, Mishima H, Sawaki A, et al. Protocol of a randomised phase III clinical trial of sequential capecitabine or 5-fluorouracil plus bevacizumab (Cape/5-FU-Bmab) to capecitabine or 5-fluorouracil plus oxaliplatin plus bevacizumab (CapeOX/mFOLFOX6-Bmab) versus combination CapeOX/mFOLFOX6-Bmab in advanced colorectal cancer: the C-cubed (C3) study. BMJ Open. 2016; 6(6): e011454.

[4]

Suh YA, Post SM, Elizondo-Fraire AC, et al. Multiple stress signals activate mutant p53 in vivo. Cancer Res. 2011; 71(23): 7168-7175.

[5]

Michel M, Kaps L, Maderer A, Galle PR, Moehler M. The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers (Basel). 2021; 13(10): 2296.

[6]

Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010; 2(1): a001008.

[7]

Farrell NP, Gorle AK, Peterson EJ, Berners-Price SJ. Metalloglycomics. Met Ions Life Sci. 2018; 18:/books/9783110470734/9783110470734-9783110470007/9797831104707

[8]

Hart MM, Adamson RH. Antitumor activity and toxicity of salts of inorganic group I11a metals: aluminum, gallium, indium, and thallium. Proc Natl Acad Sci U S A. 1971; 68: 1623-1626.

[9]

Valiahdi SM, Heffeter P, Jakupec MA, et al. The gallium complex KP46 exerts strong activity against primary explanted melanoma cells and induces apoptosis in melanoma cell lines. Melanoma Res. 2009; 19(5): 283-293.

[10]

Chua M-S, Bernstein LR, Li R, So SKS. Gallium maltolate is a promising chemotherapeutic agent for the treatment of hepatocellular carcinoma. Anticancer Res. 2006; 26: 1739-1744.

[11]

Chitambar CR. Gallium-containing anticancer compounds. Future Med Chem. 2012; 4(10): 1257-1272.

[12]

Chitambar CR, Antholine WE. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine((R))-metal complexes. Antioxid Redox Signal. 2013; 18(8): 956-972.

[13]

Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta. 2006; 1757(9-10): 1301-1311.

[14]

Dang CV. MYC on the path to cancer. Cell. 2012; 149(1): 22-35.

[15]

Walz S, Lorenzin F, Morton J, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014; 511(7510): 483-487.

[16]

Porter JR, Fisher BE, Baranello L, et al. Global inhibition with specific activation: how p53 and MYC redistribute the transcriptome in the DNA double-strand break response. Mol Cell. 2017; 67(6): 1013-1025.

[17]

Ho JS, Ma W, Mao DY, Benchimol S. p53-Dependent transcriptional repression of c-Myc is required for G1 cell cycle arrest. Mol Cell Biol. 2005; 25(17): 7423-7431.

[18]

Choi SH, Wright JB, Gerber SA, Cole MD. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev. 2010; 24(12): 1236-1241.

[19]

Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000; 14(19): 2501-2514.

[20]

Dai MS, Jin Y, Gallegos JR, Lu H. Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. Neoplasia. 2006; 8(8): 630-644.

[21]

Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020; 11(9): 797.

[22]

Song MS, Carracedo A, Salmena L, et al. Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell. 2011; 144(2): 187-199.

[23]

Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN. J Cell Sci. 2008; 121(pt 3): 249-253.

[24]

Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol. 2018; 19(9): 547-562.

[25]

Shen WH, Balajee AS, Wang J, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 2007; 128(1): 157-170.

[26]

Xie P, Peng Z, Chen Y, et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 2021; 31(3): 291-311.

[27]

Hong SW, Moon JH, Kim JS, et al. p34 is a novel regulator of the oncogenic behavior of NEDD4-1 and PTEN. Cell Death Differ. 2014; 21(1): 146-160.

[28]

Ma L, Yao N, Chen P, Zhuang Z. TRIM27 promotes the development of esophagus cancer via regulating PTEN/AKT signaling pathway. Cancer Cell Int. 2019; 19: 283.

[29]

Van Themsche C, Leblanc V, Parent S, Asselin E. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J Biol Chem. 2009; 284(31): 20462-20466.

[30]

Maddika S, Kavela S, Rani N, et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol. 2011; 13(6): 728-733.

[31]

Sun G, Ye H, Wang X, et al. Identification of novel autoantibodies based on the protein chip encoded by cancer-driving genes in detection of esophageal squamous cell carcinoma. Oncoimmunology. 2020; 9(1): 1814515.

[32]

Lee YR, Chen M, Lee JD, et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science. 2019; 364(6441): eaau0159.

[33]

Zhou S-H, Wang R-D, Wu T-T, et al. Long rod-shaped gallium composite material: self-separating material aggregation induced enhancement of ROS for photothermal/photodynamic therapy of HCT116 cells. Eur J Med Chem. 2023; 262: 115892.

[34]

Zhou S-H, Liao W-H, Yang Y, et al. 8-Hydroxyquinoline gallium(III) complex with high antineoplastic efficacy for treating colon cancer via multiple mechanisms. ACS Omega. 2023; 8: 6945-6958.

[35]

Rodrigues NR, Rowan A, Smith ME, et al. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990; 87: 7555-7559.

[36]

Wang X, Qiu T, Wu Y, et al. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ. 2021; 28(10): 2931-2945.

[37]

Zhao D, Zheng HQ, Zhou Z, Chen C. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res. 2010; 70(11): 4728-4738.

[38]

Chen K, Li Y, Zhang X, Ullah R, Tong J, Shen Y. The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death Dis. 2022; 13(5): 513.

[39]

Yang M, Chitambar CR. Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic Biol Med. 2008; 45(6): 763-772.

[40]

Welcker M, Wang B, Rusnac DV, et al. Two diphosphorylated degrons control c-Myc degradation by the Fbw7 tumor suppressor.pdf. Sci Adv. 2022; 8: eabl7872.

[41]

Zhi X, Chen C. WWP1: a versatile ubiquitin E3 ligase in signaling and diseases. Cell Mol Life Sci. 2012; 69(9): 1425-1434.

[42]

Goto Y, Kojima S, Kurozumi A, et al. Regulation of E3 ubiquitin ligase-1 (WWP1) by microRNA-452 inhibits cancer cell migration and invasion in prostate cancer. Br J Cancer. 2016; 114(10): 1135-1144.

[43]

Li Q, Li Z, Wei S, et al. Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. J Exp Clin Cancer Res. 2017; 36(1): 59.

[44]

Li Y, Zhou Z, Chen C. WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death Differ. 2008; 15(12): 1941-1951.

[45]

Chen JJ, Zhang W. High expression of WWP1 predicts poor prognosis and associates with tumor progression in human colorectal cancer. Am J Cancer Res. 2018; 8: 256-265.

[46]

Jiang D, Qiu T, Peng J, et al. YB-1 is a positive regulator of KLF5 transcription factor in basal-like breast cancer. Cell Death Differ. 2022; 29(6): 1283-1295.

[47]

Nandan MO, McConnell BB, Ghaleb AM, et al. Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology. 2008; 134(1): 120-130.

[48]

Takagi Y, Sakai N, Yoshitomi H, et al. High expression of Kruppel-like factor 5 is associated with poor prognosis in patients with colorectal cancer. Cancer Sci. 2020; 111(6): 2078-2092.

[49]

Shen X, Zhang Y, Xu Z, et al. KLF5 inhibition overcomes oxaliplatin resistance in patient-derived colorectal cancer organoids by restoring apoptotic response. Cell Death Dis. 2022; 13(4): 303.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/