The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside

Xiaofei Shen , Hongling Yang , Yang Yang , Xianjun Zhu , Qingxiang Sun

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e664

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e664 DOI: 10.1002/mco2.664
REVIEW

The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside

Author information +
History +
PDF

Abstract

Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.

Keywords

glucose/lipid metabolism / insulin resistance / metabolic disorders / metabolic inflammation / natural products / target identification

Cite this article

Download citation ▾
Xiaofei Shen, Hongling Yang, Yang Yang, Xianjun Zhu, Qingxiang Sun. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm, 2024, 5(8): e664 DOI:10.1002/mco2.664

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kivimäki M, Bartolomucci A, Kawachi I. The multiple roles of life stress in metabolic disorders. Nat Rev Endocrinol. 2023; 19(1): 10-27.

[2]

Zhang L, Liu Y, Wang X, et al. Physical exercise and diet: regulation of gut microbiota to prevent and treat metabolic disorders to maintain health. Nutrients. 2023; 15(6): 1539.

[3]

Syed FZ. Type 1 diabetes mellitus. Ann Intern Med. 2022; 175(3): 33-48.

[4]

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14(2): 88-98.

[5]

Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020; 16(7): 377-390.

[6]

Viigimaa M, Sachinidis A, Toumpourleka M, et al. Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020; 18(2): 110-116.

[7]

Faselis C, Katsimardou A, Imprialos K, et al. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020; 18(2): 117-124.

[8]

Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023; 20(10): 685-695..

[9]

Younossi ZM, Rinella ME, Sanyal AJ, et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology. 2021; 73(3): 1194-1198.

[10]

Kim DS, Scherer PE. Obesity, diabetes, and increased cancer progression. Diabetes Metab J. 2021; 45(6): 799-812.

[11]

Rothwell JA, Jenab M, Karimi M, et al. Metabolic syndrome and risk of gastrointestinal cancers: an investigation using large-scale molecular data. Clin Gastroenterol Hepatol. 2022; 20(6): e1338-e1352.

[12]

Chew NWS, Ng CH, Tan DJH, et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab. 2023; 35(3): 414-428.

[13]

Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183: 109119.

[14]

Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021; 70(6): 1174-1182.

[15]

Du Y, Zhu YJ, Zhou YX, et al. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. Mol Biomed. 2022; 3(1): 41.

[16]

Colca JR, Scherer PE. The metabolic syndrome, thiazolidinediones, and implications for intersection of chronic and inflammatory disease. Mol Metab. 2022; 55: 101409.

[17]

Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Front Mol Biosci. 2023; 10: 1130625.

[18]

Kutoh E, Kuto AN, Akiyama M, et al. Alogliptin: a DPP-4 inhibitor modulating adipose tissue insulin resistance and atherogenic lipid. Eur J Clin Pharmacol. 2023; 79(7): 947-959.

[19]

Yousefi M, Fateh ST, Nikbaf-Shandiz M, et al. The effect of acarbose on lipid profiles in adults: a systematic review and meta-analysis of randomized clinical trials. BMC Pharmacol Toxicol. 2023; 24(1): 65.

[20]

Park S, Lee J, Seok JW, et al. Comprehensive lifestyle modification interventions for metabolic syndrome: a systematic review and meta-analysis. J Nurs Scholarsh. 2024; 56(2): 249-259.

[21]

Hua Y, Lou YX, Li C, et al. Clinical outcomes of bariatric surgery—updated evidence. Obes Res Clin Pract. 2022; 16(1): 1-9.

[22]

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83(3): 770-803.

[23]

Tu Y, Tan L, Tao H, et al. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. Phytomedicine. 2023; 116: 154862.

[24]

Pan S, Zhang H, Wang C, et al. Target identification of natural products and bioactive compounds using affinity-based probes. Nat Prod Rep. 2016; 33(5): 612-620.

[25]

Cui Z, Li C, Chen P, et al. An update of label-free protein target identification methods for natural active products. Theranostics. 2022; 12(4): 1829-1854.

[26]

Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, et al. Polyphenols: potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res. 2022; 36(1): 415-432.

[27]

Nainu F, Frediansyah A, Mamada SS, et al. Natural products targeting inflammation-related metabolic disorders: a comprehensive review. Heliyon. 2023; 9(6): e16919.

[28]

Li M, Chi X, Wang Y, et al. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022; 7(1): 216.

[29]

Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 2017; 13(2): 79-91.

[30]

Lee SH, Park SY, Choi CS. Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab J. 2022; 46(1): 15-37.

[31]

Zhao X, An X, Yang C, et al. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol. 2023; 14: 1149239.

[32]

Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017; 23(7): 804-814.

[33]

Norton L, Shannon C, Gastaldelli A, et al. Insulin: the master regulator of glucose metabolism. Metabolism. 2022; 129: 155142.

[34]

Zhang X, Yang S, Chen J, et al. Unraveling the regulation of hepatic gluconeogenesis. Front Endocrinol. 2019; 9: 802.

[35]

Alonge KM, Porte D, Schwartz MW. Distinct roles for brain and pancreas in basal and postprandial glucose homeostasis. Diabetes. 2023; 72(5): 547-556.

[36]

Fazakerley DJ, Krycer JR, Kearney AL, et al. Muscle and adipose tissue insulin resistance: malady without mechanism? J Lipid Res. 2019; 60(10): 1720-1732.

[37]

Chakrabarti P, Kim JY, Singh M, et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol. 2013; 33(18): 3659-3666.

[38]

Le TKC, Dao XD, Nguyen DV, et al. Insulin signaling and its application. Front Endocrinol. 2023; 14: 1226655.

[39]

Wang X, Wang L, Zhu L, et al. PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus. Diabetes. 2013; 62(2): 444-456.

[40]

Nguyen TD, Schwarzer M, Schrepper A, et al. Increased protein tyrosine phosphatase 1B (PTP1B) activity and cardiac insulin resistance precede mitochondrial and contractile dysfunction in pressure-overloaded hearts. J Am Heart Assoc. 2018; 7(13): e008865.

[41]

Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017; 169(3): 381-405.

[42]

Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021; 131(1): e142241.

[43]

Aguilar-Salinas CA, Gómez-Díaz RA, Corral P. New therapies for primary hyperlipidemia. J Clin Endocrinol Metab. 2022; 107(5): 1216-1224.

[44]

Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology-divergent pathophysiology. Nat Rev Endocrinol. 2017; 13(12): 710-730.

[45]

Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018; 14(8): 452-463.

[46]

Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021; 18(12): 809-823.

[47]

Flannick J, Mercader JM, Fuchsberger C, et al. Exome sequencing of 20, 791 cases of type 2 diabetes and 24, 440 controls. Nature. 2019; 570(7759): 71-76.

[48]

Lotta LA, Gulati P, Day FR, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017; 49(1): 17-26.

[49]

Chandra A, Kaur P, Sahu SK, et al. A new insight into the treatment of diabetes by means of pan PPAR agonists. Chem Biol Drug Des. 2022; 100(6): 947-967.

[50]

Hocking S, Samocha-Bonet D, Milner KL, et al. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev. 2013; 34(4): 463-500.

[51]

Benito-Vicente A, Jebari-Benslaiman S, Galicia-Garcia U, et al. Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. Int Rev Cell Mol Biol. 2021; 359: 357-402.

[52]

Massart J, Zierath JR. Role of diacylglycerol kinases in glucose and energy homeostasis. Trends Endocrinol Metab. 2019; 30(9): 603-617.

[53]

Chaurasia B, Summers SA. Ceramides in metabolism: Key lipotoxic players. Annu Rev Physiol. 2021; 83: 303-330.

[54]

Jayasinghe SU, Tankeu AT, Amati F. Reassessing the role of diacylglycerols in insulin resistance. Trends Endocrinol Metab. 2019; 30(9): 618-635.

[55]

Shamsi F, Wang CH, Tseng YH. The evolving view of thermogenic adipocytes-ontogeny, niche and function. Nat Rev Endocrinol. 2021; 17(12): 726-744.

[56]

Jagtap U, Paul A. UCP1 activation: hottest target in the thermogenesis pathway to treat obesity using molecules of synthetic and natural origin. Drug Discov Today. 2023; 28(9): 103717.

[57]

Steensels S, Ersoy BA. Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids. 2019; 1864(1): 79-90.

[58]

Bruce CR, Hoy AJ, Turner N, et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet–induced insulin resistance. Diabetes. 2009; 58(3): 550-558.

[59]

Sergin I, Evans TD, Zhang X, et al. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun. 2017; 8: 15750.

[60]

Minami Y, Hoshino A, Higuchi Y, et al. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun. 2023; 14(1): 4084.

[61]

DeBose-Boyd RA, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci. 2018; 43(5): 358-368.

[62]

Rohm TV, Meier DT, Olefsky JM, et al. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022; 55(1): 31-55.

[63]

Wang X, Wang Y, Antony V, et al. Metabolism-associated molecular patterns (MAMPs). Trends Endocrinol Metab. 2020; 31(10): 712-724.

[64]

Ying W, Fu W, Lee YS, et al. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol. 2020; 16(2): 81-90.

[65]

Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011; 17(2): 179-188.

[66]

Arkan MC, Hevener AL, Greten FR, et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med. 2005; 11(2): 191-198.

[67]

Garg R, Kumariya S, Katekar R, et al. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol. 2021; 901: 174079.

[68]

Shimobayashi M, Albert V, Woelnerhanssen B, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018; 128(4): 1538-1550.

[69]

Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(10): 165838.

[70]

Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011; 469(7329): 221-225.

[71]

Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023; 13(2): 736-766.

[72]

Zhang H, Yan S, Khambu B, et al. Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy. 2018; 14(10): 1779-1795.

[73]

Palma FR, Gantner BN, Sakiyama MJ, et al. ROS production by mitochondria: function or dysfunction? Oncogene. 2024; 43(5): 295-303.

[74]

Cojocaru KA, Luchian I, Goriuc A, et al. Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants. 2023; 12(3): 658.

[75]

Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024; 25(1): 13-33.

[76]

Korac B, Kalezic A, Pekovic-Vaughan V, et al. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol. 2021; 42: 101887.

[77]

Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018; 9(2): 119.

[78]

Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014; 20(7): 1126-1167.

[79]

Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev. 2016; 2016: 5698931.

[80]

Eguchi N, Vaziri ND, Dafoe DC, et al. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int J Mol Sci. 2021; 22(4): 1509.

[81]

Baumel-Alterzon S, Katz LS, Brill G, et al. Nrf2: the master and captain of beta cell fate. Trends Endocrinol Metab. 2021; 32(1): 7-19.

[82]

Archuleta TL, Lemieux AM, Saengsirisuwan V, et al. Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK. Free Radic Biol Med. 2009; 47(10): 1486-1493.

[83]

Lennicke C, Cochemé HM. Redox regulation of the insulin signalling pathway. Redox Biol. 2021; 42: 101964.

[84]

Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019; 129(10): 3990-4000.

[85]

Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab. 2019; 1(8): 754-764.

[86]

Lei X, Qiu S, Yang G, et al. Adiponectin and metabolic cardiovascular diseases: therapeutic opportunities and challenges. Genes Dis. 2022; 10(4): 1525-1536.

[87]

Kim YH, Lazar MA. Transcriptional control of circadian rhythms and metabolism: a matter of time and space. Endocr Rev. 2020; 41(5): 707-732.

[88]

Chaput JP, McHill AW, Cox RC, et al. The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol. 2023; 19(2): 82-97.

[89]

Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005; 308(5724): 1043-1045.

[90]

Lyu K, Zhang Y, Zhang D, et al. A membrane-bound diacylglycerol species induces PKCϵ-mediated hepatic insulin resistance. Cell Metab. 2020; 32(4): 654-664.

[91]

Zheng ZG, Xu YY, Liu WP, et al. Discovery of a potent allosteric activator of DGKQ that ameliorates obesity-induced insulin resistance via the sn-1, 2-DAG-PKCϵ signaling axis. Cell Metab. 2023; 35(1): 101-117.

[92]

Li Y, Xu Y, Zhang B, et al. Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila. J Tradit Complement Med. 2024; 14(4): 424-434.

[93]

Wang L, Wang X, Li Z, et al. PAQR3 has modulatory roles in obesity, energy metabolism, and leptin signaling. Endocrinology. 2013; 154(12): 4525-4535.

[94]

Xiao H, Sun X, Lin Z, et al. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm Sin B. 2022; 12(6): 2887-2904.

[95]

Zou Y, Chen Z, Li J, et al. Progestin and adipoQ receptor 3 upregulates fibronectin and intercellular adhesion molecule-1 in glomerular mesangial cells via activating NF-κB signaling pathway under high glucose conditions. Front Endocrinol. 2018; 9: 275.

[96]

Zhang QL, Xia PF, Peng XJ, et al. Synthesis, and anti-inflammatory activities of gentiopicroside derivatives. Chin J Nat Med. 2022; 20(4): 309-320.

[97]

Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 2015; 12(4): 231-242.

[98]

Díaz LA, Arab JP, Louvet A, et al. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2023; 20(12): 764-783.

[99]

Yu Q, Lee YY, Xia ZY, et al. S-allylmercaptocysteine improves nonalcoholic steatohepatitis by enhancing AHR/NRF2-mediated drug metabolising enzymes and reducing NF-κB/IκBα and NLRP3/6-mediated inflammation. Eur J Nutr. 2021; 60(2): 961-973.

[100]

Luo P, Zheng M, Zhang R, et al. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling. Acta Pharm Sin B. 2021; 11(3): 668-679.

[101]

Danyukova T, Schöneck K, Pohl S. Site-1 and site-2 proteases: a team of two in regulated proteolysis. Biochim Biophys Acta Mol Cell Res. 2022; 1869(1): 119138.

[102]

Chandrasekaran P, Weiskirchen R. The role of SCAP/SREBP as central regulators of lipid metabolism in hepatic steatosis. Int J Mol Sci. 2024; 25(2): 1109.

[103]

Tang JJ, Li JG, Qi W, et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 2011; 13(1): 44-56.

[104]

Tian J, Goldstein JL, Brown MS. Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex. Proc Natl Acad Sci USA. 2016; 113(29): 8182-8187.

[105]

Li Y, He K, Huang Y, et al. Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Mol Carcinog. 2010; 49(7): 630-640.

[106]

Li Y, Wu S, Zhao X, et al. Key events in cancer: dysregulation of SREBPs. Front Pharmacol. 2023; 14: 1130747.

[107]

Peng Z, Chen L, Wang M, et al. SREBP inhibitors: an updated patent review for 2008-present. Expert Opin Ther Pat. 2023; 33(10): 669-680.

[108]

Zheng ZG, Zhu ST, Cheng HM, et al. Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway. Autophagy. 2021; 17(7): 1592-1613.

[109]

Kuan YC, Hashidume T, Shibata T, et al. Heat shock protein 90 modulates lipid homeostasis by regulating the stability and function of sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein. J Biol Chem. 2017; 292(7): 3016-3028.

[110]

Zheng ZG, Zhang X, Liu XX, et al. Inhibition of HSP90β improves lipid disorders by promoting mature SREBPs degradation via the ubiquitin-proteasome system. Theranostics. 2019; 9(20): 5769-5783.

[111]

Wang Y, Vera L, Fischer WH, et al. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature. 2009; 460(7254): 534-537.

[112]

Chen Y, Wang J, Wang Y, et al. A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Nat Commun. 2022; 13(1): 246.

[113]

Han J, Li E, Chen L, et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature. 2015; 524(7564): 243-246.

[114]

Wang Z, Yu X, Chen Y. Recruitment of thermogenic fat: trigger of fat burning. Front Endocrinol. 2021; 12: 696505.

[115]

Guerra IMS, Ferreira HB, Melo T, et al. Mitochondrial fatty acid beta-oxidation disorders: from disease to lipidomic studies-A critical review. Int J Mol Sci. 2022; 23(22): 13933.

[116]

Rufino AT, Costa VM, Carvalho F, et al. Flavonoids as antiobesity agents: a review. Med Res Rev. 2021; 41(1): 556-585.

[117]

Zhang J, Zhang H, Deng X, et al. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice. Life Sci. 2018; 192: 46-54.

[118]

Dai J, Liang K, Zhao S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci USA. 2018; 115(26): E5896-E5905.

[119]

Chen Q, Liu M, Yu H, et al. Scutellaria baicalensis regulates FFA metabolism to ameliorate NAFLD through the AMPK-mediated SREBP signaling pathway. J Nat Med. 2018; 72(3): 655-666.

[120]

Carpentier AC, Blondin DP, Haman F, et al. Brown adipose tissue—a translational perspective. Endocr Rev. 2023; 44(2): 143-192.

[121]

Ikeda K, Yamada T. UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front Endocrinol. 2020; 11: 498.

[122]

Gupta RK. Human brown fat and metabolic disease: a heated debate. J Clin Invest. 2023; 133(23): e176678.

[123]

Chen S, Liu X, Peng C, et al. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab. 2021; 33(3): 565-580.

[124]

Pu J. Targeting the lysosome: Mechanisms and treatments for nonalcoholic fatty liver disease. J Cell Biochem. 2022; 123(10): 1624-1633.

[125]

Zhang C, Deng J, Liu D, et al. Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARα/PPARγ coactivator-1α pathway. Br J Pharmacol. 2018; 175(22): 4218-4228.

[126]

Du X, Di Malta C, Fang Z, et al. Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy-lysosomal pathway. Acta Pharm Sin B. 2022; 12(6): 2869-2886.

[127]

Qin Y, Ni P, Zhang Q, et al. Hbxip is essential for murine embryogenesis and regulates embryonic stem cell differentiation through activating mTORC1. Development. 2022; 149(12): dev200527.

[128]

Li Y, Xu M, Ding X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol. 2016; 18(10): 1065-1077.

[129]

Jia Y, Zhang L, Liu Z, et al. Targeting macrophage TFEB-14-3-3 epsilon Interface by naringenin inhibits abdominal aortic aneurysm. Cell Discov. 2022; 8(1): 21.

[130]

Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, Polyphenols: potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res. 2022; 36(1): 415-432.

[131]

Li H, Zhao X, Zheng L, et al. Bruceine A protects against diabetic kidney disease via inhibiting galectin-1. Kidney Int. 2022; 102(3): 521-535.

[132]

Xu S, Feng Y, He W, et al. Celastrol in metabolic diseases: progress and application prospects. Pharmacol Res. 2021; 167: 105572.

[133]

Liu J, Lee J, Salazar Hernandez MA, et al. Treatment of obesity with celastrol. Cell. 2015; 161(5): 999-1011.

[134]

Feng X, Guan D, Auen T, et al. IL1R1 is required for celastrol’s leptin-sensitization and antiobesity effects. Nat Med. 2019; 25(4): 575-582.

[135]

Tripathi D, Kant S, Pandey S, et al. Resistin in metabolism, inflammation, and disease. FEBS J. 2020; 287(15): 3141-3149.

[136]

Zhu Y, Wan N, Shan X, et al. Celastrol targets adenylyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat diet-induced metabolic syndrome in mice. Acta Pharm Sin B. 2021; 11(5): 1200-1212.

[137]

Hu M, Luo Q, Alitongbieke G, et al. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell. 2017; 66(1): 141-153.

[138]

Lith SC, de Vries CJM. Nuclear receptor Nur77: its role in chronic inflammatory diseases. Essays Biochem. 2021; 65(6): 927-939.

[139]

Zhan YY, Chen Y, Zhang Q, et al. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat Chem Biol. 2012; 8(11): 897-904.

[140]

Lemmer IL, Willemsen N, Hilal N, et al. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab. 2021; 47: 101169.

[141]

Ma K, Zhang Y, Zhao J, et al. Endoplasmic reticulum stress: Bridging inflammation and obesity-associated adipose tissue. Front Immunol. 2024; 15: 1381227.

[142]

Liu DD, Zhang BL, Yang JB, et al. Celastrol ameliorates endoplasmic stress-mediated apoptosis of osteoarthritis via regulating ATF-6/CHOP signalling pathway. J Pharm Pharmacol. 2020; 72(6): 826-835.

[143]

Luo D, Fan N, Zhang X, et al. Covalent inhibition of endoplasmic reticulum chaperone GRP78 disconnects the transduction of ER stress signals to inflammation and lipid accumulation in diet-induced obese mice. Elife. 2022; 11: e72182.

[144]

Liu H, Du T, Li C, et al. STAT3 phosphorylation in central leptin resistance. Nutr Metab. 2021; 18(1): 39.

[145]

Kyriakou E, Schmidt S, Dodd GT, et al. Celastrol promotes weight loss in diet-induced obesity by inhibiting the protein tyrosine phosphatases PTP1B and TCPTP in the hypothalamus. J Med Chem. 2018; 61(24): 11144-11157.

[146]

Zhang T, Li Y, Yu Y, et al. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem. 2009; 284(51): 35381-35389.

[147]

Ma X, Xu L, Alberobello AT, et al. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab. 2015; 22(4): 695-708.

[148]

He H, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018; 9(1): 2550.

[149]

Xia J, Jiang S, Dong S, et al. The role of post-translational modifications in regulation of NLRP3 inflammasome activation. Int J Mol Sci. 2023; 24(7): 6126.

[150]

Shi W, Xu G, Zhan X, et al. Carnosol inhibits inflammasome activation by directly targeting HSP90 to treat inflammasome-mediated diseases. Cell Death Dis. 2020; 11(4): 252.

[151]

Xu G, Fu S, Zhan X, et al. Echinatin effectively protects against NLRP3 inflammasome-driven diseases by targeting HSP90. JCI Insight. 2021; 6(2): e134601.

[152]

Nizami S, Arunasalam K, Green J, et al. Inhibition of the NLRP3 inflammasome by HSP90 inhibitors. Immunology. 2021; 162(1): 84-91.

[153]

Sharif H, Wang L, Wang WL, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019; 570(7761): 338-343.

[154]

Li Q, Feng H, Wang H, et al. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction. EMBO Rep. 2022; 23(2): e53499.

[155]

Zeng Q, Deng H, Li Y, et al. Berberine directly targets the NEK7 protein to block the NEK7-NLRP3 interaction and exert anti-inflammatory activity. J Med Chem. 2021; 64(1): 768-781.

[156]

Och A, Och M, Nowak R, et al. Berberine, a herbal metabolite in the metabolic syndrome: the risk factors, course, and consequences of the disease. Molecules. 2022; 27(4): 1351.

[157]

Wang Y, Luo W, Han J, et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy. Nat Commun. 2020; 11(1): 2148.

[158]

Luo W, Lin K, Hua J, et al. Schisandrin B attenuates diabetic cardiomyopathy by targeting MyD88 and inhibiting MyD88-dependent inflammation. Adv Sci. 2022; 9(31): e2202590.

[159]

Chen H, Zhang Y, Zhang W, et al. Inhibition of myeloid differentiation factor 2 by baicalein protects against acute lung injury. Phytomedicine. 2019; 63: 152997.

[160]

Yang L, Luo W, Zhang Q, et al. Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. Phytomedicine. 2021; 93: 153785.

[161]

Zhang Y, Xu T, Pan Z, et al. Shikonin inhibits myeloid differentiation protein 2 to prevent LPS-induced acute lung injury. Br J Pharmacol. 2018; 175(5): 840-854.

[162]

Guo C, Li Q, Chen R, et al. Baicalein alleviates non-alcoholic fatty liver disease in mice by ameliorating intestinal barrier dysfunction. Food Funct. 2023; 14(4): 2138-2148.

[163]

Gao C, Fei X, Wang M, et al. Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int Immunopharmacol. 2022; 107: 108610.

[164]

Liao PL, Lin CH, Li CH, et al. Anti-inflammatory properties of shikonin contribute to improved early-stage diabetic retinopathy. Sci Rep. 2017; 7: 44985.

[165]

Incalza MA, D’Oria R, Natalicchio A, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018; 100: 1-19.

[166]

Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: can it be regulated by SIRT6? Life Sci. 2023; 330: 122007.

[167]

Wang ZC, Niu KM, Wu YJ, et al. A dual Keap1 and p47phox inhibitor Ginsenoside Rb1 ameliorates high glucose/ox-LDL-induced endothelial cell injury and atherosclerosis. Cell Death Dis. 2022; 13(9): 824.

[168]

Liu S, Pi J, Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol. 2022; 54: 102389.

[169]

Zhang Y, Murugesan P, Huang K, et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 2020; 17(3): 170-194.

[170]

Kim KH, Sadikot RT, Lee JY, et al. Suppressed ubiquitination of Nrf2 by p47(phox) contributes to Nrf2 activation. Free Radic Biol Med. 2017; 113: 48-58.

[171]

He B, Nohara K, Park N, et al. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab. 2016; 23(4): 610-621.

[172]

Ke Z, Tan S, Li H, et al. Tangeretin improves hepatic steatosis and oxidative stress through the Nrf2 pathway in high fat diet-induced nonalcoholic fatty liver disease mice. Food Funct. 2022; 13(5): 2782-2790.

[173]

Hang Y, Qin X, Ren T, et al. Baicalin reduces blood lipids and inflammation in patients with coronary artery disease and rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis. 2018; 17(1): 146.

[174]

Tang C, Han R, Wu J, et al. Effects of baicalin capsules combined with α-lipoic acid on nerve conduction velocity, oxidative stress and inflammatory injury in patients with diabetic peripheral neuropathy. Am J Transl Res. 2021; 13(4): 2774-2783.

[175]

Abdalla Ahmed MA, Ssemmondo E, Mark-Wagstaff C, et al. Advancements in the management of obesity: a review of current evidence and emerging therapies. Expert Rev Endocrinol Metab. 2024; 19(3): 257-268.

[176]

Ni HX, Yu NJ, Yang XH. The study of ginsenoside on PPARγ expression of mononuclear macrophage in type 2 diabetes. Mol Biol Rep. 2010; 37(6): 2975-2979.

[177]

Chang WH, Tsai YL, Huang CY, et al. Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery. J Int Soc Sports Nutr. 2015; 12: 34.

[178]

Evans M, Judy WV, Wilson D, et al. Randomized, double-blind, placebo-controlled, clinical study on the effect of Diabetinol® on glycemic control of subjects with impaired fasting glucose. Diabetes Metab Syndr Obes. 2015; 8: 275-286.

[179]

Li M, Shi A, Pang H, et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol. 2014; 156: 210-215.

[180]

Choi MK, Jin S, Jeon JH, et al. Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings. J Ginseng Res. 2020; 44(2): 229-237.

[181]

Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol. 2008; 12(3): 306-317.

[182]

Zhi K, Wang J, Zhao H, et al. Self-assembled small molecule natural product gel for drug delivery: a breakthrough in new application of small molecule natural products. Acta Pharm Sin B. 2020; 10(5): 913-927.

[183]

James DE, Stöckli J, Birnbaum MJ. The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol. 2021; 22(11): 751-771.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/