The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics

Jian Tang , Yu Chen , Chunhua Wang , Ying Xia , Tingyu Yu , Mengjun Tang , Kun Meng , Lijuan Yin , Yang Yang , Liang Shen , Hui Xing , Xiaogang Mao

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e663

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e663 DOI: 10.1002/mco2.663
REVIEW

The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics

Author information +
History +
PDF

Abstract

Mesenchymal stem cells (MSCs) are recruited by malignant tumor cells to the tumor microenvironment (TME) and play a crucial role in the initiation and progression of malignant tumors. This role encompasses immune evasion, promotion of angiogenesis, stimulation of cancer cell proliferation, correlation with cancer stem cells, multilineage differentiation within the TME, and development of treatment resistance. Simultaneously, extensive research is exploring the homing effect of MSCs and MSC-derived extracellular vesicles (MSCs-EVs) in tumors, aiming to design them as carriers for antitumor substances. These substances are targeted to deliver antitumor drugs to enhance drug efficacy while reducing drug toxicity. This paper provides a review of the supportive role of MSCs in tumor progression and the associated molecular mechanisms. Additionally, we summarize the latest therapeutic strategies involving engineered MSCs and MSCs-EVs in cancer treatment, including their utilization as carriers for gene therapeutic agents, chemotherapeutics, and oncolytic viruses. We also discuss the distribution and clearance of MSCs and MSCs-EVs upon entry into the body to elucidate the potential of targeted therapies based on MSCs and MSCs-EVs in cancer treatment, along with the challenges they face.

Keywords

drug delivery / mesenchymal stem cells / tumor microenvironment / tumor-targeted therapy

Cite this article

Download citation ▾
Jian Tang, Yu Chen, Chunhua Wang, Ying Xia, Tingyu Yu, Mengjun Tang, Kun Meng, Lijuan Yin, Yang Yang, Liang Shen, Hui Xing, Xiaogang Mao. The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics. MedComm, 2024, 5(8): e663 DOI:10.1002/mco2.663

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geneva: World Health Organization. World health statistics 2023: monitoring health for the SDGs, sustainable development goals. Published online 2023:Licence: CC BY-NC-SA 3.0 IGO.

[2]

Hopkins KL, Hlongwane KE, Otwombe K, et al. The substantial burden of non-communicable diseases and HIV-comorbidity amongst adults: screening results from an integrated HIV testing services clinic for adults in Soweto, South Africa. EClinicalMedicine. 2021; 38: 101015.

[3]

Lim JHC, Keenan C, Flaherty GT. All my life to live: travel health benefits and risks for cancer survivors. J Travel Med. 2022; 29(5): taac069.

[4]

Scott EC, Baines AC, Gong Y, et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat Rev Drug Discov. 2023; 22(8): 625-640.

[5]

Ganesh K, Massagué J. Targeting metastatic cancer. Nat Med. 2021; 27(1): 34-44.

[6]

Yang H, Xue M, Su P, et al. RNF31 represses cell progression and immune evasion via YAP/PD-L1 suppression in triple negative breast cancer. J Exp Clin Cancer Res. 2022; 41: 364.

[7]

Huang X, Shi D, Zou X, et al. BAG2 drives chemoresistance of breast cancer by exacerbating mutant p53 aggregate. Theranostics. 2023; 13(1): 339-354.

[8]

Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019; 29(3): 212-226.

[9]

Bareche Y, Buisseret L, Gruosso T, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J Natl Cancer Inst. 2020; 112(7): 708-719.

[10]

Wu SZ, Roden DL, Wang C, et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 2020; 39(19): e104063.

[11]

Liu Q, Hodge J, Wang J, et al. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation. Theranostics. 2020; 10(18): 8365-8381.

[12]

Ji X, Guo D, Ma J, et al. Epigenetic remodeling hydrogel patches for multidrug-resistant triple-negative breast cancer. Adv Mater. 2021; 33(18): e2100949.

[13]

Qu Q, Liu L, Cui Y, Chen Y, Wang Y, Wang Y. Exosomes from human omental adipose-derived mesenchymal stem cells secreted into ascites promote peritoneal metastasis of epithelial ovarian cancer. Cells. 2022; 11(21): 3392.

[14]

Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther. 2021; 12(1): 126.

[15]

Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: potential in therapeutic applications. Front Cell Dev Biol. 2022; 10: 1005926.

[16]

Caplan AI. There is no ‘’stem cell mess. Tissue Eng Part B Rev. 2019; 25(4): 291-293.

[17]

Zhang J, Liu Y, Yin W, Hu X. Adipose-derived stromal cells in regulation of hematopoiesis. Cell Mol Biol Lett. 2020; 25: 16.

[18]

Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022; 7: 92.

[19]

Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, et al. Autologous cells derived from different sources and administered using different regimens for “no-option” critical lower limb ischaemia patients. Cochrane Database Syst Rev. 2018; 8(8): CD010747.

[20]

Abdul Wahid SF, Law ZK, Ismail NA, Lai NM. Cell-based therapies for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev. 2019; 12(12): CD011742.

[21]

Noriega DC, Ardura F, Hernández-Ramajo R, et al. Treatment of degenerative disc disease with allogeneic mesenchymal stem cells: long-term follow-up results. Transplantation. 2021; 105(2): e25-e27.

[22]

Liao Z, Li S, Lu S, et al. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials. 2021; 274: 120850.

[23]

Kim HJ, Cho KR, Jang H, et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase I clinical trial. Alzheimers Res Ther. 2021; 13(1): 154.

[24]

Qin C, Lu Y, Wang K, et al. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: a meta-analytic review on potential mechanisms. Transl Neurodegener. 2020; 9(1): 20.

[25]

Uccelli A, Laroni A, Ali R, et al. Safety, tolerability, and activity of mesenchymal stem cells versus placebo in multiple sclerosis (MESEMS): a phase 2, randomised, double-blind crossover trial. Lancet Neurol. 2021; 20(11): 917-929.

[26]

Petrou P, Kassis I, Levin N, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020; 143(12): 3574-3588.

[27]

Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson’s disease. NPJ Regen Med. 2020; 5(1): 20.

[28]

Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis. 2020; 11(4): 288.

[29]

Wang L, Liu T, Liang R, et al. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. EBioMedicine. 2020; 51: 102615.

[30]

Fan B, Li C, Szalad A, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia. 2020; 63(2): 431-443.

[31]

Li H, Hu D, Chen G, et al. Adropin-based dual treatment enhances the therapeutic potential of mesenchymal stem cells in rat myocardial infarction. Cell Death Dis. 2021; 12(6): 505.

[32]

Sun SJ, Lai WH, Jiang Y, et al. Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction. Theranostics. 2021; 11(4): 1641-1654.

[33]

Atiya H, Frisbie L, Pressimone C, Coffman L. Mesenchymal stem cells in the tumor microenvironment. Adv Exp Med Biol. 2020; 1234: 31-42.

[34]

Wu H, Mu X, Liu L, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-193a reduces cisplatin resistance of non-small cell lung cancer cells via targeting LRRC1. Cell Death Dis. 2020; 11(9): 801.

[35]

An F, Hou Z, Wang X, et al. A microfluidic demonstration of “cluster-sprout-infiltrating” mode for hypoxic mesenchymal stem cell guided cancer cell migration. Biomaterials. 2022; 290: 121848.

[36]

Goldstein RH, Reagan MR, Anderson K, Kaplan DL, Rosenblatt M. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res. 2010; 70(24): 10044-10050.

[37]

Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr. 2012; 6(3): 220-230.

[38]

Pal A, Ashworth JC, Collier P, et al. A 3D heterotypic breast cancer model demonstrates a role for mesenchymal stem cells in driving a proliferative and invasive phenotype. Cancers (Basel). 2020; 12(8): 2290.

[39]

Liu D, Liu Y, Hu Y, et al. MiR-134-5p/Stat3 axis modulates proliferation and migration of MSCs co-cultured with glioma C6 cells by regulating Pvt1 expression. Life (Basel). 2022; 12(10): 1648.

[40]

Liang W, Chen X, Zhang S, et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett. 2021; 26(1): 3.

[41]

Mohd Ali N, Yeap SK, Ho WY, et al. Adipose MSCs suppress MCF7 and MDA-MB-231 breast cancer metastasis and EMT Pathways leading to dormancy via exosomal-miRNAs following co-culture interaction. Pharmaceuticals (Basel). 2020; 14(1): 8.

[42]

Hou Y, Wang J, Wang J. Engineered biomaterial delivery strategies are used to reduce cardiotoxicity in osteosarcoma. Front Pharmacol. 2023; 14: 1284406.

[43]

Li J, Dai J, Zhao L, et al. Bioactive bacteria/MOF hybrids can achieve targeted synergistic chemotherapy and chemodynamic therapy against breast tumors. Adv Funct Mater. 2023; 33(42): 2303254.

[44]

Li Y, Leng Q, Zhang Y, et al. Anaerobic bacteria mediated ‘smart missile’ targeting tumor hypoxic area enhances the therapeutic outcome of lung cancer. Chem Eng J. 2022; 438: 135566.

[45]

Zhang T, Lin R, Wu H, Jiang X, Gao J. Mesenchymal stem cells: a living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev. 2022; 185: 114300.

[46]

Zhang F, Guo J, Zhang Z, et al. Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy. Cancer Lett. 2022; 526: 29-40.

[47]

Miatmoko A, Hariawan BS, Cahyani DM, et al. Prospective use of amniotic mesenchymal stem cell metabolite products for tissue regeneration. J Biol Eng. 2023; 17: 11.

[48]

Cheng YS, Yen HH, Chang CY, et al. Adipose-derived stem cell-incubated HA-rich sponge matrix implant modulates oxidative stress to enhance VEGF and TGF-β secretions for extracellular matrix reconstruction in vivo. Oxid Med Cell Longev. 2022; 2022: 9355692.

[49]

Wu X, Gao F, Wu Y, Sun R, Guan W, Tian X. Isolation and biological characteristics of sheep amniotic epithelial cells. Cytotechnology. 2019; 71(2): 539-551.

[50]

Ma X, Luan Z, Li J. Inorganic nanoparticles-based systems in biomedical applications of stem cells: opportunities and challenges. Int J Nanomed. 2023; 18: 143-182.

[51]

Lu ZZ, Sun C, Zhang X, et al. Neuropilin 1 is an entry receptor for KSHV infection of mesenchymal stem cell through TGFBR1/2-mediated macropinocytosis. Sci Adv. 2023; 9(21): eadg1778.

[52]

Deng Z, Luo F, Lin Y, et al. Research trends of mesenchymal stem cells application in orthopedics: a bibliometric analysis of the past 2 decades. Front Public Health. 2022; 10: 1021818.

[53]

Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012; 5: 19.

[54]

Friedenstein AJ, Latzinik NV, Gorskaya UF, Sidorovich SY. Radiosensitivity and postirradiation changes of bone marrow clonogenic stromal mechanocytes. Int J Radiat Biol Relat Stud Phys Chem Med. 1981; 39(5): 537-546.

[55]

Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411): 143-147.

[56]

Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019; 4: 22.

[57]

Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA. 2001; 98(14): 7841-7845.

[58]

Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-317.

[59]

Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles. 2019; 8(1): 1609206.

[60]

Swanson WB, Omi M, Zhang Z, et al. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials. 2021; 272: 120769.

[61]

Shang F, Yu Y, Liu S, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater. 2021; 6(3): 666-683.

[62]

Hung CT, Racine-Avila J, Pellicore MJ, Aaron R. Biophysical modulation of mesenchymal stem cell differentiation in the context of skeletal repair. Int J Mol Sci. 2022; 23(7): 3919.

[63]

Frisbie L, Buckanovich RJ, Coffman L. Carcinoma-associated mesenchymal stem/stromal cells: architects of the pro-tumorigenic tumor microenvironment. Stem Cells. 2022; 40(8): 705-715.

[64]

Mohr A, Albarenque SM, Deedigan L, et al. Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells. 2010; 28(11): 2109-2120.

[65]

Bagheri-Mohammadi S, Moradian-Tehrani R, Noureddini M, Alani B. Novel application of adipose-derived mesenchymal stem cells via producing antiangiogenic factor TSP-1 in lung metastatic melanoma animal model. Biologicals. 2020; 68: 9-18.

[66]

Coffman LG, Pearson AT, Frisbie LG, et al. Ovarian carcinoma-associated mesenchymal stem cells arise from tissue-specific normal stroma. Stem Cells. 2019; 37(2): 257-269.

[67]

Ren G, Liu Y, Zhao X, et al. Tumor resident mesenchymal stromal cells endow naïve stromal cells with tumor-promoting properties. Oncogene. 2014; 33(30): 4016-4020.

[68]

Yang L, Lin PC. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol. 2017; 47: 185-195.

[69]

Tian Y, Fang J, Zeng F, et al. The role of hypoxic mesenchymal stem cells in tumor immunity. Int Immunopharmacol. 2022; 112: 109172.

[70]

Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells. 2008; 26(3): 831-841.

[71]

Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007; 449(7162): 557-563.

[72]

Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose tissue-derived mesenchymal stromal/stem cells, obesity and the tumor microenvironment of breast cancer. Cancers (Basel). 2022; 14(16): 3908.

[73]

Ren G, Zhao X, Wang Y, et al. CCR2-dependent recruitment of macrophages by tumor educated mesenchymal stromal cells promotes tumor development and is mimicked by tnf-alpha. cell stem cell. 2012; 11(6): 812-824.

[74]

Ritter A, Kreis NN, Roth S, et al. Cancer-educated mammary adipose tissue-derived stromal/stem cells in obesity and breast cancer: spatial regulation and function. J Exp Clin Cancer Res. 2023; 42(1): 35.

[75]

Ambrosio MR, Mosca G, Migliaccio T, et al. Glucose enhances pro-tumorigenic functions of mammary adipose-derived mesenchymal stromal/stem cells on breast cancer cell lines. Cancers. 2022; 14(21): 5421.

[76]

Szydlak R. Mesenchymal stem cells in ischemic tissue regeneration. World J Stem Cells. 2023; 15(2): 16-30.

[77]

Wang D, Cao H, Hua W, et al. Mesenchymal stem cell-derived extracellular vesicles for bone defect repair. Membranes (Basel). 2022; 12(7): 716.

[78]

Xu R, Feng Z, Wang FS. Mesenchymal stem cell treatment for COVID-19. EBioMedicine. 2022; 77: 103920.

[79]

Chen HS, Yau YC, Ko PT, Yen BLJ, Ho CT, Hung SC. Mesenchymal stem cells from a hypoxic culture can improve rotator cuff tear repair. Cell Transplant. 2022; 31: 09636897221089633.

[80]

Liu P, ran XieX, Wu H, et al. Conditioned medium of mesenchymal stem cells pretreated with H2O2 promotes intestinal mucosal repair in acute experimental colitis. Sci Rep. 2022: 12.

[81]

Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res. 2015; 3(1): 1-11.

[82]

Bilgiç T, İnce Ü, Narter F. Autologous omentum transposition for regeneration of a renal injury model in rats. Mil Med Res. 2022; 9: 1.

[83]

Li X, Wei Z, Zhang W, et al. Anti-inflammatory effects of magnetically targeted mesenchymal stem cells on laser-induced skin injuries in rats. Int J Nanomed. 2020; 15: 5645-5659.

[84]

Markov A, Thangavelu L, Aravindhan S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. 2021; 12(1): 192.

[85]

Ting XW, Yu BZ, Ming FQ, Li G, Ting TT. Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett. 2009; 281(1): 32-41.

[86]

Mader EK, Maeyama Y, Lin Y, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res. 2009; 15(23): 7246-7255.

[87]

Xie C, Yang Z, Suo Y, et al. Systemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models. Stem Cells Transl Med. 2017; 6(4): 1120-1131.

[88]

Layek B, Sadhukha T, Panyam J, Prabha S. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther. 2018; 17(6): 1196-1206.

[89]

Zischek C, Niess H, Ischenko I, et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg. 2009; 250(5): 747-753.

[90]

Schweizer MT, Wang H, Bivalacqua TJ, et al. A phase I Study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer. Stem Cells Transl Med. 2019; 8(5): 441-449.

[91]

Grisendi G, Bussolari R, Cafarelli L, et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 2010; 70(9): 3718-3729.

[92]

Sasportas LS, Kasmieh R, Wakimoto H, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA. 2009; 106(12): 4822-4827.

[93]

Duan X, Guan H, Cao Y, Kleinerman ES. Murine bone marrow–derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer. 2009; 115(1): 13-22.

[94]

Mirzaei H, Sahebkar A, Avan A, et al. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr Med Chem. 2016; 23(5): 455-463.

[95]

Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells. 2021; 13(6): 619-631.

[96]

Prabha S, Merali C, Sehgal D, et al. Incorporation of paclitaxel in mesenchymal stem cells using nanoengineering upregulates antioxidant response, CXCR4 expression and enhances tumor homing. Mater Today Bio. 2023; 19: 100567.

[97]

Choi S, Yu J, Kim W, Park KS. N-cadherin mediates the migration of bone marrow-derived mesenchymal stem cells toward breast tumor cells. Theranostics. 2021; 11(14): 6786-6799.

[98]

Camorani S, Hill BS, Fontanella R, et al. Inhibition of bone marrow-derived mesenchymal stem cells homing towards triple-negative breast cancer microenvironment using an anti-PDGFRβ aptamer. Theranostics. 2017; 7(14): 3595-3607.

[99]

Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007; 9(8): 1221-1235.

[100]

Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: from basic knowledge to therapeutic implications. Semin Cancer Biol. 2023; 88: 172-186.

[101]

Semenza GL. Targeting intratumoral hypoxia to enhance anti-tumor immunity. Semin Cancer Biol. 2023; 96: 5-10.

[102]

Egea V, Kessenbrock K, Lawson D, Bartelt A, Weber C, Ries C. Let-7f miRNA regulates SDF-1α-and hypoxia-promoted migration of mesenchymal stem cells and attenuates mammary tumor growth upon exosomal release. Cell Death Dis. 2021; 12(6): 516.

[103]

Cowman SJ, Koh MY. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer. 2022; 8(1): 28-42.

[104]

Li M, Li G, Yang X, Yin W, Lv G, Wang S. HIF in gastric cancer: regulation and therapeutic target. Molecules. 2022; 27(15): 4893.

[105]

Ma J, Al Moussawi K, Lou H, et al. Deficiency of factor-inhibiting HIF creates a tumor-promoting immune microenvironment. Proc Natl Acad Sci USA. 2024; 121(10): e2309957121.

[106]

Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J. 2023; 42(6): e112067.

[107]

Jung Y, Kim JK, Shiozawa Y, et al. Recruitment of mesenchymal stem cells into prostate tumors promotes metastasis. Nat Commun. 2013; 4: 1795.

[108]

Chaturvedi P, Gilkes DM, Takano N, Semenza GL. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci USA. 2014; 111(20): E2120-E2129.

[109]

Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of tumour immunity. Nat Rev Cancer. 2019; 19(4): 215-227.

[110]

Qian J, Olbrecht S, Boeckx B, et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020; 30(9): 745-762.

[111]

Lee Y, Bogdanoff D, Wang Y, et al. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci Adv. 2021; 7(17): eabg4755.

[112]

Walsh LA, Quail DF. Decoding the tumor microenvironment with spatial technologies. Nat Immunol. 2023; 24(12): 1982-1993.

[113]

Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol. 2023; 16(1): 24.

[114]

Sadeghirad H, Yaghoubi Naei V, O’Byrne K, Warkiani ME, Kulasinghe A. In situ characterization of the tumor microenvironment. Curr Opin Biotechnol. 2024; 86: 103083.

[115]

Luo Y, Liang H. Single-cell dissection of tumor microenvironmental response and resistance to cancer therapy. Trends Genet. 2023; 39(10): 758-772.

[116]

Bouche C, Quail DF. Fueling the tumor microenvironment with cancer-associated adipocytes. Cancer Res. 2023; 83(8): 1170-1172.

[117]

Jiang S, Feng R, Tian Z, Zhou J, Zhang W. Metabolic dialogs between B cells and the tumor microenvironment: implications for anticancer immunity. Cancer Lett. 2023; 556: 216076.

[118]

Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012; 125(23): 5591-5596. Pt.

[119]

de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023; 41(3): 374-403.

[120]

Petitprez F, Sun CM, Lacroix L, Sautès-Fridman C, de Reyniès A, Fridman WH. Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine. Front Oncol. 2018; 8: 390.

[121]

Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic interplay in the tumor microenvironment. Cancer Cell. 2021; 39(1): 28-37.

[122]

Puttock EH, Tyler EJ, Manni M, et al. Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun. 2023; 14(1): 2514.

[123]

Qiu ZW, Zhong YT, Lu ZM, et al. Breaking physical barrier of fibrotic breast cancer for photodynamic immunotherapy by remodeling tumor extracellular matrix and reprogramming cancer-associated fibroblasts. ACS Nano. 2024; 18(13): 9713-9735.

[124]

Zhu T, Alves SM, Adamo A, et al. Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment. Biomaterials. 2024; 308: 122531.

[125]

Wu C, Rakhshandehroo T, Wettersten HI, et al. Pancreatic cancer cells upregulate LPAR4 in response to isolation stress to promote an ECM-enriched niche and support tumour initiation. Nat Cell Biol. 2023; 25(2): 309-322.

[126]

Zhang R, Liu Q, Zhou S, He H, Zhao M, Ma W. Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1. Elife. 2023; 12: e82934.

[127]

Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal. 2023; 17(4): 1229-1247.

[128]

Wang B, Wu ZH, Lou PY, et al. Publisher correction to: retracted article: human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via down-regulating MYCN. Cell Oncol (Dordr). 2023; 46(6): 1873.

[129]

Jabbari N, Akbariazar E, Feqhhi M, Rahbarghazi R, Rezaie J. Breast cancer-derived exosomes: tumor progression and therapeutic agents. J Cell Physiol. 2020; 235(10): 6345-6356.

[130]

Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019; 18(1): 10.

[131]

Martinez-Bosch N, Vinaixa J, Navarro P. Immune evasion in pancreatic cancer: from mechanisms to therapy. Cancers (Basel). 2018; 10(1): 6.

[132]

Datar IJ, Hauc SC, Desai S, et al. Spatial analysis and clinical significance of HLA class-I and class-II subunit expression in non-small cell lung cancer. Clin Cancer Res. 2021; 27(10): 2837-2847.

[133]

Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021; 21(8): 481-499.

[134]

Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med. 2022; 12(8): e1022.

[135]

Wu Q, You L, Nepovimova E, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol. 2022; 15(1): 77.

[136]

Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020; 53(1): e12712.

[137]

Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020; 41(9): 653-664.

[138]

Mohme M, Maire CL, Geumann U, et al. Local intracerebral immunomodulation using interleukin-expressing mesenchymal stem cells in glioblastoma. Clin Cancer Res. 2020; 26(11): 2626-2639.

[139]

Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 2022; 29(11): 1515-1530.

[140]

Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov. 2022; 21(8): 559-577.

[141]

Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 2022; 22(10): 557-575.

[142]

Peng S, Lin A, Jiang A, et al. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer. 2024; 23(1): 58.

[143]

Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019; 234(6): 8509-8521.

[144]

Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol. 2024;24(7):503-517. Published online February 19.

[145]

Grover P, Goel PN, Greene MI. Regulatory T cells: regulation of identity and function. Front Immunol. 2021; 12: 750542.

[146]

Yang H, Sun J, Li Y, Duan WM, Bi J, Qu T. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4(+)CD25(high)CD45RA(+) regulatory T cell production and modulating cytokine secretion. Cell Immunol. 2016; 302: 26-31.

[147]

Lee S, Kim S, Chung H, Moon JH, Kang SJ, Park CG. Mesenchymal stem cell-derived exosomes suppress proliferation of T cells by inducing cell cycle arrest through p27kip1/Cdk2 signaling. Immunol Lett. 2020; 225: 16-22.

[148]

Poggi A, Varesano S, Zocchi MR. How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive. Front Immunol. 2018; 9: 262.

[149]

Chang AI, Schwertschkow AH, Nolta JA, Wu J. Involvement of mesenchymal stem cells in cancer progression and metastases. Curr Cancer Drug Targets. 2015; 15(2): 88-98.

[150]

Yi G, Zhao Y, Xie F, et al. Single-cell RNA-seq unveils critical regulators of human FOXP3+ regulatory T cell stability. Sci Bull (Beijing). 2020; 65(13): 1114-1124.

[151]

Lee J, Park N, Nicosia M, Park JY, Pruett SB, Seo KS. Stimulation strength determined by superantigen dose controls subcellular localization of FOXP3 isoforms and suppressive function of CD4+CD25+FOXP3+ T cells. J Immunol. 2024; 212(3): 421-432.

[152]

Hu X, Zhou Y, Dong K, et al. Programming of the development of tumor-promoting neutrophils by mesenchymal stromal cells. Cell Physiol Biochem. 2014; 33(6): 1802-1814.

[153]

Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014; 14(3): 195-208.

[154]

Guo Y, Zhai Y, Wu L, Wang Y, Wu P, Xiong L. Mesenchymal stem cell-derived extracellular vesicles: pleiotropic impacts on breast cancer occurrence, development, and therapy. Int J Mol Sci. 2022; 23(6): 2927.

[155]

Biswas S, Mandal G, Chowdhury SR, et al. Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer. J Immunol. 2019; 203(12): 3447-3460.

[156]

Han M, Sun H, Zhou Q, et al. Effects of RNA methylation on Tumor angiogenesis and cancer progression. Mol Cancer. 2023; 22(1): 198.

[157]

Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis. 2024. Published online April 6.

[158]

Lv S, Liu Y, Xie C, Xue C, Du S, Yao J. Emerging role of interactions between tumor angiogenesis and cancer stem cells. J Control Release. 2023; 360: 468-481.

[159]

Kim DJ, Hahn HM, Youn YN, Lee JS, Lee IJ, Lim SH. Adipose derived stromal vascular fraction and mesenchymal stem cells improve angiogenesis in a rat hindlimb ischaemia model. Eur J Vasc Endovasc Surg. 2023;67(5):828-837. Published online November 22. S1078-5884(23)00966-8.

[160]

Mohamad Yusoff F, Higashi Y. Mesenchymal stem/stromal cells for therapeutic angiogenesis. Cells. 2023; 12(17): 2162.

[161]

Li Q, Hou H, Li M, et al. CD73+ mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Front Cell Dev Biol. 2021; 9: 637239.

[162]

Du WJ, Chi Y, Yang ZX, et al. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther. 2016; 7(1): 163.

[163]

Vallabhaneni KC, Penfornis P, Dhule S, et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget. 2015; 6(7): 4953-4967.

[164]

Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005; 438(7070): 937-945.

[165]

Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006; 7(5): 359-371.

[166]

Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 2023; 29(1): 30-39.

[167]

Clavreul A, Guette C, Faguer R, et al. Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. J Pathol. 2014; 233(1): 74-88.

[168]

Zhang Q, Xiang W, Xue BZ, Yi DY, Zhao HY, Fu P. Growth factors contribute to the mediation of angiogenic capacity of glioma-associated mesenchymal stem cells. Oncol Lett. 2021; 21(3): 215.

[169]

Orecchioni S, Gregato G, Martin-Padura I, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013; 73(19): 5880-5891.

[170]

Hayes AJ, Huang WQ, Yu J, et al. Expression and function of angiopoietin-1 in breast cancer. Br J Cancer. 2000; 83(9): 1154-1160.

[171]

Aravindhan S, Ejam SS, Lafta MH, Markov A, Yumashev AV, Ahmadi M. Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature. Cancer Cell Int. 2021; 21(1): 158.

[172]

Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene. 2013; 32(37): 4343-4354.

[173]

Gao F, Sun M, Gong Y, Wang H, Wang Y, Hou H. MicroRNA-195a-3p inhibits angiogenesis by targeting Mmp2 in murine mesenchymal stem cells. Mol Reprod Dev. 2016; 83(5): 413-423.

[174]

Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2009; 4(4): e4992.

[175]

Guo S, Huang C, Han F, et al. Gastric cancer mesenchymal stem cells inhibit NK cell function through mtor signalling to promote tumour growth. Stem Cells Int. 2021; 2021: 9989790.

[176]

Dong L, Pu Y, Zhang L, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis. 2018; 9(2): 218.

[177]

He H, Ding M, Li T, et al. Bone mesenchymal stem cell-derived extracellular vesicles containing NORAD promote osteosarcoma by miR-30c-5p. Lab Invest. 2022; 102(8): 826-837.

[178]

Wang J, Ma Y, Long Y, Chen Y. Extracellular vesicle derived from mesenchymal stem cells have bidirectional effects on the development of lung cancer. Front Oncol. 2022; 12: 914832.

[179]

Zakiyah N, Wanandi SI, Antarianto RD, Syahrani RA, Arumsari S. Mesenchymal stem cell-derived extracellular vesicles increase human MCF7 breast cancer cell proliferation associated with OCT4 expression and ALDH activity. Asian Pac J Cancer Prev. 2023; 24(8): 2781-2789.

[180]

Wang Y, Wang P, Zhao L, et al. miR-224-5p carried by human umbilical cord mesenchymal stem cells-derived exosomes regulates autophagy in breast cancer cells via HOXA5. Front Cell Dev Biol. 2021; 9: 679185.

[181]

Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. 2013; 383(1-2): 13-20.

[182]

Zhu T, Hu Z, Wang Z, et al. microRNA-301b-3p from mesenchymal stem cells-derived extracellular vesicles inhibits TXNIP to promote multidrug resistance of gastric cancer cells. Cell Biol Toxicol. 2023; 39(5): 1923-1937.

[183]

Ryan D, Paul BT, Koziol J, ElShamy WM. The pro-and anti-tumor roles of mesenchymal stem cells toward BRCA1-IRIS-overexpressing TNBC cells. Breast Cancer Res. 2019; 21: 53.

[184]

Sasser AK, Mundy BL, Smith KM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett. 2007; 254(2): 255-264.

[185]

Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J. 2007; 21(13): 3763-3770.

[186]

Chen B, Cai T, Huang C, et al. G6PD-NF-κB-HGF signal in gastric cancer-associated mesenchymal stem cells promotes the proliferation and metastasis of gastric cancer cells by upregulating the expression of HK2. Front Oncol. 2021; 11: 648706.

[187]

Liu X, Zhao G, Huo X, et al. Adipose-derived stem cells facilitate ovarian tumor growth and metastasis by promoting epithelial to mesenchymal transition through activating the TGF-β pathway. Front Oncol. 2021; 11: 756011.

[188]

Kang QM, Wang J, Chen SM, Song SR, Yu SC. Glioma-associated mesenchymal stem cells. Brain. 2024; 147(3): 755-765.

[189]

Yang T, Tang S, Peng S, Ding G. The effects of mesenchymal stem cells on oral cancer and possible therapy regime. Front Genet. 2022; 13: 949770.

[190]

Wu YL, Li HY, Zhao XP, et al. Mesenchymal stem cell-derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Sci. 2017; 108(5): 897-909.

[191]

Pavon LF, Sibov TT, de Souza AV, et al. Tropism of mesenchymal stem cell toward CD133+ stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Res Ther. 2018; 9(1): 310.

[192]

Doyle K, Sutter M, Rodriguez M, Hassan AE, Kumar P, Brown E. Proliferative effects of mesenchymal stromal cells on neuroblastoma cell lines: are they tumor promoting or tumor inhibiting? J Pediatr Surg. 2024. Published online February 26. S0022-3468(24)00096-4.

[193]

Chen J, Ji T, Wu D, et al. Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma. Cell Death Dis. 2019; 10(6): 425.

[194]

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997; 3(7): 730-737.

[195]

Dittmer J. Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol. 2017; 44: 72-82.

[196]

Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol. 2008; 26(17): 2813-2820.

[197]

Sandiford OA, Donnelly RJ, El-Far MH, et al. Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Res. 2021; 81(6): 1567-1582.

[198]

Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011; 71(2): 614-624.

[199]

Jing Y, Liang W, Zhang L, Tang J, Huang Z. The role of mesenchymal stem cells in the induction of cancer-stem cell phenotype. Front Oncol. 2022; 12: 817971.

[200]

Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020; 20(3): 174-186.

[201]

Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021; 101(1): 147-176.

[202]

Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 2022; 3(7): 793-807.

[203]

Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016; 16(9): 582-598.

[204]

Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008; 68(11): 4331-4339.

[205]

Ishihara S, Inman DR, Li WJ, Ponik SM, Keely PJ. Mechano-signal transduction in mesenchymal stem cells induces prosaposin secretion to drive the proliferation of breast cancer cells. Cancer Res. 2017; 77(22): 6179-6189.

[206]

Miyazaki Y, Oda T, Inagaki Y, et al. Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci Rep. 2021; 11(1): 4690.

[207]

Cho JA, Park H, Lim EH, Lee KW. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2012; 40(1): 130-138.

[208]

Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019; 12(1): 95.

[209]

Fujisaki K, Fujimoto H, Sangai T, et al. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 2015; 150(2): 255-263.

[210]

De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017; 17(8): 457-474.

[211]

Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021; 21(6): 345-359.

[212]

Kepenekian V, Bhatt A, Péron J, et al. Advances in the management of peritoneal malignancies. Nat Rev Clin Oncol. 2022; 19(11): 698-718.

[213]

Algarin YA, Jambusaria-Pahlajani A, Ruiz E, Patel VA. Advances in topical treatments of cutaneous malignancies. Am J Clin Dermatol. 2023; 24(1): 69-80.

[214]

Tu M, Xu J. Advances in immunotherapy for gynecological malignancies. Crit Rev Oncol Hematol. 2023; 188: 104063.

[215]

Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019; 575(7782): 299-309.

[216]

Wang Y, Wu X, Ren Z, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 2023; 66: 100916.

[217]

Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019; 2(2): 141-160.

[218]

Houthuijzen JM, Daenen LGM, Roodhart JML, Voest EE. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer. 2012; 106(12): 1901-1906.

[219]

Luo T, Liu Q, Tan A, et al. Mesenchymal stem cell-secreted exosome promotes chemoresistance in breast cancer via enhancing miR-21-5p-mediated S100A6 expression. Mol Ther Oncolytics. 2020; 19: 283-293.

[220]

Jia Z, Zhu H, Sun H, et al. Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/β-catenin signaling. Cancer Manag Res. 2020; 12: 8733-8744.

[221]

Skolekova S, Matuskova M, Bohac M, et al. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells. Cell Commun Signal. 2016; 14: 4.

[222]

Eskander RN, Sill MW, Beffa L, et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N Engl J Med. 2023; 388(23): 2159-2170.

[223]

Liu M, Jin D, Yu W, et al. Enhancing tumor immunotherapy by multivalent anti-PD-L1 nanobody assembled via ferritin nanocage. Adv Sci (Weinh). 2024:e2308248. Published online March 16.

[224]

Wang C, Zheng X, Zhang J, et al. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature. 2023; 621(7980): 830-839.

[225]

Clarke M, Collins R, Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005; 366(9503): 2087-2106.

[226]

Wang Y, Li J, Chang S, Dong Y, Che G. Risk and influencing factors for subsequent primary lung cancer after treatment of breast cancer: a systematic review and two meta-analyses based on four million cases. J Thorac Oncol. 2021; 16(11): 1893-1908.

[227]

Liu HY, Liu YY, Yang F, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020; 48(7): 3638-3656.

[228]

Heil J, Pfob A, Sinn HP, et al. Diagnosing pathologic complete response in the breast after neoadjuvant systemic treatment of breast cancer patients by minimal invasive biopsy: oral presentation at the San Antonio Breast Cancer Symposium on Friday, December 13, 2019, Program Number GS5-03. Ann Surg. 2022; 275(3): 576-581.

[229]

Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020; 383(14): 1328-1339.

[230]

Hagenhoff A, Bruns CJ, Zhao Y, et al. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther. 2016; 16(9): 1079-1092.

[231]

Litvinova LS, Shupletsova VV, Khaziakhmatova OG, et al. Human mesenchymal stem cells as a carrier for a cell-mediated drug delivery. Front Bioeng Biotechnol. 2022; 10: 796111.

[232]

Oraee-Yazdani S, Tavanaei R, Rostami F, et al. Suicide gene therapy using allogeneic adipose tissue-derived mesenchymal stem cell gene delivery vehicles in recurrent glioblastoma multiforme: a first-in-human, dose-escalation, phase I clinical trial. J Transl Med. 2023; 21(1): 350.

[233]

Cheng S, Nethi SK, Al-Kofahi M, Prabha S. Pharmacokinetic-Pharmacodynamic modeling of tumor targeted drug delivery using nano-engineered mesenchymal stem cells. Pharmaceutics. 2021; 13(1): 92.

[234]

Wang XJ, Xiang BY, Ding YH, et al. Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy. Oncotarget. 2017; 8(35): 58309-58321.

[235]

Barlabé P, de SostoaJ, Fajardo CA, Alemany R, Moreno R. Enhanced antitumor efficacy of an oncolytic adenovirus armed with an EGFR-targeted BiTE using menstrual blood-derived mesenchymal stem cells as carriers. Cancer Gene Ther. 2020; 27(5): 383-388.

[236]

Tutter M, Schug C, Schmohl KA, et al. Regional hyperthermia enhances mesenchymal stem cell recruitment to tumor stroma: implications for mesenchymal stem cell-based tumor therapy. Mol Ther. 2021; 29(2): 788-803.

[237]

Salmasi Z, Hashemi M, Mahdipour E, Nourani H, Abnous K, Ramezani M. Mesenchymal stem cells engineered by modified polyethylenimine polymer for targeted cancer gene therapy, in vitro and in vivo. Biotechnol Prog. 2020; 36(6): e3025.

[238]

Li C, Li X, Li F, et al. A microRNA delivery carrier for hepatic carcinoma therapy using layer-by-layer self-assembled mesenchymal stem cells. Transl Cancer Res. 2020; 9(9): 5380-5389.

[239]

Zhang J, Hou L, Wu X, et al. Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem. 2016; 416(1-2): 193-203.

[240]

Delgado-Bonet P, Tomeo-Martín BD, Ortiz-Díez G, Perisé-Barrios AJ. Tumor-homing of mesenchymal stem cells infected with oncolytic virus in a canine patient. Vet Sci. 2022; 9(6): 285.

[241]

Cao S, Guo J, He Y, et al. Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy. Artif Cells Nanomed Biotechnol. 2018; 46(sup1): 642-652.

[242]

Oraee-Yazdani S, Akhlaghpasand M, Shokri G, et al. Intracerebral administration of autologous mesenchymal stem cells as HSV-TK gene vehicle for treatment of glioblastoma multiform: safety and feasibility assessment. Mol Neurobiol. 2021; 58(9): 4425-4436.

[243]

Xu M, Asghar S, Dai S, et al. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int J Biol Macromol. 2019; 134: 1002-1012.

[244]

Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002; 62(13): 3603-3608.

[245]

Ding Y, Wang C, Sun Z, et al. Mesenchymal stem cells engineered by nonviral vectors: a powerful tool in cancer gene therapy. Pharmaceutics. 2021; 13(6): 913.

[246]

Conrad C, Hüsemann Y, Niess H, et al. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis. Ann Surg. 2011; 253(3): 566-571.

[247]

Cheng X, Xia T, Zhan W, et al. Enzymatic nanosphere-to-nanofiber transition and autophagy inducer release promote tumor chemotherapy. Adv Healthc Mater. 2022; 11(23): e2201916.

[248]

Xie M, Tao L, Zhang Z, Wang W. Mesenchymal stem cells mediated drug delivery in tumor-targeted therapy. Curr Drug Deliv. 2021; 18(7): 876-891.

[249]

Li K, Zhao Y, Hu X, Jiao J, Wang W, Yao H. Advances in the clinical development of oncolytic viruses. Am J Transl Res. 2022; 14(6): 4192.

[250]

Moreno R. Mesenchymal stem cells and oncolytic viruses: joining forces against cancer. J Immunother Cancer. 2021; 9(2): e001684.

[251]

Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. J Drug Target. 2020; 28(2): 129-141.

[252]

Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021; 16(7): 748-759.

[253]

Cabeza L, Perazzoli G, Peña M, et al. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control Release. 2020; 327: 296-315.

[254]

Du L, Tao X, Shen X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit migration and invasion of breast cancer cells via miR-21-5p/ZNF367 pathway. Breast Cancer. 2021; 28(4): 829-837.

[255]

Lee JK, Park SR, Jung BK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013; 8(12): e84256.

[256]

Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 2017; 40(5): 457-470.

[257]

Liu M, Hu Y, Chen G. The antitumor effect of gene-engineered exosomes in the treatment of brain metastasis of breast cancer. Front Oncol. 2020; 10: 1453.

[258]

Chulpanova DS, Gilazieva ZE, Kletukhina SK, et al. Cytochalasin B-induced membrane vesicles from human mesenchymal stem cells overexpressing IL2 are able to stimulate CD8+ T-killers to kill human triple negative breast cancer cells. Biology (Basel). 2021; 10(2): 141.

[259]

Shojaei S, Hashemi SM, Ghanbarian H, Sharifi K, Salehi M, Mohammadi-Yeganeh S. Delivery of miR-381-3p mimic by mesenchymal stem cell-derived exosomes inhibits triple negative breast cancer aggressiveness; an in vitro study. Stem Cell Rev Rep. 2021; 17(3): 1027-1038.

[260]

Weng Z, Zhang B, Wu C, et al. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol. 2021; 14(1): 136.

[261]

Pan Y, Wang X, Li Y, Yan P, Zhang H. Human umbilical cord blood mesenchymal stem cells-derived exosomal microRNA-503-3p inhibits progression of human endometrial cancer cells through downregulating MEST. Cancer Gene Ther. 2022; 29(8-9): 1130-1139.

[262]

Xu S, Liu B, Fan J, et al. Engineered mesenchymal stem cell-derived exosomes with high CXCR4 levels for targeted siRNA gene therapy against cancer. Nanoscale. 2022; 14(11): 4098-4113.

[263]

Kurniawati I, Liu MC, Hsieh CL, Do AD, Sung SY. Targeting castration-resistant prostate cancer using mesenchymal stem cell exosomes for therapeutic microRNA-let-7c delivery. Front Biosci (Landmark Ed). 2022; 27(9): 256.

[264]

Liang L, Zhao L, Wang Y, Wang Y. Treatment for hepatocellular carcinoma is enhanced when norcantharidin is encapsulated in exosomes derived from bone marrow mesenchymal stem cells. Mol Pharm. 2021; 18(3): 1003-1013.

[265]

Shojaei S, Moradi-Chaleshtori M, Paryan M, Koochaki A, Sharifi K, Mohammadi-Yeganeh S. Mesenchymal stem cell-derived exosomes enriched with miR-218 reduce the epithelial-mesenchymal transition and angiogenesis in triple-negative breast cancer cells. Eur J Med Res. 2023; 28(1): 516.

[266]

Shamili FH, Bayegi HR, Salmasi Z, et al. Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. Int J Pharm. 2018; 549(1-2): 218-229.

[267]

Lou G, Chen L, Xia C, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J Exp Clin Cancer Res. 2020; 39(1): 4.

[268]

Wang X, Li D, Li G, et al. Enhanced therapeutic potential of hybrid exosomes loaded with paclitaxel for cancer therapy. Int J Mol Sci. 2024; 25(7): 3645.

[269]

Khazaei-Poul Y, Shojaei S, Koochaki A, Ghanbarian H, Mohammadi-Yeganeh S. Evaluating the influence of human umbilical cord mesenchymal stem cells-derived exosomes loaded with miR-3182 on metastatic performance of triple negative breast cancer cells. Life Sci. 2021; 286: 120015.

[270]

Chen M, Li Y, Ma N, Zang J. Mesenchymal stem cell-derived exosomes loaded with 5-Fu against cholangiocarcinoma in vitro. Mol Med Rep. 2022; 25(6): 213.

[271]

Vakhshiteh F, Rahmani S, Ostad SN, Madjd Z, Dinarvand R, Atyabi F. Exosomes derived from miR-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor growth: a new approach for drug delivery. Life Sci. 2021; 266: 118871.

[272]

Sheykhhasan M, Kalhor N, Sheikholeslami A, Dolati M, Amini E, Fazaeli H. Exosomes of mesenchymal stem cells as a proper vehicle for transfecting miR-145 into the breast cancer cell line and its effect on metastasis. Biomed Res Int. 2021; 2021: 5516078.

[273]

Wei H, Chen F, Chen J, et al. Mesenchymal stem cell derived exosomes as nanodrug carrier of doxorubicin for targeted osteosarcoma therapy via SDF1-CXCR4 axis. Int J Nanomed. 2022; 17: 3483-3495.

[274]

Sun Q, Zhang X, Tan Z, Gu H, Ding S, Ji Y. Bone marrow mesenchymal stem cells-secreted exosomal microRNA-205-5p exerts inhibitory effect on the progression of liver cancer through regulating CDKL3. Pathol Res Pract. 2021; 225: 153549.

[275]

Zhou Y, Zhou W, Chen X, et al. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sin B. 2020; 10(8): 1563-1575.

[276]

Kimbrel EA, Lanza R. Next-generation stem cells—ushering in a new era of cell-based therapies. Nat Rev Drug Discov. 2020; 19(7): 463-479.

[277]

Thompson M, Mei SHJ, Wolfe D, et al. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: an updated systematic review and meta-analysis. EClinicalMedicine. 2020; 19: 100249.

[278]

Mezey É. Human mesenchymal stem/stromal cells in immune regulation and therapy. Stem Cells Transl Med. 2022; 11(2): 114-134.

[279]

Nobari S, Rezvan M, Dashtestani F, Gangi M, Keshmiri Neghab H. Cellular therapy: the hope for covid-19. Avicenna J Med Biotechnol. 2022; 14(2): 104-113.

[280]

Gholamrezanezhad A, Mirpour S, Bagheri M, et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl Med Biol. 2011; 38(7): 961-967.

[281]

Ohta H, Liu X, Maeda M. Autologous adipose mesenchymal stem cell administration in arteriosclerosis and potential for anti-aging application: a retrospective cohort study. Stem Cell Res Ther. 2020; 11: 538.

[282]

Gao Y, Zhou Z, Lu S, et al. Chemokine CCL15 mediates migration of human bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma. Stem Cells. 2016; 34(4): 1112-1122.

[283]

Zangi L, Margalit R, Reich-Zeliger S, et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells. 2009; 27(11): 2865-2874.

[284]

Campbell NG, Suzuki K. Cell delivery routes for stem cell therapy to the heart: current and future approaches. J Cardiovasc Transl Res. 2012; 5(5): 713-726.

[285]

Min H, Xu L, Parrott R, et al. Mesenchymal stromal cells reprogram monocytes and macrophages with processing bodies. Stem Cells. 2021; 39(1): 115-128.

[286]

de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018; 36(4): 602-615.

[287]

Wen S, Dooner M, Papa E, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a radiation injury bone marrow murine model. Int J Mol Sci. 2019; 20(21): 5468.

[288]

Rajendran RL, Gangadaran P, Bak SS, et al. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep. 2017; 7: 15560.

[289]

Taheri M, Tehrani HA, Dehghani S, et al. Signaling crosstalk between mesenchymal stem cells and tumor cells: implications for tumor suppression or progression. Cytokine Growth Factor Rev. 2024; 76: 30-47.

[290]

Gao Q, Cui L, Huang C, et al. Gastric cancer-derived mesenchymal stem cells promote gastric cancer cell lines migration by modulating CD276 expression. Exp Cell Res. 2023; 422(1): 113414.

[291]

Shang S, Wang J, Chen S, et al. Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Med. 2019; 8(18): 7728-7740.

[292]

Ramirez JA, Restrepo Múnera LM. Mesenchymal Stem Cells: their role in the tumor microenvironment. Tissue Eng Part B Rev. 2023. Published online June 5.

[293]

Cao M, Mao J, Duan X, et al. In vivo tracking of the tropism of mesenchymal stem cells to malignant gliomas using reporter gene-based MR imaging. Int J Cancer. 2018; 142(5): 1033-1046.

[294]

Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev. 2024; 1. Published online February.

[295]

Karami Fath M, Bagherzadeh Torbati SM, Saqagandomabadi V, et al. The therapeutic effect of MSCs and their extracellular vesicles on neuroblastoma. Prog Biophys Mol Biol. 2024; 187: 51-60.

[296]

Shams F, Pourjabbar B, Hashemi N, et al. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: from mechanisms to therapy. Biomed Pharmacother. 2023; 167: 115505.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/