Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases

Jia-Chen Liu , Ke Zhang , Xu Zhang , Fei Guan , Hu Zeng , Masato Kubo , Pamela Lee , Fabio Candotti , Louisa Katherine James , Niels Olsen Saraiva Camara , Kamel Benlagha , Jia-Hui Lei , Huamei Forsman , Lu Yang , Wei Xiao , Zheng Liu , Chao-Hong Liu

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e662

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e662 DOI: 10.1002/mco2.662
REVIEW

Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases

Author information +
History +
PDF

Abstract

Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.

Keywords

antibody diversification / B cell development / genetic defects / immunodeficiency / isotype switching

Cite this article

Download citation ▾
Jia-Chen Liu, Ke Zhang, Xu Zhang, Fei Guan, Hu Zeng, Masato Kubo, Pamela Lee, Fabio Candotti, Louisa Katherine James, Niels Olsen Saraiva Camara, Kamel Benlagha, Jia-Hui Lei, Huamei Forsman, Lu Yang, Wei Xiao, Zheng Liu, Chao-Hong Liu. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm, 2024, 5(8): e662 DOI:10.1002/mco2.662

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000; 102(5): 553-563.

[2]

Feng Y, Seija N, Di Noia JM, Martin A. AID in antibody diversification: there and back again. Trends Immunol. 2020; 41(7): 586-600.

[3]

Dauba A, Khamlichi AA. Long-range control of class switch recombination by transcriptional regulatory elements. Front Immunol. 2021; 12: 738216.

[4]

Yu K, Lieber MR. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit Rev Biochem Mol Biol. 2019; 54(4): 333-351.

[5]

Shang Y, Meng FL. Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. Genome Instab Dis. 2021; 2(2): 115-125.

[6]

Chen K, Xu W, Wilson M, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009; 10(8): 889-898.

[7]

Rouaud P, Saintamand A, Saad F, et al. Elucidation of the enigmatic IgD class-switch recombination via germline deletion of the IgH 3’ regulatory region. J Exp Med. 2014; 211(5): 975-985.

[8]

Choi JH, Wang KW, Zhang D, et al. IgD class switching is initiated by microbiota and limited to mucosa-associated lymphoid tissue in mice. Proc Natl Acad Sci USA. 2017; 114(7): E1196-E1204.

[9]

Lefranc MP, Lefranc G. Immunoglobulins or Antibodies: IMGT® bridging genes, structures and functions. Biomedicines. 2020; 8(9): 319.

[10]

Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998; 392(6673): 245-252.

[11]

Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002; 20: 197-216.

[12]

Dempsey PW, Vaidya SA, Cheng G. The art of war: Innate and adaptive immune responses. Cell Mol Life Sci. 2003; 60(12): 2604-2621.

[13]

Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991; 354(6352): 389-392.

[14]

Berek C, Berger A, Apel M. Maturation of the immune response in germinal centers. Cell. 1991; 67(6): 1121-1129.

[15]

Tarlinton DM, Smith KG. Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre. Immunol Today. 2000; 21(9): 436-441.

[16]

Li A, Thwaite R, Kellie S, Barnes AC. Serum IgM heavy chain sub-isotypes and light chain variants revealed in giant grouper (Epinephelus lanceolatus) via protein A affinity purification, mass spectrometry and genome sequencing. Fish Shellfish Immunol. 2021; 113: 42-50.

[17]

Farini A, Villa C, Tripodi L, Legato M, Torrente Y. Role of immunoglobulins in muscular dystrophies and inflammatory myopathies. Front Immunol. 2021; 12: 666879.

[18]

Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008; 26: 261-292.

[19]

Davis AC, Roux KH, Shulman MJ. On the structure of polymeric IgM. Eur J Immunol. 1988; 18(7): 1001-1008.

[20]

Fellah JS, Wiles MV, Charlemagne J, Schwager J. Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence. Eur J Immunol. 1992; 22(10): 2595-2601.

[21]

Boes M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol. 2000; 37(18): 1141-1149.

[22]

Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol. 2010; 10(11): 778-786.

[23]

Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe. 2007; 1(1): 51-61.

[24]

Hockenberry A, Slack E, Stadtmueller BM. License to Clump: Secretory IgA Structure–Function Relationships Across Scales. Annu Rev Microbiol. 2023; 77(1): 645-668.

[25]

Cancro MP. Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunological Rev. 2004; 197(1): 89-101. Portico.

[26]

Underdown BJ, Schiff JM. Immunoglobulin A: strategic defense initiative at the mucosal surface. Annu Rev Immunol. 1986; 4: 389-417.

[27]

Yan H, Lamm ME, Björling E, Huang YT. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J Virol. 2002; 76(21): 10972-10979.

[28]

Chen K, Cerutti A. New insights into the enigma of immunoglobulin D. Immunol Rev. 2010; 237(1): 160-179.

[29]

Zacharia BE, Sherman P. Atopy, helminths, and cancer. Med Hypotheses. 2003; 60(1): 1-5.

[30]

Finkelman FD, Urban JF Jr. The other side of the coin: the protective role of the TH2 cytokines. J Allergy Clin Immunol. 2001; 107(5): 772-780.

[31]

Gurish MF, Bryce PJ, Tao H, et al. IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J Immunol. 2004; 172(2): 1139-1145.

[32]

Tonegawa S. Somatic generation of antibody diversity. Nature. 1983; 302(5909): 575-581.

[33]

Gellert M. V(D)J Recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem. 2002; 71(1): 101-132.

[34]

Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010; 125(2 Suppl 2): S41-S52.

[35]

Qi H, Kastenmüller W, Germain RN. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu Rev Cell Dev Biol. 2014; 30: 141-167.

[36]

Loder F, Mutschler B, Ray RJ, et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med. 1999; 190(1): 75-89.

[37]

Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood. 2005; 105(11): 4390-4398.

[38]

Suryani S, Fulcher DA, Santner-Nanan B, et al. Differential expression of CD21 identifies developmentally and functionally distinct subsets of human transitional B cells. Blood. 2010; 115(3): 519-529.

[39]

Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003; 301(5638): 1374-1377.

[40]

Palanichamy A, Barnard J, Zheng B, et al. Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol. 2009; 182(10): 5982-5993.

[41]

Chen Z, Wang JH. How the signaling crosstalk of B cell receptor (BCR) and co-receptors regulates antibody class switch recombination: a new perspective of checkpoints of BCR signaling. Front Immunol. 2021; 12: 663443.

[42]

Dunnick W, Hertz GZ, Scappino L, Gritzmacher C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 1993; 21(3): 365-372.

[43]

Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. J Immunol. 2014; 193(11): 5370-5378.

[44]

Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature. 2003; 422(6933): 726-730.

[45]

Rubio MA, Pastar I, Gaston KW, et al. An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci USA. 2007; 104(19): 7821-7826.

[46]

Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001; 412(6844): 341-346.

[47]

Yu K, Lieber MR. Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair (Amst). 2003; 2(11): 1163-1174.

[48]

Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai). 2022; 54(6): 782-795.

[49]

Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017; 18(8): 495-506.

[50]

Boboila C, Alt FW, Schwer B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol. 2012; 116: 1-49.

[51]

Hodgkin PD, Lee JH, Lyons AB. B cell differentiation and isotype switching is related to division cycle number. J Exp Med. 1996; 184(1): 277-281.

[52]

Rush JS, Liu M, Odegard VH, Unniraman S, Schatz DG. Expression of activation-induced cytidine deaminase is regulated by cell division, providing a mechanistic basis for division-linked class switch recombination. Proc Natl Acad Sci USA. 2005; 102(37): 13242-13247.

[53]

Hou B, Saudan P, Ott G, et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity. 2011; 34(3): 375-384.

[54]

McIntyre TM, Kehry MR, Snapper CM. Novel in vitro model for high-rate IgA class switching. J Immunol. 1995; 154(7): 3156-3161.

[55]

Kaminski DA, Stavnezer J. Stimuli that enhance IgA class switching increase histone 3 acetylation at S alpha, but poorly stimulate sequential switching from IgG2b. Eur J Immunol. 2007; 37(1): 240-251.

[56]

Pone EJ, Zhang J, Mai T, et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway. Nat Commun. 2012; 3: 767.

[57]

Chen Z, Krinsky A, Woolaver RA, et al. TRAF3 Acts as a Checkpoint of B Cell Receptor Signaling to Control Antibody Class Switch Recombination and Anergy. J Immunol. 2020; 205(3): 830-841.

[58]

Robert I, Gaudot L, Rogier M, et al. Parp3 negatively regulates immunoglobulin class switch recombination. PLoS Genet. 2015; 11(5): e1005240.

[59]

Vaidyanathan B, Chaudhry A, Yewdell WT, et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. J Exp Med. 2017; 214(1): 197-208.

[60]

Zheng S, Matthews AJ, Rahman N, et al. The uncharacterized SANT and BTB domain-containing protein SANBR inhibits class switch recombination. J Biol Chem. 2021; 296: 100625.

[61]

Lacombe ML, Milon L, Munier A, Mehus JG, Lambeth DO. The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr. 2000; 32(3): 247-258.

[62]

Zheng S, Kusnadi A, Choi JE, Vuong BQ, Rhodes D, Chaudhuri J. NME proteins regulate class switch recombination. FEBS Lett. 2019; 593(1): 80-87.

[63]

Thakur RK, Kumar P, Halder K, et al. Metastases suppressor NM23-H2 interaction with G-quadruplex DNA within c-MYC promoter nuclease hypersensitive element induces c-MYC expression. Nucleic Acids Res. 2009; 37(1): 172-183.

[64]

Zheng S, Kusnadi A, Choi JE, Vuong BQ, Rhodes D, Chaudhuri J. NME proteins regulate class switch recombination. FEBS Lett. 2018; 593(1): 80-87. Portico.

[65]

Grundström C, Grundström T. The transcription factor E2A can bind to and cleave single-stranded immunoglobulin heavy chain locus DNA. Mol Immunol. 2023; 153: 51-59.

[66]

Grundström C, Kumar A, Priya A, Negi N, Grundström T. ETS1 and PAX5 transcription factors recruit AID to Igh DNA. Eur J Immunol. 2018; 48(10): 1687-1697.

[67]

Hauser J, Grundström C, Kumar R, Grundström T. Regulated localization of an AID complex with E2A, PAX5 and IRF4 at the Igh locus. Mol Immunol. 2016; 80: 78-90.

[68]

Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Epigenomic modifications mediating antibody maturation. Front Immunol. 2018; 9: 355.

[69]

Cogné M. Activation-induced deaminase in B lymphocyte maturation and beyond. Biomed J. 2013; 36(6): 259-268.

[70]

Vuong BQ, Chaudhuri J. Combinatorial mechanisms regulating AID-dependent DNA deamination: interacting proteins and post-translational modifications. Semin Immunol. 2012; 24(4): 264-272.

[71]

Gazumyan A, Timachova K, Yuen G, et al. Amino-terminal phosphorylation of activation-induced cytidine deaminase suppresses c-myc/IgH translocation. Mol Cell Biol. 2011; 31(3): 442-449.

[72]

Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 Is Required for Mediating Responses to IL-4 and for the Development of Th2 Cells. Immunity. 1996; 4(3): 313-319.

[73]

Markine-Goriaynoff D, Coutelier JP. Increased efficacy of the immunoglobulin G2a subclass in antibody-mediated protection against lactate dehydrogenase-elevating virus-induced polioencephalomyelitis revealed with switch mutants. J Virol. 2002; 76(1): 432-435.

[74]

Gerth AJ, Lin L, Peng SL. T-bet regulates T-independent IgG2a class switching. Int Immunol. 2003; 15(8): 937-944.

[75]

Lazarevic V, Glimcher LH. T-bet in disease. Nat Immunol. 2011; 12(7): 597-606.

[76]

Pearce EL, Mullen AC, Martins GA, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003; 302(5647): 1041-1043.

[77]

Knox JJ, Buggert M, Kardava L, et al. T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight. 2017; 2(8): e92943.

[78]

Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010; 10(3): 159-169.

[79]

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336(6086): 1268-1273.

[80]

Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017; 17(4): 219-232.

[81]

Bunker JJ, Bendelac A. IgA Responses to Microbiota. Immunity. 2018; 49(2): 211-224.

[82]

Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. IgA function in relation to the intestinal microbiota. Annu Rev Immunol. 2018; 36: 359-381.

[83]

Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol. 2010; 28: 243-273.

[84]

Brandtzaeg P, Johansen FE. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev. 2005; 206: 32-63.

[85]

Rüthlein J, Ibe M, Burghardt W, Mössner J, Auer IO. Immunoglobulin G (IgG), IgG1, and IgG2 determinations from endoscopic biopsy specimens in control, Crohn’s disease, and ulcerative colitis subjects. Gut. 1992; 33(4): 507-512.

[86]

Kobayashi K, Asakura H, Hamada Y, et al. T lymphocyte subpopulations and immunoglobulin-containing cells in the colonic mucosa of ulcerative colitis; a morphometric and immunohistochemical study. J Clin Lab Immunol. 1988; 25(2): 63-68.

[87]

Helgeland L, Tysk C, Järnerot G, et al. IgG subclass distribution in serum and rectal mucosa of monozygotic twins with or without inflammatory bowel disease. Gut. 1992; 33(10): 1358-1364.

[88]

Scott MG, Nahm MH, Macke K, Nash GS, Bertovich MJ, MacDermott RP. Spontaneous secretion of IgG subclasses by intestinal mononuclear cells: differences between ulcerative colitis, Crohn’s disease, and controls. Clin Exp Immunol. 1986; 66(1): 209-215.

[89]

Castro-Dopico T, Clatworthy MR. IgG and Fcγ receptors in intestinal immunity and inflammation. Front Immunol. 2019; 10: 805.

[90]

Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012; 12(12): 821-832.

[91]

Fleming A, Castro-Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol. 2022; 95(2): e13139.

[92]

Lycke NY, Bemark M. The role of Peyer’s patches in synchronizing gut IgA responses. Front Immunol. 2012; 3: 329.

[93]

Rajavarthini PB, Arunkumar RI, Michael RD. Partial characterization of serum immunoglobulins of Oreochromis mossambicus. Indian J Exp Biol. 2000; 38(6): 549-553.

[94]

Eskeland T, Christensen TB. IgM molecules with and without J chain in serum and after purification, studied by ultracentrifugation, electrophoresis, and electron microscopy. Scand J Immunol. 1975; 4(3): 217-228.

[95]

Klein Klouwenberg P, Bont L. Neonatal and infantile immune responses to encapsulated bacteria and conjugate vaccines. Clin Dev Immunol. 2008; 2008: 1-10.

[96]

Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF proteins in CD40 signaling. Adv Exp Med Biol. 2007; 597: 131-151.

[97]

Deng L, Zeng Q, Wang M, et al. Suppression of NF-κB activity: A viral immune evasion mechanism. Viruses. 2018; 10(8): 409.

[98]

Shan M, Carrillo J, Yeste A, et al. Secreted IgD amplifies humoral T helper 2 cell responses by binding basophils via galectin-9 and CD44. Immunity. 2018; 49(4): 709-724.e708.

[99]

Davies AM, Beavil RL, Barbolov M, et al. Crystal structures of the human IgD Fab reveal insights into CH1 domain diversity. Mol Immunol. 2023; 159: 28-37.

[100]

Xu Y, Zhou H, Post G, Zan H, Casali P. Rad52 mediates class-switch DNA recombination to IgD. Nat Commun. 2022; 13(1): 980.

[101]

de Sousa-Pereira P, Woof JM. IgA: Structure, function, and developability. Antibodies. 2019; 8(4): 57.

[102]

Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008; 8(6): 421-434.

[103]

Lanzavecchia A, Sallusto F. Toll-like receptors and innate immunity in B-cell activation and antibody responses. Curr Opin Immunol. 2007; 19(3): 268-274.

[104]

Pone EJ. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front Biosci. 2012; 17(7): 2594.

[105]

Bergqvist P, Stensson A, Lycke NY, Bemark M. T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation. J Immunol. 2010; 184(7): 3545-3553.

[106]

Tezuka H, Abe Y, Iwata M, et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature. 2007; 448(7156): 929-933.

[107]

Castigli E, Wilson SA, Scott S, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med. 2005; 201(1): 35-39.

[108]

Kuley R, Draves KE, Fuller DH, Giltiay NV, Clark EA, Giordano D. B cell activating factor (BAFF) from neutrophils and dendritic cells is required for protective B cell responses against Salmonella typhimurium infection. PLoS One. 2021; 16(10): e0259158.

[109]

Giordano D, Kuley R, Draves KE, et al. BAFF produced by neutrophils and dendritic cells is regulated differently and has distinct roles in antibody responses and protective immunity against West Nile Virus. J Immunol. 2020; 204(6): 1508-1520.

[110]

von Bülow GU, van Deursen JM, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity. 2001; 14(5): 573-582.

[111]

Yan M, Wang H, Chan B, et al. Activation and accumulation of B cells in TACI-deficient mice. Nat Immunol. 2001; 2(7): 638-643.

[112]

Varfolomeev E, Kischkel F, Martin F, et al. APRIL-deficient mice have normal immune system development. Mol Cell Biol. 2004; 24(3): 997-1006.

[113]

Castigli E, Scott S, Dedeoglu F, et al. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA. 2004; 101(11): 3903-3908.

[114]

Nakajima A, Vogelzang A, Maruya M, et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J Exp Med. 2018; 215(8): 2019-2034.

[115]

Isobe J, Maeda S, Obata Y, et al. Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon. Int Immunol. 2020; 32(4): 243-258.

[116]

Stavnezer J, Kang J. The surprising discovery that TGF beta specifically induces the IgA class switch. J Immunol. 2009; 182(1): 5-7.

[117]

Liu G, Wang B, Chen Q, et al. Interleukin (IL)-21 promotes the differentiation of IgA-producing plasma cells in Porcine Peyer’s patches via the JAK-STAT signaling pathway. Front Immunol. 2020; 11: 1303.

[118]

Komban RJ, Strömberg A, Biram A, et al. Activated Peyer’s patch B cells sample antigen directly from M cells in the subepithelial dome. Nat Commun. 2019; 10(1): 2423.

[119]

Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009; 457(7231): 887-891.

[120]

Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene. 2004; 23(24): 4284-4296.

[121]

Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996; 84(2): 321-330.

[122]

Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997; 89(5): 765-771.

[123]

Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89(5): 755-764.

[124]

Li QL, Ito K, Sakakura C, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002; 109(1): 113-124.

[125]

Brenner O, Levanon D, Negreanu V, et al. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci USA. 2004; 101(45): 16016-16021.

[126]

Fainaru O, Woolf E, Lotem J, et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. Embo j. 2004; 23(4): 969-979.

[127]

Grueter B, Petter M, Egawa T, et al. Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4-/CD8+ T cells. J Immunol. 2005; 175(3): 1694-1705.

[128]

Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007; 204(8): 1757-1764.

[129]

Berkowska MA, Heeringa JJ, Hajdarbegovic E, et al. Human IgE(+) B cells are derived from T cell-dependent and T cell-independent pathways. J Allergy Clin Immunol. 2014; 134(3): 688-697.e686.

[130]

Messner B, Stütz AM, Albrecht B, Peiritsch S, Woisetschläger M. Cooperation of binding sites for STAT6 and NF kappa B/rel in the IL-4-induced up-regulation of the human IgE germline promoter. J Immunol. 1997; 159(7): 3330-3337.

[131]

Berglund LJ, Avery DT, Ma CS, et al. IL-21 signalling via STAT3 primes human naive B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood. 2013; 122(24): 3940-3950.

[132]

Avery DT, Ma CS, Bryant VL, et al. STAT3 is required for IL-21-induced secretion of IgE from human naive B cells. Blood. 2008; 112(5): 1784-1793.

[133]

Ding BB, Bi E, Chen H, Yu JJ, Ye BH. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol. 2013; 190(4): 1827-1836.

[134]

Franke F, Kirchenbaum GA, Kuerten S, Lehmann PV. IL-21 in conjunction with anti-CD40 and IL-4 constitutes a potent polyclonal B cell stimulator for monitoring antigen-specific memory B cells. Cells. 2020; 9(2): 433.

[135]

Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014; 5: 520.

[136]

Turner MW, Bennich HH, Natvig JB. Simple method of subtyping human G-myeloma proteins based on sensitivity to pepsin digestion. Nature. 1970; 225(5235): 853-855.

[137]

Kitaura K, Yamashita H, Ayabe H, Shini T, Matsutani T, Suzuki R. Different somatic hypermutation levels among antibody subclasses disclosed by a new next-generation sequencing-based antibody repertoire analysis. Front Immunol. 2017; 8: 389.

[138]

Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020; 40(1): 24-64.

[139]

Khokar A, Gupta S. Clinical and immunological features of 78 adult patients with primary selective IgG subclass deficiencies. Arch Immunol Ther Exp (Warsz). 2019; 67(5): 325-334.

[140]

Smith TF, Morris EC, Bain RP. IgG subclasses in nonallergic children with chronic chest symptoms. J Pediatr. 1984; 105(6): 896-900.

[141]

Beard LJ, Ferrante A, Oxelius VA, Maxwell GM. IgG subclass deficiency in children with IgA deficiency presenting with recurrent or severe respiratory infections. Pediatr Res. 1986; 20(10): 937-942.

[142]

Heinold A, Hanebeck B, Daniel V, et al. Pitfalls of “hyper”-IgM syndrome: a new CD40 ligand mutation in the presence of low IgM levels. A case report and a critical review of the literature. Infection. 2010; 38(6): 491-496.

[143]

Picard C, Al-Herz W, Bousfiha A, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015; 35(8): 696-726.

[144]

Graf D, Korthäuer U, Mages HW, Senger G, Kroczek RA. Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol. 1992; 22(12): 3191-3194.

[145]

Longo NS, Lugar PL, Yavuz S, et al. Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting. Blood. 2009; 113(16): 3706-3715.

[146]

López-Herrera G, Maravillas-Montero JL, Vargas-Hernández A, et al. A novel CD40LG deletion causes the hyper-IgM syndrome with normal CD40L expression in a 6-month-old child. Immunol Res. 2015; 62(1): 89-94.

[147]

Palterer B, Salvati L, Capone M, et al. Variants disrupting CD40L transmembrane domain and atypical X-linked hyper-IgM syndrome: a case report with leishmaniasis and review of the literature. Front Immunol. 2022; 13: 840767.

[148]

Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA. 2001; 98(22): 12614-12619.

[149]

Lanzi G, Ferrari S, Vihinen M, et al. Different molecular behavior of CD40 mutants causing hyper-IgM syndrome. Blood. 2010; 116(26): 5867-5874.

[150]

Caratão N, Cortesão CS, Reis PH, et al. A novel activation-induced cytidine deaminase (AID) mutation in Brazilian patients with hyper-IgM type 2 syndrome. Clin Immunol. 2013; 148(2): 279-286.

[151]

Pearl LH. Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. 2000; 460(3-4): 165-181.

[152]

Zahn A, Eranki AK, Patenaude AM, et al. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proc Natl Acad Sci USA. 2014; 111(11): E988-E997.

[153]

Casellas R, Basu U, Yewdell WT, Chaudhuri J, Robbiani DF, Di Noia JM. Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol. 2016; 16(3): 164-176.

[154]

Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. AID recognizes structured DNA for class switch recombination. Mol Cell. 2017; 67(3): 361-373.e364.

[155]

Mohammadinejad P, Abolhassani H, Aghamohammadi A, et al. Class switch recombination process in ataxia telangiectasia patients with elevated serum levels of IgM. J Immunoassay Immunochem. 2015; 36(1): 16-26.

[156]

Di Noia J, Neuberger MS. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature. 2002; 419(6902): 43-48.

[157]

Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol. 2002; 12(20): 1748-1755.

[158]

Noviello CM, Benichou S, Guatelli JC. Cooperative binding of the class I major histocompatibility complex cytoplasmic domain and human immunodeficiency virus type 1 Nef to the endosomal AP-1 complex via its mu subunit. J Virol. 2008; 82(3): 1249-1258.

[159]

Souto-Carneiro MM, Fritsch R, Sepúlveda N, et al. The NF-kappaB canonical pathway is involved in the control of the exonucleolytic processing of coding ends during V(D)J recombination. J Immunol. 2008; 180(2): 1040-1049.

[160]

Imai K, Catalan N, Plebani A, et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J Clin Invest. 2003; 112(1): 136-142.

[161]

Durandy A, Kracker S. Immunoglobulin class-switch recombination deficiencies. Arthritis Res Ther. 2012; 14(4): 218.

[162]

Péron S, Metin A, Gardès P, et al. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med. 2008; 205(11): 2465-2472.

[163]

Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003; 30(2): 110-115.

[164]

Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014; 123(11): 1637-1646.

[165]

Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012; 367(9): 826-833.

[166]

Maglione PJ, Simchoni N, Cunningham-Rundles C. Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci. 2015; 1356(1): 1-21.

[167]

Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013; 122(7): 1222-1232.

[168]

Ansell SM, Hodge LS, Secreto FJ, et al. Activation of TAK1 by MYD88 L265P drives malignant B-cell growth in non-Hodgkin lymphoma. Blood Cancer J. 2014; 4(2): e183.

[169]

Kyle RA, Therneau TM, Rajkumar SV, et al. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood. 2003; 102(10): 3759-3764.

[170]

Xu L, Hunter ZR, Tsakmaklis N, et al. Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia. Br J Haematol. 2016; 172(5): 735-744.

[171]

Roberts-Thomson PJ, Nikoloutsopoulos T, Smith AJ. Paraproteins: a regional South Australian experience. Asian Pac J Allergy Immunol. 2002; 20(3): 187-195.

[172]

Arpin C, de Bouteiller O, Razanajaona D, et al. The normal counterpart of IgD myeloma cells in germinal center displays extensively mutated IgVH gene, Cmu-Cdelta switch, and lambda light chain expression. J Exp Med. 1998; 187(8): 1169-1178.

[173]

Stoffels M, Jongekrijg J, Remijn T, Kok N, van der Meer JW, Simon A. TLR2/TLR4-dependent exaggerated cytokine production in hyperimmunoglobulinaemia D and periodic fever syndrome. Rheumatology (Oxford). 2015; 54(2): 363-368.

[174]

Pontillo A, Paoluzzi E, Crovella S. The inhibition of mevalonate pathway induces upregulation of NALP3 expression: new insight in the pathogenesis of mevalonate kinase deficiency. Eur J Hum Genet. 2010; 18(7): 844-847.

[175]

van der Hilst JC, Frenkel J. Hyperimmunoglobulin D syndrome in childhood. Curr Rheumatol Rep. 2010; 12(2): 101-107.

[176]

Klasen IS, Göertz JH, van de Wiel GA, Weemaes CM, van der Meer JW, Drenth JP. Hyper-immunoglobulin A in the hyperimmunoglobulinemia D syndrome. Clin Diagn Lab Immunol. 2001; 8(1): 58-61.

[177]

Woof JM, Kerr MA. The function of immunoglobulin A in immunity. J Pathol. 2006; 208(2): 270-282.

[178]

Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science. 2000; 288(5474): 2222-2226.

[179]

Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008; 1(1): 11-22.

[180]

Casali P, Li S, Morales G, et al. Epigenetic modulation of class-switch DNA recombination to IgA by miR-146a through downregulation of Smad2, Smad3 and Smad4. Front Immunol. 2021; 12: 761450.

[181]

Shikina T, Hiroi T, Iwatani K, et al. IgA class switch occurs in the organized nasopharynx-and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol. 2004; 172(10): 6259-6264.

[182]

Reboldi A, Cyster JG. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol Rev. 2016; 271(1): 230-245.

[183]

Bunker JJ, Erickson SA, Flynn TM, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science. 2017; 358(6361): eaan6619.

[184]

Davis SD, Schaller J, Wedgwood RJ. Job’s syndrome. Recurrent, “cold” staphylococcal abscesses. Lancet. 1966; 1(7445): 1013-1015.

[185]

Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics. 1972; 49(1): 59-70.

[186]

Zhang Q, Davis JC, Lamborn IT, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009; 361(21): 2046-2055.

[187]

Mogensen TH. Primary Immunodeficiencies with Elevated IgE. Int Rev Immunol. 2016; 35(1): 39-56.

[188]

Jabara HH, McDonald DR, Janssen E, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol. 2012; 13(6): 612-620.

[189]

Minegishi Y, Saito M, Tsuchiya S, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007; 448(7157): 1058-1062.

[190]

Wesemann DR, Magee JM, Boboila C, et al. Immature B cells preferentially switch to IgE with increased direct Sµ to Sϵ recombination. J Exp Med. 2011; 208(13): 2733-2746.

[191]

Avery DT, Deenick EK, Ma CS, et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010; 207(1): 155-171.

[192]

Kreins AY, Ciancanelli MJ, Okada S, et al. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015; 212(10): 1641-1662.

[193]

Hubers LM, Vos H, Schuurman AR, et al. Annexin A11 is targeted by IgG4 and IgG1 autoantibodies in IgG4-related disease. Hepatology. 2017; 2017: 314548.

[194]

Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017; 3: 17046.

[195]

Alt FW, Zhang Y, Meng FL, Guo C, Schwer B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell. 2013; 152(3): 417-429.

[196]

Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell. 2010; 141(1): 27-38.

[197]

Walker BA, Wardell CP, Johnson DC, et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood. 2013; 121(17): 3413-3419.

[198]

Sato S, Kamata W, Okada S, Tamai Y. Clinical and prognostic significance of t(4;14) translocation in multiple myeloma in the era of novel agents. Int J Hematol. 2021; 113(2): 207-213.

[199]

Casulo C, Friedberg JW. Burkitt lymphoma—a rare but challenging lymphoma. Best Pract Res Clin Haematol. 2018; 31(3): 279-284.

[200]

Dunleavy K, Little RF, Wilson WH. Update on Burkitt lymphoma. Hematol Oncol Clin North Am. 2016; 30(6): 1333-1343.

[201]

Gravos A, Sakellaridis K, Tselioti P, et al. Burkitt lymphoma of the ovaries mimicking sepsis: a case report and review of the literature. J Med Case Rep. 2018; 12(1): 285.

[202]

Guikema JE, de Boer C, Haralambieva E, et al. IGH switch breakpoints in Burkitt lymphoma: exclusive involvement of noncanonical class switch recombination. Genes Chromosomes Cancer. 2006; 45(9): 808-819.

[203]

Long W, Zheng BX, Li Y, et al. Rational design of small-molecules to recognize G-quadruplexes of c-MYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer. Nucleic Acids Res. 2022; 50(4): 1829-1848.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

234

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/