Role of hydrogen sulfide in health and disease

Yu-Qing Jin , Hang Yuan , Ya-Fang Liu , Yi-Wen Zhu , Yan Wang , Xiao-Yi Liang , Wei Gao , Zhi-Guang Ren , Xin-Ying Ji , Dong-Dong Wu

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e661

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e661 DOI: 10.1002/mco2.661
REVIEW

Role of hydrogen sulfide in health and disease

Author information +
History +
PDF

Abstract

In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia–reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.

Keywords

antioxidant / apoptosis / cancer / hydrogen sulfide / inflammation

Cite this article

Download citation ▾
Yu-Qing Jin, Hang Yuan, Ya-Fang Liu, Yi-Wen Zhu, Yan Wang, Xiao-Yi Liang, Wei Gao, Zhi-Guang Ren, Xin-Ying Ji, Dong-Dong Wu. Role of hydrogen sulfide in health and disease. MedComm, 2024, 5(9): e661 DOI:10.1002/mco2.661

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr. 2008; 40(5): 533-539.

[2]

Nicholls P, Marshall DC, Cooper CE, Wilson MT. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans. 2013; 41(5): 1312-1316.

[3]

Ramzan R, Dolga AM, Michels S, et al. Cytochrome c oxidase inhibition by ATP decreases mitochondrial ROS production. Cells. 2022; 11(6): 992.

[4]

Brischigliaro M, Zeviani M. Cytochrome c oxidase deficiency. Biochim Biophys Acta Bioenerg. 2021; 1862(1): 148335.

[5]

Warenycia MW, Goodwin LR, Benishin CG, et al. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol. 1989; 38(6): 973-981.

[6]

Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996; 16(3): 1066-1071.

[7]

Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun. 1997; 237(3): 527-531.

[8]

Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002; 16(13): 1792-1798.

[9]

Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science. 2005; 308(5721): 518.

[10]

Łowicka E, Bełtowski J. Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacol Rep. 2007; 59(1): 4-24.

[11]

Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H(2)S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol. 2018; 149: 110-123.

[12]

Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem. 2009; 146(5): 623-626.

[13]

Han Y, Qin J, Chang X, Yang Z, Tang X, Du J. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem Biophys Res Commun. 2005; 327(2): 431-436.

[14]

Qu K, Chen CP, Halliwell B, Moore PK, Wong PT. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke. 2006; 37(3): 889-893.

[15]

Kawabata A, Ishiki T, Nagasawa K, et al. Hydrogen sulfide as a novel nociceptive messenger. Pain. 2007; 132(1-2): 74-81.

[16]

Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004; 18(10): 1165-1167.

[17]

Guo J, Li G, Yang L. Role of H(2)S in pain: Growing evidences of mystification. Eur J Pharmacol. 2020; 883: 173322.

[18]

Guo FF, Yu TC, Hong J, Fang JY. Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol. 2016; 7: 156.

[19]

Hu X, Xiao Y, Sun J, et al. New possible silver lining for pancreatic cancer therapy: Hydrogen sulfide and its donors. Acta Pharm Sin B. 2021; 11(5): 1148-1157.

[20]

Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012; 92(2): 791-896.

[21]

Hughes MN, Centelles MN, Moore KP. Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radical Biol Med. 2009; 47(10): 1346-1353.

[22]

Mathai JC, Missner A, Kügler P, et al. No facilitator required for membrane transport of hydrogen sulfide. Proc Nat Acad Sci USA. 2009; 106(39): 16633-16638.

[23]

Kangas J, Savolainen H. Urinary thiosulphate as an indicator of exposure to hydrogen sulphide vapour. Clin Chim Acta. 1987; 164(1): 7-10.

[24]

Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J. 2013; 27(2): 601-611.

[25]

Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009; 284(33): 22457-22466.

[26]

Olson KR. H(2)S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol. 2018; 149: 77-90.

[27]

Gregory JF, DeRatt BN, Rios-Avila L, Ralat M, Stacpoole PW. Vitamin B6 nutritional status and cellular availability of pyridoxal 5’-phosphate govern the function of the transsulfuration pathway’s canonical reactions and hydrogen sulfide production via side reactions. Biochimie. 2016; 126: 21-26.

[28]

Bełtowski J. [Hydrogen sulfide as a biologically active mediator in the cardiovascular system]. Postepy Hig Med Dosw. 2004; 58: 285-291.

[29]

Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ. S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-κB pathway in rats. Brain Behav Immun. 2011; 25(1): 110-119.

[30]

Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids. 2011; 41(1): 113-121.

[31]

Shibuya N, Tanaka M, Yoshida M, et al. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal. 2009; 11(4): 703-714.

[32]

Shibuya N, Koike S, Tanaka M, et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun. 2013; 4: 1366.

[33]

Gould SJ, Keller GA, Subramani S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol. 1988; 107(3): 897-905.

[34]

Kimura H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide. 2014; 41: 4-10.

[35]

Schumann U, Subramani S. Special delivery from mitochondria to peroxisomes. Trends Cell Biol. 2008; 18(6): 253-256.

[36]

Hildebrandt TM, Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 2008; 275(13): 3352-3361.

[37]

Jackson MR, Melideo SL, Jorns MS. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry. 2012; 51(34): 6804-6815.

[38]

Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem. 2014; 289(45): 30901-30910.

[39]

Landry AP, Ballou DP, Banerjee R. H(2)S oxidation by nanodisc-embedded human sulfide quinone oxidoreductase. J Biol Chem. 2017; 292(28): 11641-11649.

[40]

Libiad M, Sriraman A, Banerjee R. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics. J Biol Chem. 2015; 290(39): 23579-23588.

[41]

Landry AP, Ballou DP, Banerjee R. Hydrogen sulfide oxidation by sulfide quinone oxidoreductase. Chembiochem. 2021; 22(6): 949-960.

[42]

Pacifici GM, Romiti P, Santerini S, Giuliani L. S-methyltransferases in human intestine: differential distribution of the microsomal thiol methyltransferase and cytosolic thiopurine methyltransferase along the human bowel. Xenobiotica. 1993; 23(6): 671-679.

[43]

Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest. 1999; 104(8): 1107-1114.

[44]

Bostelaar T, Vitvitsky V, Kumutima J, et al. Hydrogen sulfide oxidation by myoglobin. J Am Chem Soc. 2016; 138(27): 8476-8488.

[45]

Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res. 2014; 114(4): 730-737.

[46]

Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol. 2023; 20(2): 109-125.

[47]

Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001; 20(21): 6008-6016.

[48]

Altaany Z, Ju Y, Yang G, Wang R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal. 2014; 7(342): ra87.

[49]

Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011; 109(11): 1259-1268.

[50]

Bucci M, Papapetropoulos A, Vellecco V, et al. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS One. 2012; 7(12): e53319.

[51]

Kiss L, Deitch EA, Szabó C. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci. 2008; 83(17-18): 589-594.

[52]

White BJ, Smith PA, Dunn WR. Hydrogen sulphide-mediated vasodilatation involves the release of neurotransmitters from sensory nerves in pressurized mesenteric small arteries isolated from rats. Br J Pharmacol. 2013; 168(4): 785-793.

[53]

Papapetropoulos A, Pyriochou A, Altaany Z, et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Nat Acad Sci USA. 2009; 106(51): 21972-21977.

[54]

Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res. 2007; 76(1): 29-40.

[55]

Kolluru GK, Bir SC, Yuan S, et al. Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc Res. 2015; 107(4): 590-600.

[56]

Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol. 2017; 312(1): C3-C15.

[57]

Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Nat Acad Sci USA. 2012; 109(23): 9161-9166.

[58]

Luo H, Wu PF, Han QQ, et al. Reactive sulfur species emerge as gliotransmitters to support memory via sulfuration-dependent gating of NR2A-containing N-methyl-d-aspartate subtype glutamate receptor function. Antioxid Redox Signal. 2019; 30(16): 1880-1899.

[59]

Chen HB, Wu WN, Wang W, et al. Cystathionine-β-synthase-derived hydrogen sulfide is required for amygdalar long-term potentiation and cued fear memory in rats. Pharmacol Biochem Behav. 2017; 155: 16-23.

[60]

Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol. 2002; 26(1): 13-19.

[61]

Boehning D, Snyder SH. Novel neural modulators. Annu Rev Neurosci. 2003; 26: 105-131.

[62]

Austgen JR, Hermann GE, Dantzler HA, Rogers RC, Kline DD. Hydrogen sulfide augments synaptic neurotransmission in the nucleus of the solitary tract. J Neurophysiol. 2011; 106(4): 1822-1832.

[63]

Linden DR. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 2014; 20(5): 818-830.

[64]

Blachier F, Beaumont M, Kim E. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin. Curr Opin Clin Nutr Metab Care. 2019; 22(1): 68-75.

[65]

Blachier F, Davila AM, Mimoun S, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010; 39(2): 335-347.

[66]

Dhaese I, Van Colen I, Lefebvre RA. Mechanisms of action of hydrogen sulfide in relaxation of mouse distal colonic smooth muscle. Eur J Pharmacol. 2010; 628(1-3): 179-186.

[67]

Gallego D, Clavé P, Donovan J, et al. The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil. 2008; 20(12): 1306-1316.

[68]

Gil V, Gallego D, Jiménez M. Effects of inhibitors of hydrogen sulphide synthesis on rat colonic motility. Br J Pharmacol. 2011; 164(2b): 485-498.

[69]

Kasparek MS, Linden DR, Farrugia G, Sarr MG. Hydrogen sulfide modulates contractile function in rat jejunum. J Surg Res. 2012; 175(2): 234-242.

[70]

Teague B, Asiedu S, Moore PK. The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol. 2002; 137(2): 139-145.

[71]

Zhao P, Huang X, Wang ZY, et al. Dual effect of exogenous hydrogen sulfide on the spontaneous contraction of gastric smooth muscle in guinea-pig. Eur J Pharmacol. 2009; 616(1-3): 223-228.

[72]

Han YF, Huang X, Guo X, et al. Evidence that endogenous hydrogen sulfide exerts an excitatory effect on gastric motility in mice. Eur J Pharmacol. 2011; 673(1-3): 85-95.

[73]

Kang M, Hashimoto A, Gade A, Akbarali HI. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex. Am J Physiol Gastrointest Liver Physiol. 2015; 308(6): G532-G539.

[74]

Quan X, Luo H, Liu Y, Xia H, Chen W, Tang Q. Hydrogen sulfide regulates the colonic motility by inhibiting both L-type calcium channels and BKCa channels in smooth muscle cells of rat colon. PLoS One. 2015; 10(3): e0121331.

[75]

Nalli AD, Bhattacharya S, Wang H, Kendig DM, Grider JR, Murthy KS. Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide. Am J Physiol Gastrointest Liver Physiol. 2017; 313(4): G330-G341.

[76]

Strege PR, Bernard CE, Kraichely RE, et al. Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5. Am J Physiol Gastrointest Liver Physiol. 2011; 300(6): G1105-G1114.

[77]

Clausen T, Wahl MC, Messerschmidt A, et al. Cloning, purification and characterisation of cystathionine gamma-synthase from Nicotiana tabacum. Biol Chem. 1999; 380(10): 1237-1242.

[78]

Li L, Bhatia M, Zhu YZ, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 2005; 19(9): 1196-1198.

[79]

Tamizhselvi R, Moore PK, Bhatia M. Inhibition of hydrogen sulfide synthesis attenuates chemokine production and protects mice against acute pancreatitis and associated lung injury. Pancreas. 2008; 36(4): e24-e31.

[80]

Zhang H, Moochhala SM, Bhatia M. Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. J Immunol. 2008; 181(6): 4320-4331.

[81]

Elrod JW, Calvert JW, Morrison J, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Nat Acad Sci USA. 2007; 104(39): 15560-15565.

[82]

Esechie A, Kiss L, Olah G, et al. Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci. 2008; 115(3): 91-97.

[83]

Nagai Y, Tsugane M, Oka J, Kimura H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. 2004; 18(3): 557-559.

[84]

Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006; 20(12): 2118-2120.

[85]

Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK. Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J. 2005; 19(6): 623-625.

[86]

Zivanovic J, Kouroussis E, Kohl JB, et al. Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metab. 2019; 30(6): 1152-1170. e13.

[87]

Zhan JQ, Zheng LL, Chen HB, et al. Hydrogen sulfide reverses aging-associated amygdalar synaptic plasticity and fear memory deficits in rats. Front Neurosci. 2018; 12: 390.

[88]

Ma N, Liu HM, Xia T, Liu JD, Wang XZ. Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide. Can J Physiol Pharmacol. 2018; 96(9): 902-908.

[89]

Srilatha B, Muthulakshmi P, Adaikan PG, Moore PK. Endogenous hydrogen sulfide insufficiency as a predictor of sexual dysfunction in aging rats Aging Male. 2012; 15(3): 153-158.

[90]

Hou CL, Wang MJ, Sun C, et al. Protective effects of hydrogen sulfide in the ageing kidney. Oxid Med Cell Long. 2016; 2016: 7570489.

[91]

Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007; 357(11): 1121-1135.

[92]

Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 2011; 17(11): 1391-1401.

[93]

Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation–from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013; 10(2): 79-89.

[94]

Al-Githmi IS, Abdulqader AA, Alotaibi A, et al. Acute kidney injury after open heart surgery. Cureus. 2022; 14(6): e25899.

[95]

O’Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016; 20(1): 187.

[96]

Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Comprehens Physiol. 2016; 7(1): 113-170.

[97]

Walkon LL, Strubbe-Rivera JO, Bazil JN. Calcium overload and mitochondrial metabolism. Biomolecules. 2022; 12(12): 1891.

[98]

Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010; 47(2): 122-129.

[99]

Tang SP, Mao XL, Chen YH, Yan LL, Ye LP, Li SW. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death. Front Immunol. 2022; 13: 870239.

[100]

Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015; 6: 524-551.

[101]

Perkins KA, Pershad S, Chen Q, et al. The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R). Naunyn-Schmiedeberg’s Arch Pharmacol. 2012; 385(1): 27-38.

[102]

Bhat AH, Dar KB, Anees S, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015; 74: 101-110.

[103]

Bortolotti M, Polito L, Battelli MG, Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol. 2021; 41: 101882.

[104]

Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007; 87(1): 245-313.

[105]

Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med. 2014; 76: 208-226.

[106]

Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 2010; 30(4): 653-661.

[107]

De Pascali F, Hemann C, Samons K, Chen CA, Zweier JL. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry. 2014; 53(22): 3679-3688.

[108]

Sanada S, Kitakaze M. Ischemic preconditioning: emerging evidence, controversy, and translational trials. Int J Cardiol. 2004; 97(2): 263-276.

[109]

Chen X, Zhang X, Xue L, Hao C, Liao W, Wan Q. Treatment with enriched environment reduces neuronal apoptosis in the periinfarct cortex after cerebral ischemia/reperfusion injury. Cell Physiol Biochem. 2017; 41(4): 1445-1456.

[110]

Uehara T, Bennett B, Sakata ST, et al. JNK mediates hepatic ischemia reperfusion injury. J Hepatol. 2005; 42(6): 850-859.

[111]

Tibbetts MD, Zheng L, Lenardo MJ. The death effector domain protein family: regulators of cellular homeostasis. Nat Immunol. 2003; 4(5): 404-409.

[112]

Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant. 2013; 13(11): 2797-2804.

[113]

Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. 2019; 4(15): e128834.

[114]

Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol. 2017; 12: 103-130.

[115]

Kang JW, Hong JM, Lee SM. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res. 2016; 60(4): 383-393.

[116]

Qin J, Zhou J, Dai X, et al. Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice. Am J Transl Res. 2016; 8(8): 3364-3375.

[117]

Liu A, Huang L, Guo E, et al. Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats. Sci Rep. 2016; 6: 25042.

[118]

Chen X, Li X, Zhang W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism. 2018; 83: 256-270.

[119]

Ritter LS, Stempel KM, Coull BM, McDonagh PF. Leukocyte-platelet aggregates in rat peripheral blood after ischemic stroke and reperfusion. Biol Res Nurs. 2005; 6(4): 281-288.

[120]

Teoh NC. Hepatic ischemia reperfusion injury: Contemporary perspectives on pathogenic mechanisms and basis for hepatoprotection-the good, bad and deadly. J Gastroenterol Hepatol. 2011; 26(Suppl 1): 180-187.

[121]

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454(7203): 428-435.

[122]

Xiao C, Zhao H, Zhu H, et al. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling. Front Physiol. 2020; 11: 906.

[123]

Regner KR, Roman RJ. Role of medullary blood flow in the pathogenesis of renal ischemia-reperfusion injury. Curr Opin Nephrol Hypertens. 2012; 21(1): 33-38.

[124]

Levey AS, James MT. Acute Kidney Injury Acute Kidney Injury. Annals of Internal Medicine. 2017; 167(9): Itc66-itc80.

[125]

Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine. 2018; 28: 31-42.

[126]

Farrar A. Acute kidney injury. Nurs Clin North Am. 2018; 53(4): 499-510.

[127]

Han SJ, Kim JI, Park JW, Park KM. Hydrogen sulfide accelerates the recovery of kidney tubules after renal ischemia/reperfusion injury. Nephrol Dial Transplant. 2015; 30(9): 1497-1506.

[128]

Bos EM, Wang R, Snijder PM, et al. Cystathionine γ-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol. 2013; 24(5): 759-770.

[129]

Azizi F, Seifi B, Kadkhodaee M, Ahghari P. Administration of hydrogen sulfide protects ischemia reperfusion-induced acute kidney injury by reducing the oxidative stress. Ir J Med Sci. 2016; 185(3): 649-654.

[130]

Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008; 322(5901): 587-590.

[131]

Snijder PM, Frenay AR, Koning AM, et al. Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide. 2014; 42: 87-98.

[132]

Ahmad A, Olah G, Szczesny B, Wood ME, Whiteman M, Szabo C. AP39, a mitochondrially targeted hydrogen sulfide donor, exerts protective effects in renal epithelial cells subjected to oxidative stress in vitro and in acute renal injury in vivo. Shock (Augusta, Ga). 2016; 45(1): 88-97.

[133]

Nastos C, Kalimeris K, Papoutsidakis N, et al. Global consequences of liver ischemia/reperfusion injury. Oxid Med Cell Long. 2014; 2014: 906965.

[134]

Zhou J, Guo L, Ma T, et al. N-acetylgalactosaminyltransferase-4 protects against hepatic ischemia/reperfusion injury by blocking apoptosis signal-regulating kinase 1 N-terminal dimerization. Hepatology (Baltimore, Md). 2022; 75(6): 1446-1460.

[135]

Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements. Surg Clin North Am. 2010; 90(4): 665-677.

[136]

Kang K, Zhao M, Jiang H, Tan G, Pan S, Sun X. Role of hydrogen sulfide in hepatic ischemia-reperfusion-induced injury in rats. Liver Transplant. 2009; 15(10): 1306-1314.

[137]

Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circul Physiol. 2008; 295(2): H801-H806.

[138]

Lu M, Jiang X, Tong L, et al. MicroRNA-21-regulated activation of the Akt pathway participates in the protective effects of H(2)S against liver ischemia-reperfusion injury. Biol Pharm Bull. 2018; 41(2): 229-238.

[139]

Kang K, Jiang HC, Zhao MY, Sun XY, Pan SH. [Protection of CSE/H2S system in hepatic ischemia reperfusion injury in rats]. Zhonghua Wai Ke Za Zhi. 2010; 48(12): 924-928.

[140]

Wu D, Wang J, Li H, Xue M, Ji A, Li Y. Role of hydrogen sulfide in ischemia-reperfusion injury. Oxid Med Cell Long. 2015; 2015: 186908.

[141]

Haga S, Remington SJ, Morita N, Terui K, Ozaki M. Hepatic ischemia induced immediate oxidative stress after reperfusion and determined the severity of the reperfusion-induced damage. Antioxid Redox Signal. 2009; 11(10): 2563-2572.

[142]

Cheng P, Wang F, Chen K, et al. Hydrogen sulfide ameliorates ischemia/reperfusion-induced hepatitis by inhibiting apoptosis and autophagy pathways. Mediators Inflamm. 2014; 2014: 935251.

[143]

Liu Y, Kalogeris T, Wang M, et al. Hydrogen sulfide preconditioning or neutrophil depletion attenuates ischemia-reperfusion-induced mitochondrial dysfunction in rat small intestine. Am J Physiol Gastrointest Liver Physiol. 2012; 302(1): G44-G54.

[144]

Zhang Q, Fu H, Zhang H, et al. Hydrogen sulfide preconditioning protects rat liver against ischemia/reperfusion injury by activating Akt-GSK-3β signaling and inhibiting mitochondrial permeability transition. PLoS One. 2013; 8(9): e74422.

[145]

Du J, Wang Q, Li QM, Zhang BM, Xie KL, Wang GL. [Alternation of thioredoxin system in postconditioning with hydrogen sulfide against hepatic ischemia-reperfusion injury in rats]. Zhonghua Yi Xue Za Zhi. 2012; 92(37): 2607-2610.

[146]

Younis NN, Shaheen MA, Mahmoud MF. Silymarin preconditioning protected insulin resistant rats from liver ischemia-reperfusion injury: role of endogenous H2S. J Surg Res. 2016; 204(2): 398-409.

[147]

Husain S, Abdul Y, Potter DE. Non-analgesic effects of opioids: neuroprotection in the retina. Curr Pharm Des. 2012; 18(37): 6101-6108.

[148]

Qin X, Li N, Zhang M, et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale. 2019; 11(43): 20667-20675.

[149]

Osborne NN, Ji D, Abdul Majid AS, Fawcett RJ, Sparatore A, Del Soldato P. ACS67, a hydrogen sulfide-releasing derivative of latanoprost acid, attenuates retinal ischemia and oxidative stress to RGC-5 cells in culture. Invest Ophthalmol Vis Sci. 2010; 51(1): 284-294.

[150]

Biermann J, Lagrèze WA, Schallner N, Schwer CI, Goebel U. Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury. Mol Vis. 2011; 17: 1275-1286.

[151]

Gersztenkorn D, Coletta C, Zhu S, et al. Hydrogen sulfide contributes to retinal neovascularization in ischemia-induced retinopathy. Invest Ophthalmol Vis Sci. 2016; 57(7): 3002-3009.

[152]

Liu H, Perumal N, Manicam C, Mercieca K, Prokosch V. Proteomics reveals the potential protective mechanism of hydrogen sulfide on retinal ganglion cells in an ischemia/reperfusion injury animal model. Pharmaceuticals (Basel, Switzerland). 2020; 13(9): 213.

[153]

Scheid S, Goeller M, Baar W, et al. Hydrogen sulfide reduces ischemia and reperfusion injury in neuronal cells in a dose-and time-dependent manner. Int J Mol Sci. 2021; 22(18): 10099.

[154]

Scheid S, Goeller M, Baar W, et al. Inhalative as well as intravenous administration of H(2)S provides neuroprotection after ischemia and reperfusion injury in the rats’ retina. Int J Mol Sci. 2022; 23(10): 5519.

[155]

Krarup T. The testes after torsion. Br J Urol. 1978; 50(1): 43-46.

[156]

Aihole JS. Testicular torsion; clinical diagnosis or imaging diagnosis? Radiol Case Rep. 2022; 17(8): 2665-2667.

[157]

Abdelzaher WY, Mostafa-Hedeab G, Sayed AboBakr Ali AH, et al. Idebenone regulates sirt1/Nrf2/TNF-α pathway with inhibition of oxidative stress, inflammation, and apoptosis in testicular torsion/detorsion in juvenile rats. Hum Exp Toxicol. 2022; 41: 9603271221102515.

[158]

Djurhuus JC. Preclinical studies of testicular ischemia-reperfusion treatment. J Pediatr Urol. 2021; 17(2): 168.

[159]

Yuksel S, Erginel B, Bingul I, et al. The effect of hydrogen sulfide on ischemi̇a /reperfusion injury in an experimental testicular torsion model. J Pediatr Urol. 2022; 18(1): 16. e1-e7.

[160]

Bozkurt M, Degirmentepe RB, Polat EC, et al. Protective effect of hydrogen sulfide on experimental testicular ischemia reperfusion in rats. J Pediatr Urol. 2020; 16(1): 40. e1-e8.

[161]

Tingle SJ, Figueiredo RS, Moir JA, Goodfellow M, Talbot D, Wilson CH. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 2019; 3(3): Cd011671.

[162]

Opelz G, Döhler B. Multicenter analysis of kidney preservation. Transplantation. 2007; 83(3): 247-253.

[163]

Dragun D, Hoff U, Park JK, et al. Prolonged cold preservation augments vascular injury independent of renal transplant immunogenicity and function. Kidney Int. 2001; 60(3): 1173-1181.

[164]

Salahudeen AK, Haider N, May W. Cold ischemia and the reduced long-term survival of cadaveric renal allografts. Kidney Int. 2004; 65(2): 713-718.

[165]

Lobb I, Davison M, Carter D, et al. Hydrogen sulfide treatment mitigates renal allograft ischemia-reperfusion injury during cold storage and improves early transplant kidney function and survival following allogeneic renal transplantation. J Urol. 2015; 194(6): 1806-1815.

[166]

Lobb I, Mok A, Lan Z, Liu W, Garcia B, Sener A. Supplemental hydrogen sulphide protects transplant kidney function and prolongs recipient survival after prolonged cold ischaemia-reperfusion injury by mitigating renal graft apoptosis and inflammation. BJU Int. 2012; 110(11 Pt C): E1187-E1195.

[167]

Hosgood SA, Nicholson ML. Hydrogen sulphide ameliorates ischaemia-reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation. Br J Surg. 2010; 97(2): 202-209.

[168]

Lobb I, Jiang J, Lian D, et al. Hydrogen sulfide protects renal grafts against prolonged cold ischemia-reperfusion injury via specific mitochondrial actions. Am J Transplant. 2017; 17(2): 341-352.

[169]

Zhu C, Su Y, Juriasingani S, et al. Supplementing preservation solution with mitochondria-targeted H(2) S donor AP39 protects cardiac grafts from prolonged cold ischemia-reperfusion injury in heart transplantation. Am J Transplant. 2019; 19(11): 3139-3148.

[170]

Wu J, Wei J, You X, et al. Inhibition of hydrogen sulfide generation contributes to lung injury after experimental orthotopic lung transplantation. J Surg Res. 2013; 182(1): e25-e33.

[171]

Balaban CL, Rodríguez JV, Tiribelli C, Guibert EE. The effect of a hydrogen sulfide releasing molecule (Na2S) on the cold storage of livers from cardiac dead donor rats. A study in an ex vivo model. Cryobiology. 2015; 71(1): 24-32.

[172]

Nishime K, Miyagi-Shiohira C, Kuwae K, et al. Preservation of pancreas in the University of Wisconsin solution supplemented with AP39 reduces reactive oxygen species production and improves islet graft function. Am J Transplant. 2021; 21(8): 2698-2708.

[173]

Zhang MY, Dugbartey GJ, Juriasingani S, et al. Sodium thiosulfate-supplemented UW solution protects renal grafts against prolonged cold ischemia-reperfusion injury in a murine model of syngeneic kidney transplantation. Biomed Pharmacother. 2022; 145: 112435.

[174]

Fang F, Chen D, Yu L, et al. Proinflammatory stimuli engage Brahma related gene 1 and Brahma in endothelial injury. Circ Res. 2013; 113(8): 986-996.

[175]

Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signaling. 2012; 17(1): 141-185.

[176]

Lin Y, Zeng H, Gao L, Gu T, Wang C, Zhang H. Hydrogen sulfide attenuates atherosclerosis in a partially ligated carotid artery mouse model via regulating angiotensin converting enzyme 2 expression. Front Physiol. 2017; 8: 782.

[177]

Bibli SI, Hu J, Sigala F, et al. Cystathionine γ lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis. Circulation. 2019; 139(1): 101-114.

[178]

Du C, Lin X, Xu W, et al. Sulfhydrated sirtuin-1 increasing its deacetylation activity is an essential epigenetics mechanism of anti-atherogenesis by hydrogen sulfide. Antioxid Redox Signal. 2019; 30(2): 184-197.

[179]

Perna AF, Sepe I, Lanza D, et al. Hydrogen sulfide reduces cell adhesion and relevant inflammatory triggering by preventing ADAM17-dependent TNF-α activation. J Cell Biochem. 2013; 114(7): 1536-1548.

[180]

Wang XH, Wang F, You SJ, et al. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signalling. 2013; 25(11): 2255-2262.

[181]

Li J, Teng X, Jin S, et al. Hydrogen sulfide improves endothelial dysfunction by inhibiting the vicious cycle of NLRP3 inflammasome and oxidative stress in spontaneously hypertensive rats. J Hypertens. 2019; 37(8): 1633-1643.

[182]

Bourque C, Zhang Y, Fu M, et al. H(2)S protects lipopolysaccharide-induced inflammation by blocking NFκB transactivation in endothelial cells. Toxicol Appl Pharmacol. 2018; 338: 20-29.

[183]

Ghaderi S, Alidadiani N, Dilaver N, et al. Role of glycogen synthase kinase following myocardial infarction and ischemia-reperfusion. Apoptosis. 2017; 22(7): 887-897.

[184]

Lu L, Liu M, Sun R, Zheng Y, Zhang P. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys. 2015; 72(3): 865-867.

[185]

Papapetropoulos A, Whiteman M, Cirino G. Pharmacological tools for hydrogen sulphide research: a brief, introductory guide for beginners. Br J Pharmacol. 2015; 172(6): 1633-1637.

[186]

Donnarumma E, Trivedi RK, Lefer DJ. Protective actions of H2S in acute myocardial infarction and heart failure. Comprehens Physiol. 2017; 7(2): 583-602.

[187]

Calvert JW, Elston M, Nicholson CK, et al. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation. 2010; 122(1): 11-19.

[188]

Li L, Li M, Li Y, et al. Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell Biosci. 2016; 6: 26.

[189]

Sun X, Wang W, Dai J, et al. A long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci Rep. 2017; 7(1): 3541.

[190]

Calvert JW, Jha S, Gundewar S, et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 2009; 105(4): 365-374.

[191]

Wang X, Wang Q, Guo W, Zhu YZ. Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Biosci Rep. 2011; 31(2): 87-98.

[192]

Wu D, Wang H, Teng T, Duan S, Ji A, Li Y. Hydrogen sulfide and autophagy: a double edged sword. Pharmacol Res. 2018; 131: 120-127.

[193]

Jiang H, Xiao J, Kang B, Zhu X, Xin N, Wang Z. PI3K/SGK1/GSK3β signaling pathway is involved in inhibition of autophagy in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation by hydrogen sulfide. Exp Cell Res. 2016; 345(2): 134-140.

[194]

Wang H, Zhong P, Sun L. Exogenous hydrogen sulfide mitigates NLRP3 inflammasome-mediated inflammation through promoting autophagy via the AMPK-mTOR pathway. Biol Open. 2019; 8(7): bio043653.

[195]

Gemici B, Wallace JL. Anti-inflammatory and cytoprotective properties of hydrogen sulfide. Methods Enzymol. 2015; 555: 169-193.

[196]

Sodha NR, Clements RT, Feng J, et al. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg. 2009; 138(4): 977-984.

[197]

Zuidema MY, Korthuis RJ. Intravital microscopic methods to evaluate anti-inflammatory effects and signaling mechanisms evoked by hydrogen sulfide. Methods Enzymol. 2015; 555: 93-125.

[198]

Hu HJ, Jiang ZS, Zhou SH, Liu QM. Hydrogen sulfide suppresses angiotensin II-stimulated endothelin-1 generation and subsequent cytotoxicity-induced endoplasmic reticulum stress in endothelial cells via NF-κB. Mol Med Rep. 2016; 14(5): 4729-4740.

[199]

Hennein HA, Ebba H, Rodriguez JL, et al. Relationship of the proinflammatory cytokines to myocardial ischemia and dysfunction after uncomplicated coronary revascularization. J Thorac Cardiovasc Surg. 1994; 108(4): 626-635.

[200]

Xie YH, Zhang N, Li LF, et al. Hydrogen sulfide reduces regional myocardial ischemia injury through protection of mitochondrial function. Mol Med Rep. 2014; 10(4): 1907-1914.

[201]

Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004; 61(3): 461-470.

[202]

Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995; 182(2): 367-377.

[203]

Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Models Mech. 2017; 10(5): 499-502.

[204]

Kritsilis M, S VR, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci. 2018; 19(10): 2937.

[205]

Vandiver MS, Paul BD, Xu R, et al. Sulfhydration mediates neuroprotective actions of parkin. Nat Commun. 2013; 4: 1626.

[206]

Giovinazzo D, Bursac B, Sbodio JI, et al. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Nat Acad Sci USA. 2021; 118(4): e2017225118.

[207]

Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010; 12(1): 1-13.

[208]

Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021; 20(3): 222-234.

[209]

Fišar Z. Linking the amyloid, tau, and mitochondrial hypotheses of Alzheimer’s disease and identifying promising drug targets. Biomolecules. 2022; 12(11): 1676.

[210]

Li J, Li M, Wang C, et al. NaSH increases SIRT1 activity and autophagy flux through sulfhydration to protect SH-SY5Y cells induced by MPP˜. Cell Cycle. 2020; 19(17): 2216-2225.

[211]

Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 pathway in Huntington’s disease (HD): what is its role? Int J Mol Sci. 2022; 23(23): 15272.

[212]

Zhu H, Hu S, Li Y, et al. Interleukins and ischemic stroke. Front Immunol. 2022; 13: 828447.

[213]

Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021; 335: 113518.

[214]

Sveinsson OA, Kjartansson O, Valdimarsson EM. [Cerebral ischemia/infarction - epidemiology, causes and symptoms]. Laeknabladid. 2014; 100(5): 271-279.

[215]

Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: from mechanisms to treatment (Review). Int J Mol Med. 2022; 49(2): 15.

[216]

Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Compar Physiol. 2008; 294(6): R1930-R1937.

[217]

Deng G, Muqadas M, Adlat S, et al. Protective effect of hydrogen sulfide on cerebral ischemia-reperfusion injury. Cell Mol Neurobiol. 2023; 43(1): 15-25.

[218]

Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol. 2011; 51: 169-187.

[219]

Qin H, Gu LZ, Gao L, Guo J. [Protective effect of H2S pretreatment on cerebral ischemia-reperfusion injury and its mechanisms in rats]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2013; 35(3): 249-253.

[220]

Luo Y, Yang X, Zhao S, et al. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons. Neurochem Int. 2013; 63(8): 826-831.

[221]

Yin J, Tu C, Zhao J, et al. Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res. 2013; 1491: 188-196.

[222]

Dai HB, Xu MM, Lv J, et al. Mild hypothermia combined with hydrogen sulfide treatment during resuscitation reduces hippocampal neuron apoptosis via NR2A, NR2B, and PI3K-Akt signaling in a rat model of cerebral ischemia-reperfusion injury. Mol Neurobiol. 2016; 53(7): 4865-4873.

[223]

Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun. 2000; 267(1): 129-133.

[224]

Santana Maldonado CM, Kim DS, Purnell B, et al. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology. 2023; 485: 153424.

[225]

Dou Y, Wang Z, Chen G. The role of hydrogen sulfide in stroke. Med Gas Res. 2016; 6(2): 79-84.

[226]

Zhang J, Zhang S, Shan H, Zhang M. Biologic effect of hydrogen sulfide and its role in traumatic brain injury. Oxid Med Cell Long. 2020; 2020: 7301615.

[227]

Targher G, Lonardo A, Byrne CD. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 2018; 14(2): 99-114.

[228]

Wu D, Zheng N, Qi K, et al. Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Med Gas Res. 2015; 5(1): 1.

[229]

Jain SK, Micinski D, Lieblong BJ, Stapleton T. Relationship between hydrogen sulfide levels and HDL-cholesterol, adiponectin, and potassium levels in the blood of healthy subjects. Atherosclerosis. 2012; 225(1): 242-245.

[230]

Wu D, Zhong P, Wang Y, et al. Hydrogen sulfide attenuates high-fat diet-induced non-alcoholic fatty liver disease by inhibiting apoptosis and promoting autophagy via reactive oxygen species/phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling pathway. Front Pharmacol. 2020; 11: 585860.

[231]

Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life. 2019; 12(2): 113-122.

[232]

Kruidenier L, Verspaget HW. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease–radicals or ridiculous? Aliment Pharmacol Ther. 2002; 16(12): 1997-2015.

[233]

Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immunol. 2012; 3: 360.

[234]

Carvalho FA, Barnich N, Sivignon A, et al. Crohn’s disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med. 2009; 206(10): 2179-2189.

[235]

Török S, Almási N, Valkusz Z, Pósa A, Varga C, Kupai K. Investigation of H(2)S donor treatment on neutrophil extracellular traps in experimental colitis. Int J Mol Sci. 2021; 22(23): 12729.

[236]

Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective effects of H(2)S donor treatment in experimental colitis: a focus on antioxidants. Antioxidants (Basel, Switzerland). 2023; 12(5): 1025.

[237]

Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology. 2009; 137(2): 569-578, e1.

[238]

Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal. 2010; 12(10): 1147-1154.

[239]

Oh GS, Pae HO, Lee BS, et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Rad Biol Med. 2006; 41(1): 106-119.

[240]

Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010; 51(4): 304-314.

[241]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-674.

[242]

Chen HJ, Li K, Qin YZ, et al. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif. 2023; 56(9): e13449.

[243]

Mustafa AK, Gadalla MM, Sen N, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009; 2(96): ra72.

[244]

Harris IS, Treloar AE, Inoue S, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015; 27(2): 211-222.

[245]

Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017; 86: 715-748.

[246]

Dóka É, Pader I, Bíró A, et al. A novel persulfide detection method reveals protein persulfide-and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv. 2016; 2(1): e1500968.

[247]

Erdélyi K, Ditrói T, Johansson HJ, et al. Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation. Proc Nat Acad Sci USA. 2021; 118(45): e2100050118.

[248]

Krishnan N, Fu C, Pappin DJ, Tonks NK. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal. 2011; 4(203): ra86.

[249]

Greiner R, Pálinkás Z, Bäsell K, et al. Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal. 2013; 19(15): 1749-1765.

[250]

Cai WJ, Wang MJ, Ju LH, Wang C, Zhu YC. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol Int. 2010; 34(6): 565-572.

[251]

Wu D, Li J, Zhang Q, et al. Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells. Oxid Med Cell Long. 2019; 2019: 6927298.

[252]

Wu D, Li M, Tian W, et al. Hydrogen sulfide acts as a double-edged sword in human hepatocellular carcinoma cells through EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Sci Rep. 2017; 7(1): 5134.

[253]

Babaei G, Aziz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother. 2021; 133: 110909.

[254]

Akhmetkaliyev A, Alibrahim N, Shafiee D, Tulchinsky E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? Mol Cancer. 2023; 22(1): 90.

[255]

Czikora Á, Erdélyi K, Ditrói T, et al. Cystathionine β-synthase overexpression drives metastatic dissemination in pancreatic ductal adenocarcinoma via inducing epithelial-to-mesenchymal transformation of cancer cells. Redox Biol. 2022; 57: 102505.

[256]

Li L, Cheung SH, Evans EL, Shaw PE. Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res. 2010; 70(20): 8222-8232.

[257]

Sobotta MC, Liou W, Stöcker S, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol. 2015; 11(1): 64-70.

[258]

Li L, Shaw PE. A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress. Biochem Biophys Res Commun. 2004; 322(3): 1005-1011.

[259]

Cortese-Krott MM, Koning A, Kuhnle GGC, et al. The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine. Antioxid Redox Signal. 2017; 27(10): 684-712.

[260]

Dong Q, Yang B, Han JG, et al. A novel hydrogen sulfide-releasing donor, HA-ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways. Cancer Lett. 2019; 455: 60-72.

[261]

Duan SF, Zhang MM, Dong Q, et al. A water-soluble hydrogen sulfide donor suppresses the growth of hepatocellular carcinoma via inhibiting the AKT/GSK-3β/β-catenin and TGF-β/Smad2/3 signaling pathways. J Oncol. 2023; 2023: 8456852.

[262]

Cui X, Liu R, Duan L, Zhang Q, Cao D, Zhang A. Exogenous hydrogen sulfide (H(2)S) exerts therapeutic potential in triple-negative breast cancer by affecting cell cycle and DNA replication pathway. Biomed Pharmacother. 2023; 161: 114488.

[263]

Zhang L, Qi Q, Yang J, et al. An anticancer role of hydrogen sulfide in human gastric cancer cells. Oxid Med Cell Long. 2015; 2015: 636410.

[264]

Ye M, Yu M, Yang D, et al. Exogenous hydrogen sulfide donor NaHS alleviates nickel-induced epithelial-mesenchymal transition and the migration of A549 cells by regulating TGF-β1/Smad2/Smad3 signaling. Ecotoxicol Environ Saf. 2020; 195: 110464.

[265]

Zhang S, Bian H, Li X, et al. Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis. Oncol Rep. 2016; 35(5): 2825-2832.

[266]

Lei Y, Zhen Y, Zhang W, et al. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, angiopoiesis and migration effects via activating HSP90 pathway in EC109 cells. Oncol Rep. 2016; 35(6): 3714-3720.

[267]

Yoo D, Jupiter RC, Pankey EA, et al. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat. Am J Physiol Heart circul Physiol. 2015; 309(4): H605-H614.

[268]

Gong W, Zhang S, Chen Y, et al. Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis. Free Rad Biol Med. 2022; 181: 29-42.

[269]

Bibli SI, Andreadou I, Chatzianastasiou A, et al. Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway. Cardiovasc Res. 2015; 106(3): 432-442.

[270]

Ibrahim SA, Abdel-Gaber SA, Ibrahim MA, Amin EF, Mohammed RK, Abdelrahman AM. Nitric oxide modulation as a potential molecular mechanism underlying the protective role of NaHS in liver ischemia reperfusion injury. Curr Mol Pharmacol. 2022; 15(4): 676-682.

[271]

Yu Q, Lu Z, Tao L, et al. ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cell Physiol Biochem. 2015; 36(4): 1539-1551.

[272]

Ozturk T, Ertas E, Mert O. Use of Lawesson’s reagent in organic syntheses. Chem Rev. 2007; 107(11): 5210-5278.

[273]

Li L, Whiteman M, Guan YY, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008; 117(18): 2351-2360.

[274]

Zhou T, Qian H, Zheng N, Lu Q, Han Y. GYY4137 ameliorates sepsis-induced cardiomyopathy via NLRP3 pathway. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(12): 166497.

[275]

Meng G, Wang J, Xiao Y, et al. GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res. 2015; 29(3): 203-213.

[276]

Zhao H, Qiu Y, Wu Y, Sun H, Gao S. Protective effects of GYY4137 on renal ischaemia/reperfusion injury through Nrf2-mediated antioxidant defence. Kidney Blood Press Res. 2021; 46(3): 257-265.

[277]

Cui N, Luo H, Zhao Y. Protective effect of GYY4137, a water-soluble hydrogen sulfide-releasing molecule, on intestinal ischemia-reperfusion. Mol Med Rep. 2020; 21(3): 1633-1639.

[278]

Chen LJ, Ning JZ, Cheng F, et al. Comparison of intraperitoneal and intratesticular GYY4137 therapy for the treatment of testicular ischemia reperfusion injury in rats. Curr Med Sci. 2020; 40(2): 332-338.

[279]

Qabazard B, Masocha W, Khajah M, Phillips OA. H(2)S donor GYY4137 ameliorates paclitaxel-induced neuropathic pain in mice. Biomed Pharmacother. 2020; 127: 110210.

[280]

Zhang Y, Chen S, Zhu J, et al. Overexpression of CBS/H(2)S inhibits proliferation and metastasis of colon cancer cells through downregulation of CD44. Cancer Cell Int. 2022; 22(1): 85.

[281]

Lu S, Gao Y, Huang X, Wang X. GYY4137, a hydrogen sulfide (H2S) donor, shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway. Int J Oncol. 2014; 44(4): 1259-1267.

[282]

Zhao H, Yan R, Zhou X, Ji F, Zhang B. Hydrogen sulfide improves colonic barrier integrity in DSS-induced inflammation in Caco-2 cells and mice. Int Immunopharmacol. 2016; 39: 121-127.

[283]

Peng T, Zhuo L, Wang Y, et al. Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology (Carlton, Vic). 2018; 23(7): 669-675.

[284]

Tsang RY, Al-Fayea T, Au HJ. Cisplatin overdose: toxicities and management. Drug Saf. 2009; 32(12): 1109-1122.

[285]

Bebarta VS, Brittain M, Chan A, et al. Sodium nitrite and sodium thiosulfate are effective against acute cyanide poisoning when administered by intramuscular injection. Ann Emerg Med. 2017; 69(6): 718-725. e4.

[286]

Olson KR, Deleon ER, Gao Y, et al. Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Compar Physiol. 2013; 305(6): R592-R603.

[287]

Shirozu K, Tokuda K, Marutani E, Lefer D, Wang R, Ichinose F. Cystathionine γ-lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxid Redox Signal. 2014; 20(2): 204-216.

[288]

Sakaguchi M, Marutani E, Shin HS, et al. Sodium thiosulfate attenuates acute lung injury in mice. Anesthesiology. 2014; 121(6): 1248-1257.

[289]

Marutani E, Yamada M, Ida T, et al. Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia. J Am Heart Assoc. 2015; 4(11): e002125.

[290]

Ravindran S, Jahir Hussain S, Boovarahan SR, Kurian GA. Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress. Chem Biol Interact. 2017; 274: 24-34.

[291]

Tokuda K, Kida K, Marutani E, et al. Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxid Redox Signal. 2012; 17(1): 11-21.

[292]

Zhang MY, Dugbartey GJ, Juriasingani S, Sener A. Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms. Int J Mol Sci. 2021; 22(12): 6452.

[293]

DeLeon ER, Gao Y, Huang E, Olson KR. Garlic oil polysulfides: H2S-and O2-independent prooxidants in buffer and antioxidants in cells. Am J Physiol Regul Integr Compar Physiol. 2016; 310(11): R1212-R1225.

[294]

Ried K, Fakler P. Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integrd Blood Press Control. 2014; 7: 71-82.

[295]

Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr. 2006; 136(3 Suppl): 716s-725s.

[296]

Rose P, Moore PK, Zhu YZ. Garlic and gaseous mediators. Trends Pharmacol Sci. 2018; 39(7): 624-634.

[297]

Szczesny B, Módis K, Yanagi K, et al. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 2014; 41: 120-130.

[298]

da Costa Marques LA, Teixeira SA, de Jesus FN, et al. Vasorelaxant activity of AP39, a mitochondria-targeted H(2)S donor, on mouse mesenteric artery rings in vitro. Biomolecules. 2022; 12(2): 280.

[299]

Teng H, Yang B, Su Y, et al. Aminooxyacetic acid hemihydrochloride leads to decreased intracellular ATP levels and altered cell cycle of prostate cancer cells by suppressing energy metabolism. Biomed Pharmacother. 2023; 167: 115605.

[300]

Chao C, Zatarain JR, Ding Y, et al. Cystathionine-beta-synthase inhibition for colon cancer: Enhancement of the efficacy of aminooxyacetic acid via the prodrug approach. Mol Med. 2016; 22: 361-379.

[301]

Ye F, Li X, Sun K, et al. Inhibition of endogenous hydrogen sulfide biosynthesis enhances the anti-cancer effect of 3, 3’-diindolylmethane in human gastric cancer cells. Life Sci. 2020; 261: 118348.

[302]

Untereiner AA, Pavlidou A, Druzhyna N, Papapetropoulos A, Hellmich MR, Szabo C. Drug resistance induces the upregulation of H(2)S-producing enzymes in HCT116 colon cancer cells. Biochem Pharmacol. 2018; 149: 174-185.

[303]

Wang D, Yang H, Zhang Y, et al. Inhibition of cystathionine β-synthase promotes apoptosis and reduces cell proliferation in chronic myeloid leukemia. Signal Transd Target Ther. 2021; 6(1): 52.

[304]

Wang HG, Wang D, Sarfraz M, et al. Endogenous hydrogen sulfide inhibition suppresses tumor growth by promoting apoptosis and pyroptosis in esophageal cancer cells. Transl Oncol. 2023; 38: 101770.

[305]

Peleli M, Antoniadou I, Rodrigues-Junior DM, et al. Cystathionine gamma-lyase (CTH) inhibition attenuates glioblastoma formation. Redox Biol. 2023; 64: 102773.

[306]

Wang DY, Zhang J, Li HX, et al. Inhibition of endogenous hydrogen sulfide production suppresses the growth of nasopharyngeal carcinoma cells. Mol Carcinog. 2023; 62(5): 652-664.

[307]

Khan NH, Wang D, Wang W, et al. Pharmacological inhibition of endogenous hydrogen sulfide attenuates breast cancer progression. Molecules. 2022; 27(13): 4049.

[308]

Rong F, Wang T, Zhou Q, et al. Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications. Bioactive Mater. 2023; 19: 198-216.

[309]

Kaur K, Carrazzone RJ, Matson JB. The benefits of macromolecular/supramolecular approaches in hydrogen sulfide delivery: a review of polymeric and self-assembled hydrogen sulfide donors. Antioxid Redox Signal. 2020; 32(2): 79-95.

[310]

Foster JC, Radzinski SC, Zou X, Finkielstein CV, Matson JB. H(2)S-releasing polymer micelles for studying selective cell toxicity. Mol Pharm. 2017; 14(4): 1300-1306.

[311]

Ercole F, Mansfeld FM, Kavallaris M, et al. Macromolecular hydrogen sulfide donors trigger spatiotemporally confined changes in cell signaling. Biomacromolecules. 2016; 17(1): 371-383.

[312]

Zhou M, Qian Y, Zhu Y, Matson J. Elastase-triggered H(2)S delivery from polymer hydrogels. Chem Commun (Camb). 2020; 56(7): 1085-1088.

[313]

Gazzano E, Buondonno I, Marengo A, et al. Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts. Cancer Lett. 2019; 456: 29-39.

[314]

Zhao Y, Yang C, Organ C, et al. Design, synthesis, and cardioprotective effects of N-mercapto-based hydrogen sulfide donors. J Med Chem. 2015; 58(18): 7501-7511.

[315]

Zhao Y, Bhushan S, Yang C, et al. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol. 2013; 8(6): 1283-1290.

[316]

Takatani-Nakase T, Katayama M, Matsui C, et al. Hydrogen sulfide donor micelles protect cardiomyocytes from ischemic cell death. Mol Biosyst. 2017; 13(9): 1705-1708.

[317]

Sun X, Wang Y, Wen S, et al. Novel controlled and targeted releasing hydrogen sulfide system exerts combinational cerebral and myocardial protection after cardiac arrest. J Nanobiotechnol. 2021; 19(1): 40.

[318]

Hsieh MH, Tsai HW, Lin KJ, et al. An in situ slow-releasing H(2)S donor depot with long-term therapeutic effects for treating ischemic diseases. Mater Sci Eng C Mater Biol Appl. 2019; 104: 109954.

[319]

Lin WC, Pan WY, Liu CK, et al. In situ self-spray coating system that can uniformly disperse a poorly water-soluble H(2)S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials. 2018; 182: 289-298.

[320]

Lee J, Yang C, Ahn S, Choi Y, Lee K. Enhanced NO-induced angiogenesis via NO/H(2)S co-delivery from self-assembled nanoparticles. Biomater Sci. 2021; 9(15): 5150-5159.

[321]

Chen JJY, van der Vlies AJ, Hasegawa U. Hydrogen sulfide-releasing micelles for promoting angiogenesis. Polym Chem. 2020; 11: 4454-4463.

[322]

Zheng Z, Chen A, He H, et al. pH and enzyme dual-responsive release of hydrogen sulfide for disc degeneration therapy. J Mater Chem B. 2019; 7(4): 611-618.

[323]

Yu Y, Wang Z, Ding Q, et al. The preparation of a novel poly(lactic acid)-based sustained H(2)S releasing microsphere for rheumatoid arthritis alleviation. Pharmaceutics. 2021; 13(5): 742.

[324]

He T, Qin X, Jiang C, et al. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics. 2020; 10(6): 2453-2462.

[325]

Dao NV, Ercole F, Urquhart MC, et al. Trisulfide linked cholesteryl PEG conjugate attenuates intracellular ROS and collagen-1 production in a breast cancer co-culture model. Biomater Sci. 2021; 9(3): 835-846.

[326]

Liu Y, Yang F, Yuan C, et al. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano. 2017; 11(2): 1509-1519.

[327]

Liu Y, Li J, Chen H, et al. Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells. Nanoscale. 2019; 11(40): 18854-18865.

[328]

Xie C, Cen D, Ren Z, et al. FeS@BSA nanoclusters to enable H(2)S-amplified ROS-based therapy with MRI guidance. Adv Sci. 2020; 7(7): 1903512.

[329]

Ji Y, Pang QF, Xu G, Wang L, Wang JK, Zeng YM. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol. 2008; 587(1-3): 1-7.

[330]

Wang Y, Zhao X, Jin H, et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2009; 29(2): 173-917.

[331]

Pan LL, Liu XH, Gong QH, Wu D, Zhu YZ. Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS One. 2011; 6(5): e19766.

[332]

Kaur K, Wang Y, Matson JB. Linker-regulated H(2)S release from aromatic peptide amphiphile hydrogels. Biomacromolecules. 2020; 21(3): 1171-1178.

[333]

Longchamp A, Kaur K, Macabrey D, et al. Hydrogen sulfide-releasing peptide hydrogel limits the development of intimal hyperplasia in human vein segments. Acta Biomater. 2019; 97: 374-384.

[334]

Zhang H, Hao LZ, Pan JA, et al. Microfluidic fabrication of inhalable large porous microspheres loaded with H(2)S-releasing aspirin derivative for pulmonary arterial hypertension therapy. J Control Rel. 2021; 329: 286-298.

[335]

Cui X, Yao M, Feng Y, et al. Exogenous hydrogen sulfide alleviates hepatic endoplasmic reticulum stress via SIRT1/FoxO1/PCSK9 pathway in NAFLD. FASEB J. 2023; 37(8): e23027.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/