Epithelial–mesenchymal plasticity in cancer: signaling pathways and therapeutic targets

Xiangpeng Wang , Xiaoxia Xue , Mingshi Pang , Liuchunyang Yu , Jinxiu Qian , Xiaoyu Li , Meng Tian , Aiping Lyu , Cheng Lu , Yuanyan Liu

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e659

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e659 DOI: 10.1002/mco2.659
REVIEW

Epithelial–mesenchymal plasticity in cancer: signaling pathways and therapeutic targets

Author information +
History +
PDF

Abstract

Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial–mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial–mesenchymal transition (EMT), partial EMT, and mesenchymal–epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.

Keywords

cancer / cell plasticity / deterioration / EMT / signaling pathway

Cite this article

Download citation ▾
Xiangpeng Wang, Xiaoxia Xue, Mingshi Pang, Liuchunyang Yu, Jinxiu Qian, Xiaoyu Li, Meng Tian, Aiping Lyu, Cheng Lu, Yuanyan Liu. Epithelial–mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm, 2024, 5(8): e659 DOI:10.1002/mco2.659

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Subhadarshini S, Markus J, Sahoo S, Jolly M. Dynamics of epithelial-mesenchymal plasticity: what have single-cell investigations elucidated so far? ACS Omega. 2023; 8(13): 11665-11673.

[2]

Tripathi S, Levine H, Jolly M. The physics of cellular decision making during epithelial-mesenchymal transition. Annu Rev Biophys. 2020; 49: 1-18.

[3]

Jia D, Li X, Bocci F, et al. Quantifying cancer epithelial-mesenchymal plasticity and its association with stemness and immune response. J Clin Med. 2019; 8(5): 725.

[4]

Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 2021; 40(18): e108647.

[5]

Pawlicka M, Gumbarewicz E, Błaszczak E, Stepulak A. Transcription factors and markers related to epithelial–mesenchymal transition and their role in resistance to therapies in head and neck cancers. Cancers. 2024; 16(7): 1354.

[6]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-263.

[7]

Ran X, Tong L, Chenghao W, et al. Single-cell data analysis of malignant epithelial cell heterogeneity in lung adenocarcinoma for patient classification and prognosis prediction. Heliyon. 2023; 9(9): e20164.

[8]

Qu S, Huang X, Guo X, Zheng Z, Wei T, Chen B. Metastasis related epithelial-mesenchymal transition signature predicts prognosis and response to chemotherapy in acute myeloid leukemia. Drug Des Devel Ther. 2023; 17: 1651-1663.

[9]

Lu J, Kornmann M, Traub B. Role of epithelial to mesenchymal transition in colorectal cancer. Int J Mol Sci. 2023; 24(19): 14815.

[10]

Akrida I, Mulita F, Plachouri K-M, Benetatos N, Maroulis I, Papadaki H. Epithelial to mesenchymal transition (EMT) in metaplastic breast cancer and phyllodes breast tumors. Med Oncol. 2023; 41(1): 20.

[11]

Han Y, Kang Y. Phenotypic plasticity – Implications for tumours in bone. J Bone Oncol. 2024; 45: 100592.

[12]

Wang X, Eichhorn PJA, Thiery JP. TGF-β EMT, and resistance to anti-cancer treatment. Semin Cancer Biol. 2023; 97: 1-11.

[13]

Broghammer F, Korovina I, Gouda M, et al. Resistance of HNSCC cell models to pan-FGFR inhibition depends on the EMT phenotype associating with clinical outcome. Mol Cancer. 2024; 23(1): 39.

[14]

Chouliaras K, Oshi M, Asaoka M, et al. Increased intratumor heterogeneity, angiogenesis and epithelial to mesenchymal transition pathways in metaplastic breast cancer. Am J Cancer Res. 2021; 11(9): 4408-4420.

[15]

Fares J, Fares M, Khachfe H, Salhab H, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020; 5(1): 28.

[16]

Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019; 29(3): 212-226.

[17]

Pal A, Barrett T, Paolini R, Parikh A, Puram S. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene. 2021; 40(32): 5049-5065.

[18]

Jolly M, Murphy R, Bhatia S, et al. Measuring and modelling the epithelial-mesenchymal hybrid state in cancer: clinical implications. Cells Tissues Organs. 2022; 211(2): 110-133.

[19]

Dongre A, Weinberg R. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019; 20(2): 69-84.

[20]

Scott L, Weinberg S, Lemmon C. Mechanochemical signaling of the extracellular matrix in epithelial-mesenchymal transition. Front Cell Dev Biol. 2019; 7: 135.

[21]

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15(3): 178-196.

[22]

Canciello A, Cerveró-Varona A, Peserico A, et al. “In medio stat virtus”: insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol. 2022; 10: 1038841.

[23]

Mullins R, Pal A, Barrett T, Heft Neal M, Puram S. Epithelial-mesenchymal plasticity in tumor immune evasion. Cancer Res. 2022; 82(13): 2329-2343.

[24]

Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer. 2020; 6(11): 942-950.

[25]

Zhang Q, Fei L, Han R, et al. Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov. 2022; 8(1): 94.

[26]

Pastushenko I, Brisebarre A, Sifrim A, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018; 556(7702): 463-468.

[27]

Thompson EW, Haviv I. The social aspects of EMT-MET plasticity. Nat Med. 2011; 17(9): 1048-1049.

[28]

Sikandar S, Kuo A, Kalisky T, et al. Role of epithelial to mesenchymal transition associated genes in mammary gland regeneration and breast tumorigenesis. Nat Commun. 2017; 8(1): 1669.

[29]

Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic heterogeneity of triple-negative breast cancer mediated by epithelial–mesenchymal plasticity. Cancers. 2021; 13(9): 2188.

[30]

Bacon ER, Ihle K, Guo W, et al. Tumor heterogeneity and clinically invisible micrometastases in metastatic breast cancer—a call for enhanced surveillance strategies. npj Precis Oncol. 2024; 8(1): 81.

[31]

Xu J, Zhang Y, Li M, et al. A single-cell characterised signature integrating heterogeneity and microenvironment of lung adenocarcinoma for prognostic stratification. EBioMedicine. 2024; 102: 105092.

[32]

Mielnicka A, Kołodziej T, Dziob D, Lasota S, Sroka J, Rajfur Z. Impact of elastic substrate on the dynamic heterogeneity of WC256 Walker carcinosarcoma cells. Sci Rep. 2023; 13(1): 15743.

[33]

Thankamony AP, Ramkomuth S, Ramesh ST, et al. Phenotypic heterogeneity drives differential disease outcome in a mouse model of triple negative breast cancer. Original Research. Front Oncol. 2023; 13: 1230647.

[34]

Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008; 27(55): 6958-6969.

[35]

Sahoo S, Mishra A, Kaur H, et al. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer. 2021; 3(3): zcab027.

[36]

Schwager SC, Mosier JA, Padmanabhan RS, et al. Link between glucose metabolism and epithelial-to-mesenchymal transition drives triple-negative breast cancer migratory heterogeneity. iScience. 2022; 25(10): 105190.

[37]

Pillai M, Rajaram G, Thakur P, et al. Mapping phenotypic heterogeneity in melanoma onto the epithelial-hybrid-mesenchymal axis. Front Oncol. 2022; 12: 913803.

[38]

Yang X, Liang X, Zheng M, Tang Y. Cellular phenotype plasticity in cancer dormancy and metastasis. Front Oncol. 2018; 8: 505.

[39]

Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol. 2022; 87: 48-83.

[40]

Liu Q-L, Luo M, Huang C, Chen H-N, Zhou Z-G. Epigenetic regulation of epithelial to mesenchymal transition in the cancer metastatic cascade: implications for cancer therapy. Front Oncol. 2021; 11: 657546.

[41]

Bernardi Y, Strobl-Mazzulla PH. What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J. 2021; 478(9): 1809-1825.

[42]

Lee T, Young R. Transcriptional regulation and its misregulation in disease. Cell. 2013; 152(6): 1237-1251.

[43]

Bhagwat A, Vakoc C. Targeting transcription factors in cancer. Trends Cancer. 2015; 1(1): 53-65.

[44]

Jia M, Li Q, Guo J, et al. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation. Circ Res. 2022; 130(7): 1038-1055.

[45]

Zheng S, Bian H, Li J, Shen Y, Yang Y, Hu W. Differentiation therapy: Unlocking phenotypic plasticity of hepatocellular carcinoma. Crit Rev Oncol Hematol. 2022; 180: 103854.

[46]

Bao Z, Zeng W, Zhang D, et al. SNAIL induces EMT and lung metastasis of tumours secreting CXCL2 to promote the invasion of M2-type immunosuppressed macrophages in colorectal cancer. Int J Biol Sci. 2022; 18(7): 2867-2881.

[47]

El-Deek HEM, El-Naggar MS, Morsy AMM, Sedik MF, Osman HA, Ahmed AM. P4HA2 involved in SLUG-associated EMT predicts poor prognosis of patients with KRAS-positive colorectal cancer. Med Mol Morphol. 2024.

[48]

Hsu DS, Lan HY, Huang CH, et al. Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res. 2010; 16(18): 4561-4571.

[49]

Phillips S, Kuperwasser C. SLUG: critical regulator of epithelial cell identity in breast development and cancer. Cell Adhes Migr. 2014; 8(6): 578-587.

[50]

Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-family proteins: role in carcinogenesis and prospects for antitumor therapy. Acta Naturae. 2021; 13(1): 76-90.

[51]

Kielbik M, Przygodzka P, Szulc-Kielbik I, Klink M. Snail transcription factors as key regulators of chemoresistance, stemness and metastasis of ovarian cancer cells. Biochim Biophys Acta (BBA). 2023; 1878(6): 189003.

[52]

Gao J, Huo Z, Song X, et al. EGFR mediates epithelial-mesenchymal transition through the Akt/GSK-3β/Snail signaling pathway to promote liver cancer proliferation and migration. Oncol Lett. 2024; 27(2): 59.

[53]

Lu Y, Yang Y, Chang T, et al. Lactate drives CD38 signaling to promote epithelial-mesenchymal transition through Snail induction in non-small cell lung cancer cells. J Cell Commun Signaling. 2024; 18(1): e12018.

[54]

Park MK, Lee H, Lee CH. Post-translational modification of ZEB family members in cancer progression. Int J Mol Sci. 2022; 23(23): 15127.

[55]

Veloso ES, Gonçalves INN, Silveira TL, et al. ZEB and Snail expression indicates epithelial-mesenchymal transition in canine melanoma. Res Vet Sci. 2020; 131: 7-14.

[56]

Soleymani L, Zarrabi A, Hashemi F, et al. Role of ZEB family members in proliferation, metastasis, and chemore-sistance of prostate cancer cells: revealing signaling networks. Curr Cancer Drug Targets. 2021; 21(9): 749-767.

[57]

Migault M, Sapkota S, Bracken CP. Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci. 2022; 79(3): 182.

[58]

Rashid M, Devi BM, Banerjee M. Combinatorial cooperativity in miR200-Zeb feedback network can control epithelial–mesenchymal transition. Bull Math Biol. 2024; 86(5): 48.

[59]

Jin L, Zhang J, Fu H-Q, Zhang X, Pan Y-L. FOXO3a inhibits the EMT and metastasis of breast cancer by regulating TWIST-1 mediated miR-10b/CADM2 axis. Transl Oncol. 2021; 14(7): 101096.

[60]

Sonongbua J, Siritungyong S, Thongchot S, et al. Periostin induces epithelial-to-mesenchymal transition via the integrin α5β1/TWIST-2 axis in cholangiocarcinoma. Oncol Rep. 2020; 43(4): 1147-1158.

[61]

Masci D, Naro C, Puxeddu M, et al. Recent advances in drug discovery for triple-negative breast cancer treatment. Molecules. 2023; 28(22): 7513.

[62]

Liu X, Li C, Yang Y, et al. Synaptotagmin 7 in twist-related protein 1-mediated epithelial–mesenchymal transition of non-small cell lung cancer. eBioMedicine. 2019; 46: 42-53.

[63]

Wang Y, Liao R, Chen X, et al. Twist-mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway. Cell Death Dis. 2020; 11(7): 520.

[64]

Feil R, Fraga M. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012; 13(2): 97-109.

[65]

Zhang Y, Donaher J, Das S, et al. Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nat Cell Biol. 2022; 24(4): 554-564.

[66]

Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 2017; 7(7): 736-749.

[67]

Chu DX, Jin Y, Wang BR, et al. LncRNA HOTAIR enhances epithelial-to-mesenchymal transition to promote the migration and invasion of liver cancer by regulating NUAK1 via epigenetic inhibition miR-145-5p expression. J Cancer. 2023; 14(12): 2329-2343.

[68]

Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017; 355(6320): 78-83.

[69]

Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018; 19(2): 81-92.

[70]

Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: aspect and prospects. Int J Biol Macromol. 2021; 186: 289-302.

[71]

Pradhan N, Parbin S, Kar S, et al. Epigenetic silencing of genes enhanced by collective role of reactive oxygen species and MAPK signaling downstream ERK/Snail axis: Ectopic application of hydrogen peroxide repress CDH1 gene by enhanced DNA methyltransferase activity in human breast cancer. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(6): 1651-1665.

[72]

Chen L-H, Hsu W-L, Tseng Y-J, Liu D-W, Weng C-F. Involvement of DNMT 3B promotes epithelial-mesenchymal transition and gene expression profile of invasive head and neck squamous cell carcinomas cell lines. BMC Cancer. 2016; 16(1): 431.

[73]

Tang Z, Yang Y, Chen W, Liang T. Epigenetic deregulation of MLF1 drives intrahepatic cholangiocarcinoma progression through EGFR/AKT and Wnt/β-catenin signaling. Hepatol Commun. 2023; 7(8): e0204.

[74]

Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications–cause and consequence of genome function. Nat Rev Genet. 2022; 23(9): 563-580.

[75]

Fan Y, Zhou L, Pan L. Tumor-augmenting effect of histone methyltransferase WHSC1 on colorectal cancer via epigenetic upregulation of TACC3 and PI3K/Akt activation. Arch Med Res. 2022; 53(7): 658-665.

[76]

Kim K, Ryu TY, Jung E, et al. Epigenetic regulation of SMAD3 by histone methyltransferase SMYD2 promotes lung cancer metastasis. Exp Mol Med. 2023; 55(5): 952-964.

[77]

Huang J, Chang S, Lu Y, et al. Enhanced osteopontin splicing regulated by RUNX2 is HDAC-dependent and induces invasive phenotypes in NSCLC cells. Cancer Cell Int. 2019; 19(1): 306.

[78]

Li D, Xia L, Huang P, et al. Heterogeneity and plasticity of epithelial–mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif. 2023; 56(6): e13423.

[79]

Tao B, Yi C, Ma Y, et al. A novel TGF-β-related signature for predicting prognosis, tumor microenvironment, and therapeutic response in colorectal cancer. Biochem Genet. 2023.

[80]

Li G, Guo J, Mou Y, et al. Keratin gene signature expression drives epithelial-mesenchymal transition through enhanced TGF-β signaling pathway activation and correlates with adverse prognosis in lung adenocarcinoma. Heliyon. 2024; 10(3): e24549.

[81]

Hata A, Chen Y-G. TGF-β signaling from receptors to Smads. Cold Spring Harbor Perspect Biol. 2016; 8(9): a022061.

[82]

Tang Y, Liu Y, Wang X, et al. OLFM2 promotes epithelial-mesenchymal transition, migration, and invasion in colorectal cancer through the TGF-β/Smad signaling pathway. BMC Cancer. 2024; 24(1): 204.

[83]

Wang S, Tong X, Li C, et al. Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep. 2021; 22(6): e52079.

[84]

Su Q, Wang J-J, Ren J-Y, et al. Parkin deficiency promotes liver cancer metastasis by TMEFF1 transcription activation via TGF-β/Smad2/3 pathway. Acta Pharmacol Sin. 2024.

[85]

Motizuki M, Yokoyama T, Saitoh M, Miyazawa K. The Snail signaling branch downstream of the TGF-β/Smad3 pathway mediates Rho activation and subsequent stress fiber formation. J Biol Chem. 2024; 300(1): 105580.

[86]

Fernandes S, Oliver-De La Cruz J, Morazzo S, et al. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biol. 2024; 125: 12-30.

[87]

Shi J, Li W, Jia Z, et al. Synaptotagmin 1 suppresses colorectal cancer metastasis by inhibiting ERK/MAPK signaling-mediated tumor cell pseudopodial formation and migration. Cancers. 2023; 15(21): 5282.

[88]

Ping L, Yan Z, Yun-Shan W. DEC1 is involved in TGF-β1-induced epithelial-mesenchymal transition of gastric cancer. Am J Cancer Res. 2024; 14: 630-642.

[89]

Liu Q, Wu Y, Seino H, et al. Correlation between DEC1/DEC2 and epithelial-mesenchymal transition in human prostate cancer PC-3 cells. Mol Med Rep. 2018; 18(4): 3859-3865.

[90]

Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017; 169(6): 985-999.

[91]

Jeong W-J, Ro EJ, Choi K-Y. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. npj Precis Oncol. 2018; 2(1): 5.

[92]

Mahshid DAP, Sepideh M, Milad A, Ali Z, Gautam S. Wnt/β-catenin signaling as a driver of hepatocellular carcinoma progression: an emphasis on molecular pathways. J Hepatocell Carcinoma. 2021; 8: 1415-1444.

[93]

Hashemi M, Hasani S, Hajimazdarany S, et al. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: revisiting signaling networks. Int J Biol Macromol. 2023; 232: 123377.

[94]

Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 2014; 158(1): 157-170.

[95]

Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015; 43: 11-21.

[96]

Morin PJ, Sparks AB, Korinek V, et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997; 275(5307): 1787-1790.

[97]

Li Z, Yang Z, Liu W, et al. Disheveled3 enhanced EMT and cancer stem-like cells properties via Wnt/β-catenin/c-Myc/SOX2 pathway in colorectal cancer. J Transl Med. 2023; 21(1): 302.

[98]

Li M, Li T, Jin T, et al. Abnormal activation of the Wnt3a/β-catenin signaling pathway promotes the expression of T-box transcription factor 3(TBX3) and the epithelial-mesenchymal transition pathway to mediate the occurrence of adenomyosis. Mol Biol Rep. 2023; 50(12): 9935-9950.

[99]

Li T-H, Zhao B-B, Qin C, et al. IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling. Cell Oncol. 2024.

[100]

Yuan W, Hu J, Wang M, et al. KDM5B promotes metastasis and epithelial–mesenchymal transition via Wnt/β-catenin pathway in squamous cell carcinoma of the head and neck. Mol Carcinog. 2024; 63(5): 885-896.

[101]

Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell plasticity and prostate cancer: the role of epithelial–mesenchymal transition in tumor progression, invasion, metastasis and cancer therapy resistance. Cancers. 2021; 13(11): 2795.

[102]

Su Q, Xin L. Notch signaling in prostate cancer: refining a therapeutic opportunity. Histol Histopathol. 2016; 31(2): 149-157.

[103]

Bocci F, Jolly M, George J, Levine H, Onuchic J. A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling. Oncotarget. 2018; 9(52): 29906-29920.

[104]

Zhang L, Sha J, Yang G, Huang X, Bo J, Huang Y. Activation of Notch pathway is linked with epithelial-mesenchymal transition in prostate cancer cells. Cell Cycle. 2017; 16(10): 999-1007.

[105]

Zhu H, Zhou X, Redfield S, Lewin J, Miele L. Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. Am J Transl Res. 2013; 5(3): 368-378.

[106]

Choi S, Yu J, Park A, et al. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep. 2019; 9(1): 11724.

[107]

Liu L, Yang Z-l, Wang C, et al. The expression of Notch 1 and Notch 3 in gallbladder cancer and their clinicopathological significance. Pathol Oncol Res. 2016; 22(3): 483-492.

[108]

Elzamly S, Badri N, Padilla O, et al. Epithelial-mesenchymal transition markers in breast cancer and pathological response after neoadjuvant chemotherapy. Breast Cancer. 2018; 12: 1178223418788074.

[109]

Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets. 2010; 11(6): 745-751.

[110]

Kar R, Jha NK, Jha SK, et al. A “NOTCH” deeper into the epithelial-to-mesenchymal transition (EMT) program in breast cancer. Genes. 2019; 10(12): 961.

[111]

Ilhan M, Kucukkose C, Efe E, et al. Pro-metastatic functions of Notch signaling is mediated by CYR61 in breast cells. Eur J Cell Biol. 2020; 99(2): 151070.

[112]

Li X, Liu W, Geng C, et al. Ginsenoside Rg3 suppresses epithelial-mesenchymal transition via downregulating Notch-Hes1 signaling in colon cancer cells. Am J Chin Med. 2021; 49(01): 217-235.

[113]

Tuluhong D, Chen T, Wang J, et al. FZD2 promotes TGF-β-induced epithelial-to-mesenchymal transition in breast cancer via activating notch signaling pathway. Cancer Cell Int. 2021; 21(1): 199.

[114]

Clark AG, Bertrand FE, Sigounas G. A potential requirement for Smad3 phosphorylation in Notch-mediated EMT in colon cancer. Adv Biol Regul. 2023; 88: 100957.

[115]

Deng J, Bai X, Feng X, et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer. 2019; 19(1): 618.

[116]

Zhou P, Zheng ZH, Wan T, Wu J, Liao CW, Sun XJ. Vitexin inhibits gastric cancer growth and metastasis through HMGB1-mediated inactivation of the PI3K/AKT/mTOR/HIF-1α signaling pathway. J Gastric Cancer. 2021; 21(4): 439-456.

[117]

Peng F, Xu Q, Jing X, et al. GPX2 promotes EMT and metastasis in non-small cell lung cancer by activating PI3K/AKT/mTOR/Snail signaling axis. FASEB Bioadv. 2023; 5(6): 233-250.

[118]

Liu X, Tan X, Liu P, Wu Y, Qian S, Zhang X. Phosphoglycerate mutase 1 (PGAM1) promotes pancreatic ductal adenocarcinoma (PDAC) metastasis by acting as a novel downstream target of the PI3K/Akt/mTOR pathway. Oncol Res. 2018; 26(7): 1123-1131.

[119]

Liang M, Liu XC, Liu T, et al. GLI-1 facilitates the EMT induced by TGF-β1 in gastric cancer. Eur Rev Med Pharmacol Sci. 2018; 22(20): 6809-6815.

[120]

Zhuang H, Cao G, Kou C, Liu T. CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol Rep. 2018; 39(1): 21-30.

[121]

Bévant K, Desoteux M, Angenard G, et al. TGFβ-induced FOXS1 controls epithelial–mesenchymal transition and predicts a poor prognosis in liver cancer. Hepatol Commun. 2022; 6(5): 1157-1171.

[122]

Wang M, Huang W. FOXS1 promotes prostate cancer progression through the Hedgehog/Gli1 pathway. Biochem Pharmacol. 2023; 218: 115893.

[123]

Citarella A, Catanzaro G, Besharat ZM, et al. Hedgehog-GLI and Notch pathways sustain chemoresistance and invasiveness in colorectal cancer and their inhibition restores chemotherapy efficacy. Cancers. 2023; 15(5): 1471.

[124]

Yu H, Hu X, Zhang Y, et al. GLDC promotes colorectal cancer metastasis through epithelial–mesenchymal transition mediated by Hippo signaling pathway. Med Oncol. 2023; 40(10): 293.

[125]

Xiong Y, Dong L, Bai Y, et al. Piezo1 activation facilitates ovarian cancer metastasis via Hippo/YAP signaling axis. Channels. 2022; 16(1): 159-166.

[126]

Gilkes D, Semenza G, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014; 14(6): 430-439.

[127]

Schito L, Semenza G. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer. 2016; 2(12): 758-770.

[128]

Zheng Y, Ji H, Yi W, et al. PRMT5 facilitates angiogenesis and EMT via HIF-1α/VEGFR/Akt signaling axis in lung cancer. Aging. 2023; 15: 6163-6178.

[129]

Gao A, Zhang M, Zhu Sq, et al. DNA polymerase iota promotes EMT and metastasis of esophageal squamous cell carcinoma by interacting with USP7 to stabilize HIF-1α. Cell Death Dis. 2024; 15(2): 171.

[130]

Yan Z, Liu K, Xu P, et al. ACLY promotes gastric tumorigenesis and accelerates peritoneal metastasis of gastric cancer regulated by HIF-1A. Cell Cycle. 2023; 22(20): 2288-2301.

[131]

Han N, Li X, Wang Y, et al. HIF-1α induced NID1 expression promotes pulmonary metastases via the PI3K-AKT pathway in salivary gland adenoid cystic carcinoma. Oral Oncol. 2022; 131: 105940.

[132]

Lin Y, Guo L. GLI1 is involved in HIF-1α-induced migration, invasion, and epithelial-mesenchymal transition in glioma cells. Folia Histochem Cytobiol. 2022; 60(2): 156-166.

[133]

Gao Q, Ren Z, Jiao S, et al. HIF-3α-induced miR-630 expression promotes cancer hallmarks in cervical cancer cells by forming a positive feedback loop. J Immunol Res. 2022; 2022: 5262963.

[134]

Jain S, Deka D, Das A, Paul S, Pathak S, Banerjee A. Role of interleukins in inflammation-mediated tumor immune microenvironment modulation in colorectal cancer pathogenesis. Dig Dis Sci. 2023; 68: 3220-3236.

[135]

Zhou C, Liu J, Tang Y, Liang X. Inflammation linking EMT and cancer stem cells. Oral Oncol. 2012; 48(11): 1068-1075.

[136]

Chen Y, Yang Z, Deng B, Wu D, Quan Y, Min Z. Interleukin 1β/1RA axis in colorectal cancer regulates tumor invasion, proliferation and apoptosis via autophagy. Oncol Rep. 2020; 43(3): 908-918.

[137]

Ma Z, Sun Q, Zhang C, et al. RHOJ induces epithelial-to-mesenchymal transition by IL-6/STAT3 to promote invasion and metastasis in gastric cancer. Int J Biol Sci. 2023; 19(14): 4411-4426.

[138]

Liu W, Xin M, Li Q, Sun L, Han X, Wang J. IL-17A promotes the migration, invasion and the EMT process of lung cancer accompanied by NLRP3 activation. Biomed Res Int. 2022; 2022: 7841279.

[139]

Shi G, Zheng X, Zhang S, et al. Kanglaite inhibits EMT caused by TNF-α via NF-κΒ inhibition in colorectal cancer cells. Oncotarget. 2018; 9(6): 6771-6779.

[140]

Wang Z, Ao X, Shen Z, et al. TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. Int J Biol Sci. 2021; 17(11): 2683-2702.

[141]

Gardelli C, Russo L, Cipolla L, et al. Differential glycosylation of collagen modulates lung cancer stem cell subsets through β1 integrin-mediated interactions. Cancer Sci. 2021; 112(1): 217-230.

[142]

Xu H, Tian Y, Yuan X, et al. The role of CD44 in epithelial-mesenchymal transition and cancer development. OncoTargets Ther. 2015; 8: 3783-3792.

[143]

Wei S, Fattet L, Tsai J, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015; 17(5): 678-688.

[144]

Sala M, Ros M, Saltel F. A complex and evolutive character: two face aspects of ECM in tumor progression. Front Oncol. 2020; 10: 745-751.

[145]

Shi F, Sottile J. MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin. J Cell Sci. 2011; 124: 4039-4050.

[146]

Lobert V, Brech A, Pedersen N, et al. Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell. 2010; 19(1): 148-159.

[147]

Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. The matrix reloaded-the role of the extracellular matrix in cancer. Cancers. 2023; 15(7): 2057.

[148]

Gialeli C, Theocharis A, Karamanos N. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011; 278(1): 16-27.

[149]

Hendrix M, Seftor E, Hess A, Seftor R. Molecular plasticity of human melanoma cells. Oncogene. 2003; 22(20): 3070-3075.

[150]

Gao Z, Tretiakova M, Liu W, Gong C, Farris P, Hart J. Association of E-cadherin, matrix metalloproteinases, and tissue inhibitors of metalloproteinases with the progression and metastasis of hepatocellular carcinoma. Mod Pathol. 2006; 19(4): 533-540.

[151]

Kesh K, Gupta V, Durden B, et al. Therapy resistance, cancer stem cells and ECM in cancer: the matrix reloaded. Cancers. 2020; 12(10): 3067.

[152]

Quail D, Joyce J. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013; 19(11): 1423-1437.

[153]

Mavatkar A, Naidu C, Prabhu J, Nair M. The dynamic tumor-stromal crosstalk: implications of ‘stromal-hot’ tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep. 2023; 50(6): 5379-5393.

[154]

Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020; 20(3): 174-186.

[155]

Wu F, Yang J, Liu J, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 2021; 6(1): 218.

[156]

Szabo P, Vajdi A, Kumar N, et al. Cancer-associated fibroblasts are the main contributors to epithelial-to-mesenchymal signatures in the tumor microenvironment. Sci Rep. 2023; 13(1): 3051.

[157]

Azizi P, Mazhari S, Tokhanbigli S, et al. Paracrine signals of mesenchymal stem cells induce epithelial to mesenchymal transition in gastric cancer cells. Gastroenterol Hepatol Bed Bench. 2019; 12: S51-S57.

[158]

Qian X, An N, Ren Y, Yang C, Zhang X, Li L. Immunosuppressive effects of mesenchymal stem cells-derived exosomes. Stem Cell Rev Rep. 2021; 17(2): 411-427.

[159]

Raghavan S, Snyder C, Wang A, et al. Carcinoma-associated mesenchymal stem cells promote chemoresistance in ovarian cancer stem cells via PDGF signaling. Cancers. 2020; 12(8): 2063.

[160]

Jahangiri B, Khalaj-Kondori M, Asadollahi E, Purrafee Dizaj L, Sadeghizadeh M. MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm. 2022; 627: 122214.

[161]

Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018; 233(9): 6425-6440.

[162]

Yeung O, Lo C, Ling C, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015; 62(3): 607-616.

[163]

Chen X, Yang M, Yin J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal. 2022; 20(1): 92.

[164]

Shen L, Li Y, Hu G, et al. Astragaloside IV suppresses the migration and EMT progression of cervical cancer cells by inhibiting macrophage M2 polarization through TGFβ/Smad2/3 signaling. Funct Integr Genomics. 2023; 23(2): 133.

[165]

Imodoye S, Adedokun K, Muhammed A, et al. Understanding the complex milieu of epithelial-mesenchymal transition in cancer metastasis: new insight into the roles of transcription factors. Front Oncol. 2021; 11: 762817.

[166]

Wang Z, Zhang P, Li H, et al. Dynamic changes of different phenotypic and genetic circulating tumor cells as a biomarker for evaluating the prognosis of RCC. Cancer Biol Ther. 2019; 20(4): 505-512.

[167]

Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989; 8(2): 98-101.

[168]

Li D, Xia L, Huang P, et al. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif. 2023; 56(6): e13423.

[169]

Banyard J, Bielenberg D. The role of EMT and MET in cancer dissemination. Connect Tissue Res. 2015; 56(5): 403-413.

[170]

Mathiesen A, Haynes B, Huyck R, Brown M, Dobrian A. Adipose tissue-derived extracellular vesicles contribute to phenotypic plasticity of prostate cancer cells. Int J Mol Sci. 2023; 24(2): 1229.

[171]

Giusti I, Poppa G, Di Fazio G, D’Ascenzo S, Dolo V. Metastatic dissemination: role of tumor-derived extracellular vesicles and their use as clinical biomarkers. Int J Mol Sci. 2023; 24(11): 9590.

[172]

Auger C, Christou N, Brunel A, Perraud A, Verdier M. Autophagy and extracellular vesicles in colorectal cancer: interactions and common actors? Cancers. 2021; 13(5): 1039.

[173]

Kitdumrongthum S, Metheetrairut C, Charoensawan V, et al. Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes. Life Sci. 2018; 210: 65-75.

[174]

Santasusagna S, Moreno I, Navarro A, et al. Prognostic Impact of miR-200 family members in plasma and exosomes from tumor-draining versus peripheral veins of colon cancer patients. Oncology. 2018; 95(5): 309-318.

[175]

Korpal M, Lee E, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008; 283(22): 14910-14914.

[176]

Gregory P, Bert A, Paterson E, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008; 10(5): 593-601.

[177]

Korpal M, Ell B, Buffa F, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011; 17(9): 1101-1108.

[178]

Xu H, Lan Q, Huang Y, et al. The mechanisms of colorectal cancer cell mesenchymal-epithelial transition induced by hepatocyte exosome-derived miR-203a-3p. BMC Cancer. 2021; 21(1): 718.

[179]

Zadran S, Arumugam R, Herschman H, Phelps M, Levine R. Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition. Proc Nat Acad Sci USA. 2014; 111(36): 13235-13240.

[180]

Jia D, Park J, Kaur H, et al. Towards decoding the coupled decision-making of metabolism and epithelial-to-mesenchymal transition in cancer. Br J Cancer. 2021; 124(12): 1902-1911.

[181]

Petrella G, Corsi F, Ciufolini G, et al. Metabolic reprogramming of castration-resistant prostate cancer cells as a response to chemotherapy. Metabolites. 2023; 13(1): 65.

[182]

Vander Heiden M, Cantley L, Thompson C. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324(5930): 1029-1033.

[183]

Arundhathi J, Mathur S, Gogia A, Deo S, Mohapatra P, Prasad C. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep. 2021; 48(5): 4733-4745.

[184]

Roy S, Leidal A, Ye J, Ronen S, Debnath J. Autophagy-dependent shuttling of TBC1D5 controls plasma membrane translocation of GLUT1 and glucose uptake. Mol Cell. 2017; 67(1): 84-95. e5.

[185]

Ito S, Fukusato T, Nemoto T, Sekihara H, Seyama Y, Kubota S. Coexpression of glucose transporter 1 and matrix metalloproteinase-2 in human cancers. J Natl Cancer Inst. 2002; 94(14): 1080-1091.

[186]

Li T, Tong H, Yin H, et al. Starvation induced autophagy promotes the progression of bladder cancer by LDHA mediated metabolic reprogramming. Cancer Cell Int. 2021; 21(1): 597.

[187]

Nilchian A, Giotopoulou N, Sun W, Fuxe J. Different regulation of Glut1 expression and glucose uptake during the induction and chronic stages of TGFβ1-induced EMT in breast cancer cells. Biomolecules. 2020; 10(12): 1621.

[188]

Zhang Y, Lin S, Chen Y, Yang F, Liu S. LDH-Apromotes epithelial-mesenchymal transition by upregulating ZEB2 in intestinal-type gastric cancer. OncoTargets Ther. 2018; 11: 2363-2373.

[189]

Li X, Zhang Z, Zhang Y, Cao Y, Wei H, Wu Z. Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16 inactivation. J Exp Clin Cancer Res. 2018; 37(1): 39.

[190]

Birgisdottir Å, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci. 2013; 126: 3237-3247.

[191]

Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma V. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev. 2019; 39(2): 517-560.

[192]

Levy J, Towers C, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017; 17(9): 528-542.

[193]

Zhu H, Wang D, Zhang L, et al. Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep. 2014; 32(3): 935-942.

[194]

Tong H, Yin H, Hossain M, et al. Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation. J Cell Biochem. 2019; 120(4): 5118-5127.

[195]

Chen H-T, Liu H, Mao M-J, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019; 18(1): 101.

[196]

Yu Y, Song Y, Cheng L, et al. CircCEMIP promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells. J Exp Clin Cancer Res. 2022; 41(1): 188.

[197]

Wang S, Lv Y, Zhou Y, et al. Acidic extracellular pH induces autophagy to promote anoikis resistance of hepatocellular carcinoma cells via downregulation of miR-3663-3p. J Cancer. 2021; 12(12): 3418-3426.

[198]

Nepali PR, Kyprianou N. Anoikis in phenotypic reprogramming of the prostate tumor microenvironment. Front Endocrinol. 2023; 14: 1160267.

[199]

Aceto N, Bardia A, Miyamoto D, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014; 158(5): 1110-1122.

[200]

Cao Z, Livas T, Kyprianou N. Anoikis and EMT: lethal “liaisons” during cancer progression. Crit Rev Oncog. 2016; 21: 155-168.

[201]

Vitto VAM, Bianchin S, Zolondick AA, et al. Molecular mechanisms of autophagy in cancer development, progression, and therapy. Biomedicines. 2022; 10(7): 1596.

[202]

Kenific C, Wittmann T, Debnath J. Autophagy in adhesion and migration. J Cell Sci. 2016; 129(20): 3685-3693.

[203]

Liu G, Zhan W, Guo W, et al. MELK accelerates the progression of colorectal cancer via activating the FAK/Src pathway. Biochem Genet. 2020; 58(5): 771-782.

[204]

Sima N, Cheng X, Ye F, Ma D, Xie X, W. The overexpression of scaffolding protein NEDD9 promotes migration and invasion in cervical cancer via tyrosine phosphorylated FAK and SRC. PLoS One. 2013; 8(9): e74594.

[205]

Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013; 1833(12): 3481-3498.

[206]

Zhao M, Finlay D, Liddington R, Vuori K. SRC plays a specific role in the cross-talk between apoptosis and autophagy via phosphorylation of a novel regulatory site on AMPK. Autophagy Rep. 2022; 1(1): 38-41.

[207]

Sandilands E, Serrels B, McEwan D, et al. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol. 2011; 14(1): 51-60.

[208]

Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol. 2011; 31(17): 3616-3629.

[209]

Bose A, Datta S, Mandal R, Ray U, Dhar R. Increased heterogeneity in expression of genes associated with cancer progression and drug resistance. Transl Oncol. 2024; 41: 101879.

[210]

Said R, Hernández-Losa J, Moline T, et al. Co-expression of Twist and Snai1: predictor of poor prognosis and biomarker of treatment resistance in untreated prostate cancer. Mol Biol Rep. 2024; 51(1): 226.

[211]

Ebrahimi N, Manavi MS, Faghihkhorasani F, et al. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev. 2024; 43(1): 457-479.

[212]

Imatsuji S, Ujie Y, Odake H, Imoto M, Itoh S, Tashiro E. Cisplatin-induced activation of TGF-β signaling contributes to drug resistance. Oncol Res. 2024; 32(1): 139-150.

[213]

Gao L, Qiao L, Li Y, et al. ALKBH5 regulates paclitaxel resistance in NSCLC via inhibiting CEMIP-mediated EMT. Toxicol Appl Pharmacol. 2024; 483: 116807.

[214]

Wong SHM, Kong WY, Fang C-M, et al. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol. 2019; 143: 81-94.

[215]

Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene. 2024; 909: 148293.

[216]

Richard G, Dalle S, Monet MA, et al. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol Med. 2016; 8(10): 1143-1161.

[217]

Wang S, You X, Liu X, et al. SMYD3 induces sorafenib resistance by activating SMAD2/3-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. iScience. 2023; 26(7): 106994.

[218]

Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020; 20(11): 651-668.

[219]

Chae YK, Chang S, Ko T, et al. Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci Rep. 2018; 8(1): 2918.

[220]

Xiao G-Y, Tan X, Rodriguez BL, et al. EMT activates exocytotic Rabs to coordinate invasion and immunosuppression in lung cancer. Proc Natl Acad Sci USA. 2023; 120(28): e2220276120.

[221]

Vaidya FU, Sufiyan Chhipa A, Mishra V, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep. 2022; 5(12): e1291.

[222]

Hasmim M, Xiao M, Van Moer K, et al. SNAI1-dependent upregulation of CD73 increases extracellular adenosine release to mediate immune suppression in TNBC. Front Immunol. 2022; 13: 982821.

[223]

Muralidharan S, Sehgal M, Soundharya R, et al. PD-L1 activity is associated with partial EMT and metabolic reprogramming in carcinomas. Curr Oncol. 2022; 29(11): 8285-8301.

[224]

Burger GA, Nesenberend DN, Lems CM, Hille SC, Beltman JB. Bidirectional crosstalk between epithelial-mesenchymal plasticity and IFNγ-induced PD-L1 expression promotes tumour progression. R Soc Open Sci. 2022; 9(11): 220186.

[225]

Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011; 9(2): 237-249.

[226]

Coupland L, Chong B, Parish C. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 2012; 72(18): 4662-4671.

[227]

Placke T, Örgel M, Schaller M, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012; 72(2): 440-448.

[228]

Lou Y, Diao L, Cuentas ERP, et al. Epithelial–mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin Cancer Res. 2016; 22(14): 3630-3642.

[229]

Long C, Heng L, Mohammed S, et al. Multivalent tyrosine kinase inhibition promotes T cell recruitment to immune-desert gastric cancers by restricting epithelial-mesenchymal transition via tumour-intrinsic IFN-γ signalling. Gut. 2023; 72(11): 2038.

[230]

Nicholas CD, Nguyen YV, Michael S, et al. Gli2 facilitates tumor immune evasion and immunotherapeutic resistance by coordinating wnt ligand and prostaglandin signaling. bioRxiv. 2024:2024.03.31.587500.

[231]

Miyauchi T, Yaguchi T, Kawakami Y. Inter-patient and intra-tumor heterogeneity in the sensitivity to tumor-targeted immunity in colorectal cancer. Jpn J Clin Immunol. 2017; 40(1): 54-59.

[232]

Cordani M, Strippoli R, Trionfetti F, et al. Immune checkpoints between epithelial-mesenchymal transition and autophagy: a conflicting triangle. Cancer Lett. 2024; 585: 216661.

[233]

Gao Y, Peng Q, Li S, et al. YAP1 suppression inhibits autophagy and improves the efficacy of anti-PD-1 immunotherapy in hepatocellular carcinoma. Exp Cell Res. 2023; 424(1): 113486.

[234]

Gou Q, Che S, Chen M, Chen H, Shi J, Hou Y. PPARγ inhibited tumor immune escape by inducing PD-L1 autophagic degradation. Cancer Sci. 2023; 114(7): 2871-2881.

[235]

Zhou L, Wu J, Ruan M, et al. The loss of B7-H4 expression in breast cancer cells escaping from T cell cytotoxicity contributes to epithelial-to-mesenchymal transition. Breast Cancer Res. 2023; 25(1): 115.

[236]

Li Y, Ren B-X, Li H-M, Lu T, Fu R, Wu Z-Q. Omeprazole suppresses aggressive cancer growth and metastasis in mice through promoting Snail degradation. Acta Pharmacol Sin. 2022; 43(7): 1816-1828.

[237]

Lai Y-J, Yu W-N, Kuo S-C, et al. CSC-3436 inhibits TWIST-induced epithelial–mesenchymal transition via the suppression of Twist/Bmi1/Akt pathway in head and neck squamous cell carcinoma. J Cell Physiol. 2019; 234(6): 9118-9129.

[238]

Zhang N, Liu Y, Wang Y, Zhao M, Tu L, Luo F. Decitabine reverses TGF-β1-induced epithelial-mesenchymal transition in non-small-cell lung cancer by regulating miR-200/ZEB axis. Drug Des Devel Ther. 2017; 11: 969-983.

[239]

Hei B, Liu R-E, Li M. Ursolic acid inhibits glioblastoma through suppressing TGFβ-mediated epithelial-mesenchymal transition (EMT) and angiogenesis. Heliyon. 2024; 10(6): e27722.

[240]

Takeda T, Tsubaki M, Matsuda T, et al. EGFR inhibition reverses epithelial-mesenchymal transition, and decreases tamoxifen resistance via Snail and Twist downregulation in breast cancer cells. Oncol Rep. 2022; 47(6): 109.

[241]

Li M, Huang Z, Zhou Y. Serabelisib regulates GSDMD-mediated pyroptosis, apoptosis and migration of hepatoma cells via the PI3K/Akt/E-cadherin signaling pathway. Adv Clin Exp Med. 2024; 33(2): 171-181.

[242]

Kim MJ, Ku JM, Choi Y-J, et al. Reduced HIF-1α stability induced by 6-gingerol inhibits lung cancer growth through the induction of cell death. Molecules. 2022; 27(7): 2106.

[243]

Inthanon S, Dejkriengkraikul P, Yodkeeree S. Notopterol suppresses IL-17-induced proliferation and invasion of A549 lung adenocarcinoma cells via modulation of STAT3, NF-κB, and AP-1 Activation. Int J Mol Sci. 2023; 24(20): 15057.

[244]

Sun Q, Yuan M, Wang H, et al. PKM2 is the target of a multi-herb-combined decoction during the inhibition of gastric cancer progression. Front Oncol. 2021; 11: 767116.

[245]

Lv S, Zhang Y, Song J, et al. Cerulenin suppresses ErbB2-overexpressing breast cancer by targeting ErbB2/PKM2 pathway. Med Oncol. 2022; 40(1): 5.

[246]

Lyu L, Li H, Lu K, Jiang S, Li H. PAK inhibitor FRAX486 decreases the metastatic potential of triple-negative breast cancer cells by blocking autophagy. Br J Cancer. 2024; 130(3): 394-405.

[247]

Shi Y, Li W, Jia Q, Wu J, Wu S, Wu S. Inhibition of PD-L1 expression in non-small cell lung cancer may reduce vasculogenic mimicry formation by inhibiting the epithelial mesenchymal transformation process. Exp Cell Res. 2024; 437(1): 113996.

[248]

Chen X, Tao Z, Liang Y, et al. Plasmodium immunotherapy combined with gemcitabine has a synergistic inhibitory effect on tumor growth and metastasis in murine Lewis lung cancer models. Front Oncol. 2023; 13: 1181176.

[249]

Panda M, Biswal S, Biswal BK. Evodiamine potentiates cisplatin-induced cell death and overcomes cisplatin resistance in non-small-cell lung cancer by targeting SOX9-β-catenin axis. Mol Biol Rep. 2024; 51(1): 523.

[250]

Terragno M, Vetrova A, Semenov O, Sayan AE, Kriajevska M, Tulchinsky E. Mesenchymal–epithelial transition and AXL inhibitor TP-0903 sensitise triple-negative breast cancer cells to the antimalarial compound, artesunate. Sci Rep. 2024; 14(1): 425.

[251]

Jeong YG, Katuwal NB, Kang MS, et al. Combined PI3K inhibitor and eribulin enhances anti-tumor activity in preclinical models of paclitaxel-resistant, PIK3CA-mutated endometrial cancer. Cancers. 2023; 15(19): 4887.

[252]

Niu M, Yi M, Wu Y, et al. Synergistic efficacy of simultaneous anti-TGF-β/VEGF bispecific antibody and PD-1 blockade in cancer therapy. J Hematol Oncol. 2023; 16(1): 94.

[253]

Brown MS, Muller KE, Pattabiraman DR. Quantifying the epithelial-to-mesenchymal transition (EMT) from bench to bedside. Cancers (Basel). 2022; 14(5): 1138.

[254]

Najafi A, Jolly MK, George JT. Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity. iScience. 2023; 26(7): 106964.

[255]

Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes—next generation tools for tissue exploration. Bioessays. 2020; 42(10): 1900221.

[256]

Malagoli Tagliazucchi G, Wiecek AJ, Withnell E, Secrier M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat Commun. 2023; 14(1): 789.

[257]

Wang M, Deng C, Yang C, et al. Unraveling temporal and spatial biomarkers of epithelial-mesenchymal transition in colorectal cancer: insights into the crucial role of immunosuppressive cells. J Transl Med. 2023; 21(1): 794.

[258]

Cai Y, Chen X, Si J, Mou X, Dong X. All-in-one nanomedicine: multifunctional single-component nanoparticles for cancer theranostics. Small. 2021; 17(52): e2103072.

[259]

Kim J, Kim M, Yong S-B, et al. Engineering TGF-β inhibitor-encapsulated macrophage-inspired multi-functional nanoparticles for combination cancer immunotherapy. Biomater Res. 2023; 27(1): 136.

[260]

Wang X, Song Y, Yu L, et al. Co-delivery of hesperetin and cisplatin via hyaluronic acid-modified liposome for targeted inhibition of aggression and metastasis of triple-negative breast cancer. ACS Appl Mater Interfaces. 2023; 15(29): 34360-34377.

[261]

Gorshkov A, Purvinsh L, Brodskaia A, Vasin A. Exosomes as natural nanocarriers for RNA-based therapy and prophylaxis. Nanomaterials. 2022; 12(3): 524.

[262]

Yang M, Qin C, Tao L, et al. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment. Biomaterials. 2023; 301: 122253.

[263]

Shojaei S, Hashemi SM, Ghanbarian H, Sharifi K, Salehi M, Mohammadi-Yeganeh S. Delivery of miR-381-3p mimic by mesenchymal stem cell-derived exosomes inhibits triple negative breast cancer aggressiveness; an in vitro study. Stem Cell Rev Rep. 2021; 17(3): 1027-1038.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/