Regulation of bone homeostasis: signaling pathways and therapeutic targets

Zebin Wu , Wenming Li , Kunlong Jiang , Zhixiang Lin , Chen Qian , Mingzhou Wu , Yu Xia , Ning Li , Hongtao Zhang , Haixiang Xiao , Jiaxiang Bai , Dechun Geng

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e657

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e657 DOI: 10.1002/mco2.657
REVIEW

Regulation of bone homeostasis: signaling pathways and therapeutic targets

Author information +
History +
PDF

Abstract

As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.

Keywords

bone cells / bone homeostasis / signal crosstalk / signaling pathway / skeletal disease / therapeutic targets

Cite this article

Download citation ▾
Zebin Wu, Wenming Li, Kunlong Jiang, Zhixiang Lin, Chen Qian, Mingzhou Wu, Yu Xia, Ning Li, Hongtao Zhang, Haixiang Xiao, Jiaxiang Bai, Dechun Geng. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm, 2024, 5(8): e657 DOI:10.1002/mco2.657

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng L, Suresh KS, He H, et al. 3D printing of micro-and nanoscale bone substitutes: a review on technical and translational perspectives. Int J Nanomedicine. 2021; 16: 4289-4319.

[2]

Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020; 9(9): 2073.

[3]

Cho E, Chen Z, Ding M, et al. PMSA prevents osteoclastogenesis and estrogen-dependent bone loss in mice. Bone. 2021; 142: 115707.

[4]

Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis imperfecta: mechanisms and signaling pathways connecting classical and rare OI types. Endocr Rev. 2022; 43(1): 61-90.

[5]

Wang J, Zhang Y, Cao J, et al. The role of autophagy in bone metabolism and clinical significance. Autophagy. 2023; 19(9): 2409-2427.

[6]

Zhang W, Li Y, Li S, et al. Associations of metabolic dysfunction-associated fatty liver disease and hepatic fibrosis with bone mineral density and risk of osteopenia/osteoporosis in T2DM patients. Front Endocrinol (Lausanne). 2023; 14: 1278505.

[7]

Lacey DL, Boyle WJ, Simonet WS, et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012; 11(5): 401-419.

[8]

Alman BA. The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol. 2015; 11(9): 552-560.

[9]

Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int. 2012; 90(2): 69-75.

[10]

Shen J, Fu B, Li Y, et al. E3 ubiquitin ligase-mediated regulation of osteoblast differentiation and bone formation. Front Cell Dev Biol. 2021; 9: 706395.

[11]

Stewart S, Gomez AW, Armstrong BE, Henner A, Stankunas K. Sequential and opposing activities of wnt and BMP coordinate zebrafish bone regeneration. Cell Rep. 2014; 6(3): 482-498.

[12]

Arnst J, Jing Z, Cohen C, Ha SW, Viggeswarapu M, Beck GR. Bioactive silica nanoparticles target autophagy, NF-κB, and MAPK pathways to inhibit osteoclastogenesis. Biomaterials. 2023; 301: 122238.

[13]

Lim DJ. Cross-linking agents for electrospinning-based bone tissue engineering. Int J Mol Sci. 2022; 23(10): 5444.

[14]

Zhang J, Liu Z, Luo Y, et al. The role of flavonoids in the osteogenic differentiation of mesenchymal stem cells. Front Pharmacol. 2022; 13: 849513.

[15]

Baum R, Gravallese EM. Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol. 2016; 51(1): 1-15.

[16]

Zhang Y, Liang J, Liu P, Wang Q, Liu L, Zhao H. The RANK/RANKL/OPG system and tumor bone metastasis: potential mechanisms and therapeutic strategies. Front Endocrinol. 2022; 13: 1063815.

[17]

Lee WC, Guntur AR, Long F, Rosen CJ. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr Rev. 2017; 38(3): 255-266.

[18]

Ponzetti M, Rucci N. Osteoblast differentiation and signaling: established concepts and emerging topics. Int J Mol Sci. 2021; 22(13): 6651.

[19]

Marahleh A, Kitaura H, Ohori F, Noguchi T, Mizoguchi I. The osteocyte and its osteoclastogenic potential. Front Endocrinol. 2023; 14: 1121727.

[20]

Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999; 190(12): 1741-1754.

[21]

Xu H, Wang W, Liu X, et al. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther. 2023; 8(1): 202.

[22]

Zhao B. Intrinsic restriction of TNF-mediated inflammatory osteoclastogenesis and bone resorption. Front Endocrinol. 2020; 11: 583561.

[23]

Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis. 2009; 4: 5.

[24]

Narayanan A, Srinaath N, Rohini M, Selvamurugan N. Regulation of runx2 by MicroRNAs in osteoblast differentiation. Life Sci. 2019; 232: 116676.

[25]

Chen D, Xie R, Shu B, et al. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci. 2019; 1442(1): 48-60.

[26]

Du Y, Zhang L, Wang Z, Zhao X, Zou J. Endocrine regulation of extra-skeletal organs by bone-derived secreted protein and the effect of mechanical stimulation. Front Cell Dev Biol. 2021; 9: 778015.

[27]

Aurilia C, Donati S, Palmini G, Miglietta F, Iantomasi T, Brandi ML. The involvement of long non-coding RNAs in bone. Int J Mol Sci. 2021; 22(8): 3909.

[28]

Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. eLife. 2019; 8: e49631.

[29]

Lin H, Zhang W, Xu Y, et al. 4D label-free quantitative proteomics analysis to screen potential drug targets of jiangu granules treatment for postmenopausal osteoporotic rats. Front Pharmacol. 2022; 13: 1052922.

[30]

Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016; 7: 10872.

[31]

Zhang Y, Kou Y, Yang P, et al. ED-71 inhibited osteoclastogenesis by enhancing EphrinB2-EphB4 signaling between osteoclasts and osteoblasts in osteoporosis. Cell Signal. 2022; 96: 110376.

[32]

Piffko A, Uhl C, Vajkoczy P, Czabanka M, Broggini T. EphrinB2-EphB4 signaling in neurooncological disease. Int J Mol Sci. 2022; 23(3): 1679.

[33]

Kovacic N, Grcevic D, Katavic V, Lukic IK, Marusic A. Targeting fas in osteoresorptive disorders. Expert Opin Ther Targets. 2010; 14(10): 1121-1134.

[34]

Uenaka M, Yamashita E, Kikuta J, et al. Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nat Commun. 2022; 13(1): 1066.

[35]

Valenti MT, Marchetto G, Mottes M, Dalle Carbonare L. Zebrafish: a suitable tool for the study of cell signaling in bone. Cells. 2020; 9(8): 1911.

[36]

Nirala BK, Yamamichi T, Yustein JT. Deciphering the signaling mechanisms of osteosarcoma tumorigenesis. Int J Mol Sci. 2023; 24(14): 11367.

[37]

Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016; 22(5): 539-546.

[38]

LaCroix AZ, Jackson RD, Aragaki A, et al. OPG and sRANKL serum levels and incident hip fracture in postmenopausal caucasian women in the women’s health initiative observational study. Bone. 2013; 56(2): 474-481.

[39]

Marcadet L, Bouredji Z, Argaw A, Frenette J. The roles of RANK/RANKL/OPG in cardiac, skeletal, and smooth muscles in health and disease. Front Cell Dev Biol. 2022; 10: 903657.

[40]

Honma M, Ikebuchi Y, Kariya Y, et al. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013; 28(9): 1936-1949.

[41]

Sakamoto M, Fukunaga T, Sasaki K, et al. Vibration enhances osteoclastogenesis by inducing RANKL expression via NF-κB signaling in osteocytes. Bone. 2019; 123: 56-66.

[42]

Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014; 94(1): 25-34.

[43]

Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020; 82: 485-506.

[44]

Shen F, Huang X, He G, Shi Y. The emerging studies on mesenchymal progenitors in the long bone. Cell Biosci. 2023; 13(1): 105.

[45]

Martin TJ. PTH1R actions on bone using the cAMP/protein kinase a pathway. Front Endocrinol. 2021; 12: 833221.

[46]

Xu X, Zheng L, Yuan Q, et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018; 6: 2.

[47]

Babey M, Wang Y, Kubota T, et al. Gender-specific differences in the skeletal response to continuous PTH in mice lacking the IGF1 receptor in mature osteoblasts. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015; 30(6): 1064-1076.

[48]

Oh YI, Kim JH, Kang CW. Protective effect of short-term treatment with parathyroid hormone 1–34 on oxidative stress is involved in insulin-like growth factor-I and nuclear factor erythroid 2-related factor 2 in rat bone marrow derived mesenchymal stem cells. Regul Pept. 2014; 189: 1-10.

[49]

Kim JH, Kim AR, Choi YH, et al. Intermittent PTH administration improves alveolar bone formation in type 1 diabetic rats with periodontitis. J Transl Med. 2018; 16(1): 70.

[50]

Cheng J, Lv Y, Zhang L, Liu Y. Construction and validation of a predictive model for hypocalcemia after parathyroidectomy in patients with secondary hyperparathyroidism. Front Endocrinol. 2022; 13: 1040264.

[51]

Wein MN. Parathyroid hormone signaling in osteocytes. JBMR Plus. 2018; 2(1): 22-30.

[52]

Calvi LM, Bromberg O, Rhee Y, et al. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood. 2012; 119(11): 2489-2499.

[53]

Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol. 2023; 11: 1112890.

[54]

Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015; 29(14): 1463-1486.

[55]

Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010; 10(2): 116-129.

[56]

Di Maggio N, Mehrkens A, Papadimitropoulos A, et al. Fibroblast growth factor-2 maintains a niche-dependent population of self-renewing highly potent non-adherent mesenchymal progenitors through FGFR2c. Stem Cells Dayt Ohio. 2012; 30(7): 1455-1464.

[57]

Haupt LM, Murali S, Mun FK, et al. The heparan sulfate proteoglycan (HSPG) glypican-3 mediates commitment of MC3T3-e1 cells toward osteogenesis. J Cell Physiol. 2009; 220(3): 780-791.

[58]

Niger C, Luciotti MA, Buo AM, Hebert C, Ma V, Stains JP. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase cδ cascade. J Bone Miner Res. 2013; 28(6): 1468-1477.

[59]

Ikpegbu E, Basta L, Clements DN, et al. FGF-2 promotes osteocyte differentiation through increased e11/podoplanin expression. J Cell Physiol. 2018; 233(7): 5334-5347.

[60]

Montero A, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000; 105(8): 1085-1093.

[61]

Lin JM, Callon KE, Lin JS, et al. Actions of fibroblast growth factor-8 in bone cells in vitro. Am J Physiol Endocrinol Metab. 2009; 297(1): E142-150.

[62]

Murugaiyan K, Amirthalingam S, Hwang NS, Jayakumar R. Role of FGF-18 in bone regeneration. J Funct Biomater. 2023; 14(1): 36.

[63]

Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT. The BMP antagonist noggin regulates cranial suture fusion. Nature. 2003; 422(6932): 625-629.

[64]

Murali SK, Roschger P, Zeitz U, Klaushofer K, Andrukhova O, Erben RG. FGF23 regulates bone mineralization in a 1, 25(OH)2 d3 and klotho-independent manner. J Bone Miner Res. 2016; 31(1): 129-142.

[65]

Tang Y, Yang P, Jin M, et al. Fgfr1 deficiency in osteocytes leads to increased bone mass by enhancing wnt/β-catenin signaling. Bone. 2023; 174: 116817.

[66]

McKenzie J, Smith C, Karuppaiah K, Langberg J, Silva MJ, Ornitz DM. Osteocyte death and bone overgrowth in mice lacking fibroblast growth factor receptors 1 and 2 in mature osteoblasts and osteocytes. J Bone Miner Res. 2019; 34(9): 1660-1675.

[67]

Li X. The FGF metabolic axis. Front Med. 2019; 13(5): 511-530.

[68]

Chikazu D, Hakeda Y, Ogata N, et al. Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase. J Biol Chem. 2000; 275(40): 31444-31450.

[69]

Wen X, Hu G, Xiao X, et al. FGF2 positively regulates osteoclastogenesis via activating the ERK-CREB pathway. Arch Biochem Biophys. 2022; 727: 109348.

[70]

Su N, Li X, Tang Y, et al. Deletion of FGFR3 in osteoclast lineage cells results in increased bone mass in mice by inhibiting osteoclastic bone resorption. J Bone Miner Res. 2016; 31(9): 1676-1687.

[71]

Bosetti M, Leigheb M, Brooks RA, Boccafoschi F, Cannas MF. Regulation of osteoblast and osteoclast functions by FGF-6. J Cell Physiol. 2010; 225(2): 466-471.

[72]

Shimoaka T, Ogasawara T, Yonamine A, et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem. 2002; 277(9): 7493-7500.

[73]

Amblee A, Uy J, Senseng C, Hart P. Tumor-induced osteomalacia with normal systemic fibroblast growth factor-23 level. Clin Kidney J. 2014; 7(2): 186-189.

[74]

Liu XY, Li X, Bai MR, et al. FGF-7 dictates osteocyte cell processes through beta-catenin transduction. Sci Rep. 2018; 8(1): 14792.

[75]

Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor neuron susceptibility in ALS/FTD. Front Neurosci. 2019; 13: 532.

[76]

Vella V, Lappano R, Bonavita E, et al. Insulin/IGF axis and the receptor for advanced glycation end products: role in meta-inflammation and potential in cancer therapy. Endocr Rev. 2023; 44(4): 693-723.

[77]

Samsa WE, Zhou X, Zhou G. Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol. 2017; 62: 3-15.

[78]

Kalantzakos TJ, Sebel LE, Trussler J, et al. MicroRNA associated with the invasive phenotype in clear cell renal cell carcinoma: let-7c-5p inhibits proliferation, migration, and invasion by targeting insulin-like growth factor 1 receptor. Biomedicines. 2022; 10(10): 2425.

[79]

García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like growth factor 1 signaling in mammalian hearing. Genes. 2021; 12(10): 1553.

[80]

Janssen JAMJL, Smith TJ. Lessons learned from targeting IGF-I receptor in thyroid-associated ophthalmopathy. Cells. 2021; 10(2): 383.

[81]

LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: ligands, binding proteins, and receptors. Mol Metab. 2021; 52: 101245.

[82]

Tahimic CGT, Wang Y, Bikle DD. Anabolic effects of IGF-1 signaling on the skeleton. Front Endocrinol. 2013; 4: 6.

[83]

Chen L, Tian M, Yang J, Wu Z. Berberine-encapsulated poly(lactic-co-glycolic acid)-hydroxyapatite (PLGA/HA) microspheres synergistically promote bone regeneration with DOPA-IGF-1 via the IGF-1R/PI3K/AKT/mTOR pathway. Int J Mol Sci. 2023; 24(20): 15403.

[84]

Sun Y, Li J, Xie X, et al. Recent advances in osteoclast biological behavior. Front Cell Dev Biol. 2021; 9: 788680.

[85]

Yang YJ, Kim DJ. An overview of the molecular mechanisms contributing to musculoskeletal disorders in chronic liver disease: osteoporosis, sarcopenia, and osteoporotic sarcopenia. Int J Mol Sci. 2021; 22(5): 2604.

[86]

Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X. TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol. 2010; 12(3): 224-234.

[87]

Fang J, Zhang X, Chen X, et al. The role of insulin-like growth factor-1 in bone remodeling: a review. Int J Biol Macromol. 2023; 238: 124125.

[88]

Kitaura H, Marahleh A, Ohori F, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020; 21(14): 5169.

[89]

Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020; 40: 2.

[90]

Chen L, Jiang W, Huang J, et al. Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res. 2010; 25(11). Accessed March 21, 2024 https://pubmed.ncbi.nlm.nih.gov/20499340/

[91]

Metzger CE, Narayanan A, Zawieja DC, Bloomfield SA. Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turnover. J Bone Miner Res. 2017; 32(4): 802-813.

[92]

Lau KHW, Baylink DJ, Sheng MHC. Osteocyte-derived insulin-like growth factor I is not essential for the bone repletion response in mice. PLoS One. 2015; 10(1): e0115897.

[93]

Guo X, Wang XF. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 2009; 19(1): 71-88.

[94]

Zaidi M, Kim SM, Mathew M, et al. Bone circuitry and interorgan skeletal crosstalk. eLife. 2023; 12: e83142.

[95]

Chen H, Tan XN, Hu S, et al. Molecular mechanisms of chondrocyte proliferation and differentiation. Front Cell Dev Biol. 2021; 9: 664168.

[96]

Yu S, Guo J, Sun Z, et al. BMP2-dependent gene regulatory network analysis reveals klf4 as a novel transcription factor of osteoblast differentiation. Cell Death Dis. 2021; 12(2): 197.

[97]

Liu DD, Zhang CY, Liu Y, Li J, Wang YX, Zheng SG. RUNX2 regulates osteoblast differentiation via the BMP4 signaling pathway. J Dent Res. 2022; 101(10): 1227-1237.

[98]

Lin W, Zhu X, Gao L, Mao M, Gao D, Huang Z. Osteomodulin positively regulates osteogenesis through interaction with BMP2. Cell Death Dis. 2021; 12(2): 147.

[99]

Ma L, He X, Wu Q. The molecular regulatory mechanism in multipotency and differentiation of wharton’s jelly stem cells. Int J Mol Sci. 2023; 24(16): 12909.

[100]

Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016; 4: 16009.

[101]

Yang J, Ueharu H, Mishina Y. Energy metabolism: a newly emerging target of BMP signaling in bone homeostasis. Bone. 2020; 138: 115467.

[102]

Naik AS, Lin JM, Taroc EZM, et al. Smad4-dependent morphogenic signals control the maturation and axonal targeting of basal vomeronasal sensory neurons to the accessory olfactory bulb. Dev Camb Engl. 2020; 147(8): dev184036.

[103]

Manoharan I, Swafford D, Shanmugam A, et al. Genetic deletion of LRP5 and LRP6 in macrophages exacerbates colitis-associated systemic inflammation and kidney injury in response to intestinal commensal microbiota. J Immunol Baltim Md 1950. 2022; 209(2): 368-378.

[104]

Carmon KS, Gong X, Lin Q, Thomas A, Liu Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate wnt/beta-catenin signaling. Proc Natl Acad Sci USA. 2011; 108(28): 11452-11457.

[105]

Tasca A, Stemig M, Broege A, et al. Smad1/5 and smad4 expression are important for osteoclast differentiation. J Cell Biochem. 2015; 116(7): 1350-1360.

[106]

Wang CL, Wang H, Xiao F, et al. Cyclic compressive stress-induced scinderin regulates progress of developmental dysplasia of the hip. Biochem Biophys Res Commun. 2017; 485(2): 400-408.

[107]

Wang S, Wu W, Lin X, et al. Predictive and prognostic biomarkers of bone metastasis in breast cancer: current status and future directions. Cell Biosci. 2023; 13(1): 224.

[108]

Zou ML, Chen ZH, Teng YY, et al. The smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies. Front Mol Biosci. 2021; 8: 593310.

[109]

Lu Y, Chen S, Yang N. Expression and methylation of FGF2, TGF-β and their downstream mediators during different developmental stages of leg muscles in chicken. PLoS One. 2013; 8(11): e79495.

[110]

Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res. 2024; 34(2): 101-123.

[111]

Hu Y, He J, He L, Xu B, Wang Q. Expression and function of smad7 in autoimmune and inflammatory diseases. J Mol Med Berl Ger. 2021; 99(9): 1209-1220.

[112]

Zhang J, Zhang X, Xie F, et al. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein Cell. 2014; 5(7): 503-517.

[113]

Loh HY, Norman BP, Lai KS, et al. Post-transcriptional regulatory crosstalk between MicroRNAs and canonical TGF-β/BMP signalling cascades on osteoblast lineage: a comprehensive review. Int J Mol Sci. 2023; 24(7): 6423.

[114]

Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012; 8(2): 272-288.

[115]

Usategui-Martín R, Rigual R, Ruiz-Mambrilla M, Fernández-Gómez JM, Dueñas A, Pérez-Castrillón JL. Molecular mechanisms involved in hypoxia-induced alterations in bone remodeling. Int J Mol Sci. 2022; 23(6): 3233.

[116]

Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis. 2023; 10(4): 1291-1317.

[117]

Jura-Półtorak A, Szeremeta A, Olczyk K, Zoń-Giebel A, Komosińska-Vassev K. Bone metabolism and RANKL/OPG ratio in rheumatoid arthritis women treated with TNF-α inhibitors. J Clin Med. 2021; 10(13): 2905.

[118]

Houde N, Chamoux E, Bisson M, Roux S. Transforming growth factor-beta1 (TGF-beta1) induces human osteoclast apoptosis by up-regulating bim. J Biol Chem. 2009; 284(35): 23397-23404.

[119]

Tominaga K, Suzuki HI. TGF-β signaling in cellular senescence and aging-related pathology. Int J Mol Sci. 2019; 20(20): 5002.

[120]

Oliveira LFS, Predes D, Borges HL, Abreu JG. Therapeutic potential of naturally occurring small molecules to target the wnt/β-catenin signaling pathway in colorectal cancer. Cancers. 2022; 14(2): 403.

[121]

Yao Q, Wu X, Tao C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023; 8(1): 56.

[122]

Gao Y, Chen N, Fu Z, Zhang Q. Progress of wnt signaling pathway in osteoporosis. Biomolecules. 2023; 13(3): 483.

[123]

Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr. 2023; 15(1): 84.

[124]

Maeda K, Yoshida K, Nishizawa T, et al. Inflammation and bone metabolism in rheumatoid arthritis: molecular mechanisms of joint destruction and pharmacological treatments. Int J Mol Sci. 2022; 23(5): 2871.

[125]

Yang L, Li Q, Zhang J, et al. Wnt7a promotes the osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med. 2021; 47(6): 94.

[126]

Moorer MC, Riddle RC. Regulation of osteoblast metabolism by Wnt signaling. Endocrinol Metab (Seoul). 2018; 33(3): 318-330.

[127]

Qiu WX, Ma XL, Lin X, et al. Deficiency of macf1 in osterix expressing cells decreases bone formation by bmp2/smad/runx2 pathway. J Cell Mol Med. 2020; 24(1): 317-327.

[128]

Zhang R, Oyajobi BO, Harris SE, et al. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone. 2013; 52(1): 145-156.

[129]

Su XY, Zou X, Chen QZ, et al. Follicle-stimulating hormone β-subunit potentiates bone morphogenetic protein 9-induced osteogenic differentiation in mouse embryonic fibroblasts. J Cell Biochem. 2017; 118(7): 1792-1802.

[130]

Haffner-Luntzer M, Ragipoglu D, Ahmad M, et al. Wnt1 boosts fracture healing by enhancing bone formation in the fracture callus. J Bone Miner Res. 2023; 38(5): 749-764.

[131]

Wang Y, Fan X, Xing L, Tian F. Wnt signaling: a promising target for osteoarthritis therapy. Cell Commun Signal. 2019; 17(1): 97.

[132]

Iolascon G, Liguori S, Paoletta M, Toro G, Moretti A. Anti-sclerostin antibodies: a new frontier in fragility fractures treatment. Ther Adv Musculoskelet Dis. 2023; 15:1759720×231197094.

[133]

Gebetsberger J, Schirmer M, Wurzer WJ, Streif W. Low bone mineral density in hemophiliacs. Front Med. 2022; 9: 794456.

[134]

Boyce BF, Li J, Xing L, Yao Z. Bone remodeling and the role of TRAF3 in osteoclastic bone resorption. Front Immunol. 2018; 9: 2263.

[135]

Song D, Wu ZS, Xu Q, et al. LRRC17 regulates the bone metabolism of human bone marrow mesenchymal stem cells from patients with idiopathic necrosis of femoral head through wnt signaling pathways: a preliminary report. Exp Ther Med. 2021; 22(1): 666.

[136]

Weivoda MM, Ruan M, Hachfeld CM, et al. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res. 2019; 34(8): 1546-1548.

[137]

Novack DV. Role of NF-κB in the skeleton. Cell Res. 2011; 21(1): 169-182.

[138]

Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024; 9(1): 1-37.

[139]

Wang WJ, He JW, Fu WZ, Wang C, Zhang ZL. Genetic polymorphisms of nuclear factor-κB family affect the bone mineral density response to zoledronic acid therapy in postmenopausal Chinese women. Genes. 2022; 13(8): 1343.

[140]

Eckhardt I, Roesler S, Fulda S. Identification of DR5 as a critical, NF-κB-regulated mediator of smac-induced apoptosis. Cell Death Dis. 2013; 4(11): e936.

[141]

Hou Y, Liang H, Rao E, et al. Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity. 2018; 49(3): 490-503.

[142]

Lee MJ, Lim E, Mun S, et al. Intravenous immunoglobulin (IVIG) attenuates TNF-induced pathologic bone resorption and suppresses osteoclastogenesis by inducing A20 expression. J Cell Physiol. 2016; 231(2): 449-458.

[143]

Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and regulation of transcription factors in osteoclastogenesis. Int J Mol Sci. 2023; 24(22): 16175.

[144]

Zhou BN, Zhang Q, Li M. Alzheimer’s disease and its associated risk of bone fractures: a narrative review. Front Endocrinol. 2023; 14: 1190762.

[145]

Davis JL, Pokhrel NK, Cox L, Rohatgi N, Faccio R, Veis DJ. Conditional loss of IKKα in osterix + cells has no effect on bone but leads to age-related loss of peripheral fat. Sci Rep. 2022; 12(1): 4915.

[146]

Burley TA, Kennedy E, Broad G, et al. Targeting the non-canonical NF-κB pathway in chronic lymphocytic leukemia and multiple myeloma. Cancers. 2022; 14(6): 1489.

[147]

Swarnkar G, Chen THP, Arra M, Nasir AM, Mbalaviele G, Abu-Amer Y. NUMBL interacts with TAK1, TRAF6 and NEMO to negatively regulate NF-κB signaling during osteoclastogenesis. Sci Rep. 2017; 7(1): 12600.

[148]

Li J, Ayoub A, Xiu Y, et al. TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat Commun. 2019; 10(1): 2795.

[149]

Miyazaki T, Zhao Z, Ichihara Y, et al. Mechanical regulation of bone homeostasis through p130Cas-mediated alleviation of NF-κB activity. Sci Adv. 2019; 5(9): eaau7802.

[150]

Huang X, Xie M, Xie Y, et al. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med. 2020; 18(1): 479.

[151]

Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019; 18: 26.

[152]

Janku F, Yap TA. Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018; 15(5): 273-291.

[153]

He Y, Sun MM, Zhang GG, et al. Targeting PI3K/akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021; 6: 425.

[154]

Yuan T, Cantley L. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008; 27(41): 5497-5510.

[155]

Virbasius JV, Guilherme A, Czech MP. Mouse p170 is a novel phosphatidylinositol 3-kinase containing a c2 domain. J Biol Chem. 1996; 271(23): 13304-13307.

[156]

Backer JM. The intricate regulation and complex functions of the class III phosphoinositide 3-kinase vps34. Biochem J. 2016; 473(15): 2251-2271.

[157]

Li GM, Liang CJ, Zhang DX, Zhang LJ, Wu JX, Xu YC. XB130 knockdown inhibits the proliferation, invasiveness, and metastasis of hepatocellular carcinoma cells and sensitizes them to TRAIL-induced apoptosis. Chin Med J (Engl). 2018; 131(19): 2320-2331.

[158]

Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting akt in cancer for precision therapy. J Hematol Oncol. 2021; 14(1): 128.

[159]

Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the role of the PI3K/akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart. Cells. 2022; 11(9): 1553.

[160]

Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (review). Mol Med Rep. 2019; 19(6): 4529-4535.

[161]

Tang T, Hasan M, Capelluto DGS. Phafins are more than phosphoinositide-binding proteins. Int J Mol Sci. 2023; 24(9): 8096.

[162]

Toulany M, Maier J, Iida M, et al. Akt1 and akt3 but not akt2 through interaction with DNA-PKcs stimulate proliferation and post-irradiation cell survival of K-RAS-mutated cancer cells. Cell Death Discov. 2017; 3: 17072.

[163]

Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT, McGowan EM. PTEN/PTENP1: “regulating the regulator of RTK-dependent PI3K/akt signalling” new targets for cancer therapy. Mol Cancer. 2018; 17(1): 37.

[164]

Yu C, Zhang B, Li YL, Yu XR. SIX1 reduces the expression of PTEN via activating PI3K/AKT signal to promote cell proliferation and tumorigenesis in osteosarcoma. Biomed Pharmacother. 2018; 105: 10-17.

[165]

Zhao KH, Zhang C, Bai Y, et al. Antiglioma effects of cytarabine on leptomeningeal metastasis of high-grade glioma by targeting the PI3K/akt/mTOR pathway. Drug Des Devel Ther. 2017; 11: 1905-1915.

[166]

Wang J, Chen T, Li X, et al. A study on the anti-osteoporosis mechanism of isopsoralen based on network pharmacology and molecular experiments. J Orthop Surg. 2023; 18(1): 304.

[167]

Xie X, Hu L, Mi B, et al. SHIP1 activator AQX-1125 regulates osteogenesis and osteoclastogenesis through PI3K/akt and NF-κb signaling. Front Cell Dev Biol. 2022; 10: 826023.

[168]

Moon JB, Kim JH, Kim K, et al. Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. J Immunol Baltim Md 1950. 2012; 188(1): 163-169.

[169]

Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene. 2021; 771: 145362.

[170]

Wang T, Fan L, Feng S, et al. Network pharmacology of iridoid glycosides from eucommia ulmoides oliver against osteoporosis. Sci Rep. 2022; 12(1): 7430.

[171]

Zeng Y, Riquelme MA, Hua R, et al. Mechanosensitive piezo1 calcium channel activates connexin 43 hemichannels through PI3K signaling pathway in bone. Cell Biosci. 2022; 12(1): 191.

[172]

Wang Z, Guo J. Mechanical induction of BMP-7 in osteocyte blocks glucocorticoid-induced apoptosis through PI3K/AKT/GSK3β pathway. Cell Biochem Biophys. 2013; 67(2): 567-574.

[173]

Paes J, Silva GAV, Tarragô AM, Mourão LP de S. The contribution of JAK2 46/1 haplotype in the predisposition to myeloproliferative neoplasms. Int J Mol Sci. 2022; 23(20): 12582.

[174]

Wang J, Zhou Y, Zhang H, et al. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther. 2023; 8(1): 138.

[175]

Putz EM, Majoros A, Gotthardt D, et al. Novel non-canonical role of STAT1 in natural killer cell cytotoxicity. Oncoimmunology. 2016; 5(9): e1186314.

[176]

Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, et al. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol. 2023; 14: 1305933.

[177]

Hu X, li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021; 6: 402.

[178]

Johnson HM, Noon-Song E, Ahmed CM. Noncanonical IFN signaling, steroids, and STATs: a probable role of V-ATPase. Mediators Inflamm. 2019; 2019: 4143604.

[179]

Sanpaolo ER, Rotondo C, Cici D, Corrado A, Cantatore FP. JAK/STAT pathway and molecular mechanism in bone remodeling. Mol Biol Rep. 2020; 47(11): 9087-9096.

[180]

Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Exp Mol Med. 2020; 52(8): 1185-1197.

[181]

Bakker AD, Jaspers RT. IL-6 and IGF-1 signaling within and between muscle and bone: how important is the mTOR pathway for bone metabolism? Curr Osteoporos Rep. 2015; 13(3): 131-139.

[182]

Zastulka A, Clichici S, Tomoaia-Cotisel M, et al. Recent trends in hydroxyapatite supplementation for osteoregenerative purposes. Mater Basel Switz. 2023; 16(3): 1303.

[183]

Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon. 2024; 10(1): e22547.

[184]

Guo Y, Li P, Wang Z, Zhang P, Wu X. Sustained delivery of methylsulfonylmethane from biodegradable scaffolds enhances efficient bone regeneration. Int J Nanomedicine. 2022; 17: 4829-4842.

[185]

Godoi MA, Camilli AC, Gonzales KGA, et al. JAK/STAT as a potential therapeutic target for osteolytic diseases. Int J Mol Sci. 2023; 24(12): 10290.

[186]

Adam S, Simon N, Steffen U, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020; 12(530): eaay4447.

[187]

Deng T, Xu J, Wang Q, et al. Immunomodulatory effects of curcumin on macrophage polarization in rheumatoid arthritis. Front Pharmacol. 2024; 15: 1369337.

[188]

Eguchi T, Watanabe K, Hara ES, Ono M, Kuboki T, Calderwood SK. OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells. PLoS One. 2013; 8(3): e58796.

[189]

Moustardas P, Aberdam D, Lagali N. MAPK pathways in ocular pathophysiology: potential therapeutic drugs and challenges. Cells. 2023; 12(4): 617.

[190]

Geng H, Li R, Feng D, Zhu Y, Deng L. Role of the p38/AKT pathway in the promotion of cell proliferation by serum heat inactivation. Int J Mol Sci. 2023; 24(22): 16538.

[191]

Xie C, Yang L, Gai Y. MAPKKKs in plants: multidimensional regulators of plant growth and stress responses. Int J Mol Sci. 2023; 24(4): 4117.

[192]

Sinkala M, Nkhoma P, Mulder N, Martin DP. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Commun Biol. 2021; 4(1): 9.

[193]

Iyer AKV, Rojansakul Y, Azad N. Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide Biol Chem. 2014; 0: 9-18.

[194]

Moon H, Ro SW. MAPK/ERK signaling pathway in hepatocellular carcinoma. Cancers. 2021; 13(12): 3026.

[195]

Han CW, Jeong MS, Jang SB. Understand KRAS and the quest for anti-cancer drugs. Cells. 2021; 10(4): 842.

[196]

Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018; 233(4): 2937-2948.

[197]

Song J, Ye B, Liu H, et al. Fak-mapk, hippo and wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif. 2018; 51(4): e12453.

[198]

Luo P, Yuan Q, ling YangM, Wan X, Xu P. The role of cells and signal pathways in subchondral bone in osteoarthritis. Bone Jt Res. 2023; 12(9): 536-545.

[199]

Stavre Z, Kim JM, Yang YS, et al. Schnurri-3 inhibition suppresses bone and joint damage in models of rheumatoid arthritis. Proc Natl Acad Sci USA. 2023; 120(19): e2218019120.

[200]

Greenblatt MB, Shim JH, Glimcher LH. Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol. 2013; 29: 63-79.

[201]

Oh CD, Chang SH, Yoon YM, et al. Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem. 2000; 275(8): 5613-5619.

[202]

Xu C, Liu H, He Y, Li Y, He X. Endothelial progenitor cells promote osteogenic differentiation in co-cultured with mesenchymal stem cells via the MAPK-dependent pathway. Stem Cell Res Ther. 2020; 11(1): 537.

[203]

Pérez-Lozano ML, Cesaro A, Mazor M, et al. Emerging natural-product-based treatments for the management of osteoarthritis. Antioxid Basel Switz. 2021; 10(2): 265.

[204]

Kim M, Lim J, Lee JH, et al. Understanding the functional role of genistein in the bone differentiation in mouse osteoblastic cell line MC3T3-e1 by RNA-seq analysis. Sci Rep. 2018; 8(1): 3257.

[205]

Chang W, Tu C, Chen TH, Bikle D, Shoback D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal. 2008; 1(35): ra1.

[206]

Giardullo L, Altomare A, Rotondo C, Corrado A, Cantatore FP. Osteoblast dysfunction in non-hereditary sclerosing bone diseases. Int J Mol Sci. 2021; 22(15): 7980.

[207]

Kanagaki S, Tsutsui Y, Kobayashi N, et al. Activation of AMP-activated protein kinase (AMPK) through inhibiting interaction with prohibitins. iScience. 2023; 26(4): 106293.

[208]

Long S, Zhou Y, Bai D, et al. Fatty acids regulate porcine reproductive and respiratory syndrome virus infection via the AMPK-ACC1 signaling pathway. Viruses. 2019; 11(12): 1145.

[209]

Jeyabalan J, Shah M, Viollet B, Chenu C. AMP-activated protein kinase pathway and bone metabolism. J Endocrinol. 2012; 212(3): 277-290.

[210]

Hardie DG. AMPK and SNF1: snuffing out stress. Cell Metab. 2007; 6(5): 339-340.

[211]

Penfold L, Woods A, Pollard AE, et al. AMPK activation protects against prostate cancer by inducing a catabolic cellular state. Cell Rep. 2023; 42(4): 112396.

[212]

Liao XZ, Gao Y, Zhao HW, et al. Cordycepin reverses cisplatin resistance in non-small cell lung cancer by activating AMPK and inhibiting AKT signaling pathway. Front Cell Dev Biol. 2020; 8: 609285.

[213]

Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol. 2022; 85: 52-68.

[214]

Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology. 2022; 30(3): 775-788.

[215]

Guntur AR, Rosen CJ. Bone as an endocrine organ. Endocr Pract. 2012; 18(5): 758-762.

[216]

He M, Lu B, Opoku M, et al. Metformin prevents or delays the development and progression of osteoarthritis: new insight and mechanism of action. Cells. 2022; 11(19): 3012.

[217]

Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev. 2014; 33(2-3): 527-543.

[218]

Takada I, Suzawa M, Matsumoto K, Kato S. Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci. 2007; 1116: 182-195.

[219]

Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, MacDougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J Biol Chem. 2007; 282(19): 14515-14524.

[220]

Lee MKS, Cooney OD, Lin X, et al. Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis. Mol Metab. 2022; 61: 101514.

[221]

Sánchez-de-Diego C, Artigas N, Pimenta-Lopes C, et al. Glucose restriction promotes osteocyte specification by activating a PGC-1α-dependent transcriptional program. iScience. 2019; 15: 79-94.

[222]

Kanazawa I. Interaction between bone and glucose metabolism [review. Endocr J. 2017; 64(11): 1043-1053.

[223]

Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif. 2022; 55(1): e13162.

[224]

Ohba S. Hedgehog signaling in skeletal development: roles of Indian hedgehog and the mode of its action. Int J Mol Sci. 2020; 21(18): 6665.

[225]

Zhang L, Fu X, Ni L, et al. Hedgehog signaling controls bone homeostasis by regulating osteogenic/adipogenic fate of skeletal stem/progenitor cells in mice. J Bone Miner Res. 2022; 37(3): 559-576.

[226]

Zhang X, Cheng Q, Wang Y, Leung PS, Mak KK. Hedgehog signaling in bone regulates whole-body energy metabolism through a bone-adipose endocrine relay mediated by PTHrP and adiponectin. Cell Death Differ. 2017; 24(2): 225-237.

[227]

Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal. 2022; 16(1): 47-61.

[228]

Mak KK, Chen MH, Day TF, Chuang PT, Yang Y. Wnt/beta-catenin signaling interacts differentially with ihh signaling in controlling endochondral bone and synovial joint formation. Dev Camb Engl. 2006; 133(18): 3695-3707.

[229]

Verbruggen SW, Nolan J, Duffy MP, Pearce OMT, Jacobs CR, Knight MM. A novel primary cilium-mediated mechanism through which osteocytes regulate metastatic behavior of both breast and prostate cancer cells. Adv Sci Weinh Baden-Wurtt Ger. 2024; 11(2): e2305842.

[230]

Saito T, Tanaka S. Molecular mechanisms underlying osteoarthritis development: notch and NF-κB. Arthritis Res Ther. 2017; 19(1): 94.

[231]

Zanotti S, Canalis E. Notch signaling and the skeleton. Endocr Rev. 2016; 37(3): 223-253.

[232]

Lee S, Remark LH, Josephson AM, et al. Notch-wnt signal crosstalk regulates proliferation and differentiation of osteoprogenitor cells during intramembranous bone healing. NPJ Regen Med. 2021; 6(1): 29.

[233]

Canalis E. Notch in skeletal physiology and disease. Osteoporos Int. 2018; 29(12): 2611-2621.

[234]

Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020; 21(11): 696-711.

[235]

Tao J, Jiang MM, Jiang L, et al. Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014; 26(3): 390-401.

[236]

Lungu O, Toscani D, Burroughs-Garcia J, Giuliani N. The metabolic features of osteoblasts: implications for multiple myeloma (MM) bone disease. Int J Mol Sci. 2023; 24(5): 4893.

[237]

Xu Y, Shu B, Tian Y, et al. Notch activation promotes osteoblast mineralization by inhibition of apoptosis. J Cell Physiol. 2018; 233(10): 6921-6928.

[238]

Peymanfar Y, Su YW, Xian CJ. Notch2 blockade mitigates methotrexate chemotherapy-induced bone loss and marrow adiposity. Cells. 2022; 11(9): 1521.

[239]

Bai S, Kopan R, Zou W, et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008; 283(10): 6509-6518.

[240]

Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med. 2012; 209(2): 319-334.

[241]

Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S. Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis, and bone resorption. J Biol Chem. 2016; 291(4): 1538-1551.

[242]

Shea CA, Murphy P. The primary cilium on cells of developing skeletal rudiments; distribution, characteristics and response to mechanical stimulation. Front Cell Dev Biol. 2021; 9: 725018.

[243]

Xu X, Liu S, Liu H, et al. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. Int J Mol Sci. 2021; 22(12): 6429.

[244]

Tsai TT, Cheng CM, Chen CF, Lai PL. Mechanotransduction in intervertebral discs. J Cell Mol Med. 2014; 18(12): 2351-2360.

[245]

Yan W, Maimaitimin M, Wu Y, et al. Meniscal fibrocartilage regeneration inspired by meniscal maturational and regenerative process. Sci Adv. 2023; 9(45): eadg8138.

[246]

Brylka LJ, Alimy AR, Tschaffon-Müller MEA, et al. Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development. Bone Res. 2024; 12(1): 12.

[247]

Wu Y, Wu J, Huang X, et al. Accelerated osteogenesis of bone graft by optimizing the bone microenvironment formed by electrical signals dependent on driving micro vibration stimulation. Mater Today Bio. 2023; 23: 100891.

[248]

Xie W, Xiao W, Tang K, Zhang L, Li Y. Yes-associated protein 1: role and treatment prospects in orthopedic degenerative diseases. Front Cell Dev Biol. 2020; 8: 573455.

[249]

Sasaki F, Hayashi M, Mouri Y, Nakamura S, Adachi T, Nakashima T. Mechanotransduction via the Piezo1-akt pathway underlies sost suppression in osteocytes. Biochem Biophys Res Commun. 2020; 521(3): 806-813.

[250]

Kornak U, Kasper D, Bösl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001; 104(2): 205-215.

[251]

Sun W, Guo S, Li Y, et al. Anoctamin 1 controls bone resorption by coupling cl– channel activation with RANKL-RANK signaling transduction. Nat Commun. 2022; 13(1): 2899.

[252]

Li Z, Huang Z, Zhang H, et al. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2×7/AMPK/mTOR axis. Cell Death Discov. 2021; 7(1): 346.

[253]

Jørgensen NR. The purinergic P2×7 ion channel receptor-a “repair” receptor in bone. Curr Opin Immunol. 2018; 52: 32-38.

[254]

Huang H, He YM, Lin MM, et al. P2×7Rs: new therapeutic targets for osteoporosis. Purinergic Signal. 2023; 19(1): 207-219.

[255]

Renke G, Almeida VBP, Souza EA, et al. Clinical outcomes of the deleterious effects of aluminum on neuro-cognition, inflammation, and health: a review. Nutrients. 2023; 15(9): 2221.

[256]

Douguet D, Honoré E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell. 2019; 179(2): 340-354.

[257]

Zhou L, Xue C, Chen Z, Jiang W, He S, Zhang X. c-fos is a mechanosensor that regulates inflammatory responses and lung barrier dysfunction during ventilator-induced acute lung injury. BMC Pulm Med. 2022; 22(1): 9.

[258]

Masuyama R, Vriens J, Voets T, et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 2008; 8(3): 257-265.

[259]

Nam MH, Park HJ, Seo YK. Reduction of osteoclastic differentiation of raw 264.7 cells by EMF exposure through TRPV4 and p-CREB pathway. Int J Mol Sci. 2023; 24(4): 3058.

[260]

Lyons JS, Joca HC, Law RA, et al. Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Sci Signal. 2017; 10(506): eaan5748.

[261]

Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol. 2021; 17(11): 692-705.

[262]

Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019; 20(5): 1836-1852.

[263]

Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun Lond Engl. 2021; 41(2): 109-120.

[264]

Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases. Cells. 2022; 11(22): 3552.

[265]

Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci. 2019; 20(24): 6249.

[266]

Yang Y, Xiong Y, Pan Z. Role of ceRNAs in non-tumor female reproductive diseases†. Biol Reprod. 2023; 108(3): 363-381.

[267]

Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018; 18(1): 5-18.

[268]

Yang Y, Yujiao W, Fang W, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 2020; 53(1): 40.

[269]

Yang L, Li Y, Gong R, et al. The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther. 2019; 27(2): 394-410.

[270]

Wang L, Wu F, Song Y, et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death Dis. 2016; 7(8): e2327.

[271]

Tang X, Lin J, Wang G, Lu J. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One. 2017; 12(6): e0179860.

[272]

Yu L, Liu Y. circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun. 2019; 516(2): 546-550.

[273]

Mi B, Xiong Y, Chen L, et al. CircRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the mir-7223-5p/PIK3R1 axis. Aging. 2019; 11(24): 11988-12001.

[274]

Wang S, Liu Z, Wang J, Ji X, Yao Z, Wang X. miR-21 promotes osteoclastogenesis through activation of PI3K/akt signaling by targeting pten in RAW264.7 cells. Mol Med Rep. 2020; 21(3): 1125-1132.

[275]

Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell. 2011; 146(3): 353-358.

[276]

Mao Z, Zhu Y, Hao W, Chu C, Su H. MicroRNA-155 inhibition up-regulates LEPR to inhibit osteoclast activation and bone resorption via activation of AMPK in alendronate-treated osteoporotic mice. IUBMB Life. 2019; 71(12): 1916-1928.

[277]

Sun Y, Kuek V, Liu Y, et al. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol. 2018; 234(1): 231-245.

[278]

Wang C, Wang P, Li F, et al. Adenovirus-associated anti-miRNA-214 regulates bone metabolism and prevents local osteoporosis in rats. Front Bioeng Biotechnol. 2023; 11: 1164252.

[279]

Wang CG, Liao Z, Xiao H, et al. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp Mol Pathol. 2019; 107: 77-84.

[280]

Li Z, Xue H, Tan G, Xu Z. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (review). Mol Med Rep. 2021; 24(5): 788.

[281]

Han JJ, Wang XQ, Zhang XA. Functional interactions between lncRNAs/circRNAs and miRNAs: insights into rheumatoid arthritis. Front Immunol. 2022; 13: 810317.

[282]

Chen WK, Yu XH, Yang W, et al. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif. 2017; 50(1): e12313.

[283]

Wu QY, Li X, Miao ZN, et al. Long non-coding RNAs: a new regulatory code for osteoporosis. Front Endocrinol. 2018; 9: 587.

[284]

van Hoolwerff M, Metselaar PI, Tuerlings M, et al. Elucidating epigenetic regulation by identifying functional cis-acting long noncoding RNAs and their targets in osteoarthritic articular cartilage. Arthritis Rheumatol. 2020; 72(11): 1845-1854.

[285]

Shen P, Gao J, Huang S, et al. LncRNA AC006064.4-201 serves as a novel molecular marker in alleviating cartilage senescence and protecting against osteoarthritis by destabilizing CDKN1B mRNA via interacting with PTBP1. Biomark Res. 2023; 11(1): 39.

[286]

Feng L, Yang Z, Li Y, et al. Malat1 attenuated the rescuing effects of docosahexaenoic acid on osteoarthritis treatment via repressing its chondroprotective and chondrogenesis activities. Biomed Pharmacother. 2022; 154: 113608.

[287]

Liu NN, Huang YP, Shao YB, et al. The regulatory role and mechanism of lncTUG1 on cartilage apoptosis and inflammation in osteoarthritis. Arthritis Res Ther. 2023; 25(1): 106.

[288]

Zhang L, Zhang P, Sun X, Zhou L, Zhao J. Long non-coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-216a-5p-JAK2-STAT3 axis. Biosci Rep. 2018; 38(6): BSR20181228.

[289]

Cao Y, Tang S, Nie X, et al. Decreased miR-214-3p activates NF-κB pathway and aggravates osteoarthritis progression. EBioMedicine. 2021; 65: 103283.

[290]

Zhang S, Jin Z. Bone mesenchymal stem cell-derived extracellular vesicles containing long noncoding RNA NEAT1 relieve osteoarthritis. Oxid Med Cell Longev. 2022; 2022: 5517648.

[291]

Zhao W, Qin P, Zhang D, et al. Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging. 2019; 11(21): 9581-9596.

[292]

Qin F, Tang H, Zhang Y, Zhang Z, Huang P, Zhu J. Bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-208a promotes osteosarcoma cell proliferation, migration, and invasion. J Cell Physiol. 2020; 235(5): 4734-4745.

[293]

Sha L, Ma D, Chen C. Exosome-mediated hic-5 regulates proliferation and apoptosis of osteosarcoma via wnt/β-catenin signal pathway. Aging. 2020; 12(23): 23598-23608.

[294]

Walker MD, Shane E. Postmenopausal osteoporosis. N Engl J Med. 2023; 389(21): 1979-1991.

[295]

Chang J, Wang Z, Tang E, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med. 2009; 15(6): 682-689.

[296]

Wei X, Zhang Y, Xiang X, et al. Exploring the relationship of bone turnover markers and bone mineral density in community-dwelling postmenopausal women. Dis Markers. 2021; 2021: 6690095.

[297]

Box CD, Cronin O, Hauser B. The impact of high dose glucocorticoids on bone health and fracture risk in systemic vasculitides. Front Endocrinol. 2022; 13: 806361.

[298]

Abuna RPF, Stringhetta-Garcia CT, Fiori LP, Dornelles RCM, Rosa AL, Beloti MM. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis. J Appl Oral Sci. 2016; 24(4): 376-382.

[299]

Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol. 2023; 11: 1323678.

[300]

Ma B, Guan G, Lv Q, Yang L. Curcumin ameliorates palmitic acid-induced saos-2 cell apoptosis via inhibiting oxidative stress and autophagy. Evid-Based Complement Altern Med. 2021; 2021: 5563660.

[301]

Zhou L, Song HY, Gao LL, Yang LY, Mu S, Fu Q. MicroRNA-100-5p inhibits osteoclastogenesis and bone resorption by regulating fibroblast growth factor 21. Int J Mol Med. 2019; 43(2): 727-738.

[302]

Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol. 2020; 183(4): R95-R106.

[303]

Bishop N. Bone material properties in osteogenesis imperfecta. J Bone Miner Res. 2016; 31(4): 699-708.

[304]

Vollersen N, Zhao W, Rolvien T, et al. The WNT1G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res. 2021; 9(1): 48.

[305]

Grafe I, Yang T, Alexander S, et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014; 20(6): 670-675.

[306]

Song IW, Nagamani SC, Nguyen D, et al. Targeting TGF-β for treatment of osteogenesis imperfecta. J Clin Invest. 2022; 132(7): e152571.

[307]

Yue L, Berman J. What is osteoarthritis? JAMA. 2022; 327(13): 1300.

[308]

Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2021; 80(4): 413-422.

[309]

Wu CJ, Liu RX, Huan SW, et al. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis. Arthritis Res Ther. 2022; 24(1): 59.

[310]

Blaney Davidson EN, van Caam APM, Vitters EL, et al. TGF-β is a potent inducer of nerve growth factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthritis Cartilage. 2015; 23(3): 478-486.

[311]

Gravallese EM, Firestein GS. Rheumatoid arthritis—common origins, divergent mechanisms. N Engl J Med. 2023; 388(6): 529-542.

[312]

Ding Q, Hu W, Wang R, et al. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther. 2023; 8(1): 1-24.

[313]

Duan M, Wang Q, Liu Y, Xie J. The role of TGF-β2 in cartilage development and diseases. Bone Jt Res. 2021; 10(8): 474-487.

[314]

Zhang Z, Lai Q, Li Y, et al. Acidic pH environment induces autophagy in osteoblasts. Sci Rep. 2017; 7: 46161.

[315]

Fassio A, Adami G, Idolazzi L, et al. Wnt inhibitors and bone turnover markers in patients with polymyalgia rheumatica and acute effects of glucocorticoid treatment. Front Med. 2020; 7: 551.

[316]

Wei J, Huang X, Zhang X, et al. Elevated fatty acid β-oxidation by leptin contributes to the proinflammatory characteristics of fibroblast-like synoviocytes from RA patients via LKB1-AMPK pathway. Cell Death Dis. 2023; 14(2): 97.

[317]

Zavala-Cerna MG, Moran-Moguel MC, Cornejo-Toledo JA, et al. Osteoprotegerin polymorphisms in a mexican population with rheumatoid arthritis and generalized osteoporosis: a preliminary report. J Immunol Res. 2015; 2015: 376197.

[318]

Gennari L, Rendina D, Falchetti A, Merlotti D. Paget’s disease of bone. Calcif Tissue Int. 2019; 104(5): 483-500.

[319]

Gennari L, Rendina D, Merlotti D, et al. Update on the pathogenesis and genetics of paget’s disease of bone. Front Cell Dev Biol. 2022; 10: 932065.

[320]

Singer FR. The evaluation and treatment of paget’s disease of bone. Best Pract Res Clin Rheumatol. 2020; 34(3): 101506.

[321]

Ehrlich LA, Roodman GD. The role of immune cells and inflammatory cytokines in Paget’s disease and multiple myeloma. Immunol Rev. 2005; 208: 252-266.

[322]

Roodman GD, Kurihara N, Ohsaki Y, et al. Interleukin 6. a potential autocrine/paracrine factor in paget’s disease of bone. J Clin Invest. 1992; 89(1): 46-52.

[323]

Miyagawa K, Ohata Y, Delgado-Calle J, et al. Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo. JCI Insight. 2020; 5(6): e133113. 133113.

[324]

Teramachi J, Nagata Y, Mohammad K, et al. Measles virus nucleocapsid protein increases osteoblast differentiation in paget’s disease. J Clin Invest. 2016; 126(3): 1012-1022.

[325]

Miyagawa K, Tenshin H, Mulcrone PL, et al. Osteoclast-derived IGF1 induces RANKL production in osteocytes and contributes to pagetic lesion formation. JCI Insight. 2023; 8(14): e159838.

[326]

Coleman RE, Croucher PI, Padhani AR, et al. Bone metastases. Nat Rev Dis Primer. 2020; 6(1): 1-28.

[327]

Simatou A, Sarantis P, Koustas E, Papavassiliou AG, Karamouzis MV. The role of the RANKL/RANK axis in the prevention and treatment of breast cancer with immune checkpoint inhibitors and anti-RANKL. Int J Mol Sci. 2020; 21(20): 7570.

[328]

Joseph GJ, Johnson DB, Johnson RW. Immune checkpoint inhibitors in bone metastasis: clinical challenges, toxicities, and mechanisms. J Bone Oncol. 2023; 43: 100505.

[329]

Wu X, Li F, Dang L, Liang C, Lu A, Zhang G. RANKL/RANK system-based mechanism for breast cancer bone metastasis and related therapeutic strategies. Front Cell Dev Biol. 2020; 8: 76.

[330]

Zuo H, Wan Y. Inhibition of myeloid PD-l1 suppresses osteoclastogenesis and cancer bone metastasis. Cancer Gene Ther. 2022; 29(10): 1342-1354.

[331]

Wang K, Gu Y, Liao Y, et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J Clin Invest. 2020; 130(7): 3603-3620.

[332]

Li D, Yang Z, Wei Z, Kang P. Efficacy of bisphosphonates in the treatment of femoral head osteonecrosis: a PRISMA-compliant meta-analysis of animal studies and clinical trials. Sci Rep. 2018; 8: 1450.

[333]

Bian Y, Hu T, Lv Z, et al. Bone tissue engineering for treating osteonecrosis of the femoral head. Exploration. 2023; 3(2): 20210105.

[334]

Kerachian MA, Séguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action. J Steroid Biochem Mol Biol. 2009; 114(3): 121-128.

[335]

Nie Z, Chen S, Peng H. Glucocorticoid induces osteonecrosis of the femoral head in rats through GSK3β-mediated osteoblast apoptosis. Biochem Biophys Res Commun. 2019; 511(3): 693-699.

[336]

Chai H, Huang Q, Jiao Z, et al. Osteocytes exposed to titanium particles inhibit osteoblastic cell differentiation via connexin 43. Int J Mol Sci. 2023; 24(13): 10864.

[337]

Li N, Li X, Zheng K, et al. Inhibition of sirtuin 3 prevents titanium particle-induced bone resorption and osteoclastsogenesis via suppressing ERK and JNK signaling. Int J Biol Sci. 2021; 17(5): 1382-1394.

[338]

Wang J, Tao Y, Ping Z, et al. Icariin attenuates titanium-particle inhibition of bone formation by activating the wnt/β-catenin signaling pathway in vivo and in vitro. Sci Rep. 2016; 6: 23827.

[339]

Zhou C, Wang Y, Meng J, et al. Additive effect of parathyroid hormone and zoledronate acid on prevention particle wears-induced implant loosening by promoting periprosthetic bone architecture and strength in an ovariectomized rat model. Front Endocrinol. 2022; 13: 871380.

[340]

Wang L, Gao Z, Zhang J, Huo Y, Xu Q, Qiu Y. Netrin-1 regulates ERK1/2 signaling pathway and autophagy activation in wear particle-induced osteoclastogenesis. Cell Biol Int. 2021; 45(3): 612-622.

[341]

Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet Lond Engl. 2022; 399(10329): 1080-1092.

[342]

Wang LT, Chen LR, Chen KH. Hormone-related and drug-induced osteoporosis: a cellular and molecular overview. Int J Mol Sci. 2023; 24(6): 5814.

[343]

Gossiel F, Scott JR, Paggiosi MA, et al. Effect of teriparatide treatment on circulating periostin and its relationship to regulators of bone formation and BMD in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2018; 103(4): 1302-1309.

[344]

Takami K, Okamoto K, Etani Y, et al. Anti-NF-κB peptide derived from nuclear acidic protein attenuates ovariectomy-induced osteoporosis in mice. JCI Insight. 2023; 8(22): e171962.

[345]

Solomon DH, Kay J, Duryea J, et al. Effects of teriparatide on joint erosions in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 2017; 69(9): 1741-1750.

[346]

Krege JH, Gilsenan AW, Komacko JL, Kellier-Steele N. Teriparatide and osteosarcoma risk: history, science, elimination of boxed warning, and other label updates. JBMR Plus. 2022; 6(9): e10665.

[347]

Matsumoto T, Sone T, Soen S, Tanaka S, Yamashita A, Inoue T. Abaloparatide increases lumbar spine and hip BMD in japanese patients with osteoporosis: the phase 3 ACTIVE-J study. J Clin Endocrinol Metab. 2022; 107(10): e4222-e4231.

[348]

Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology. 2016; 157(1): 141-149.

[349]

Miller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016; 316(7): 722-733.

[350]

Dempster DW, Zhou H, Rao SD, et al. Early effects of abaloparatide on bone formation and resorption indices in postmenopausal women with osteoporosis. J Bone Miner Res. 2021; 36(4): 644-653.

[351]

Deeks ED. Denosumab: a review in postmenopausal osteoporosis. Drugs Aging. 2018; 35(2): 163-173.

[352]

Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009; 361(8): 756-765.

[353]

Wittoek R, Verbruggen G, Vanhaverbeke T, Colman R, Elewaut D. RANKL blockade for erosive hand osteoarthritis: a randomized placebo-controlled phase 2a trial. Nat Med. Published online February 15, 2024.

[354]

Nakamura Y, Suzuki T, Yoshida T, Yamazaki H, Kato H. Vitamin D and calcium are required during denosumab treatment in osteoporosis with rheumatoid arthritis. Nutrients. 2017; 9(5): 428.

[355]

Dell’Aquila E, Armento G, Iuliani M, et al. Denosumab for cancer-related bone loss. Expert Opin Biol Ther. 2020; 20(11): 1261-1274.

[356]

Lambrinoudaki I, Christodoulakos G, Bisphosphonates BotsisD. Ann N Y Acad Sci. 2006; 1092: 397-402.

[357]

Fuggle N, Al-Daghri N, Bock O, et al. Novel formulations of oral bisphosphonates in the treatment of osteoporosis. Aging Clin Exp Res. 2022; 34(11): 2625-2634.

[358]

Srivichit B, Thonusin C, Chattipakorn N, Chattipakorn SC. Impacts of bisphosphonates on the bone and its surrounding tissues: mechanistic insights into medication-related osteonecrosis of the jaw. Arch Toxicol. 2022; 96(5): 1227-1255.

[359]

Beth-Tasdogan NH, Mayer B, Hussein H, Zolk O, Peter JU. Interventions for managing medication-related osteonecrosis of the jaw. Cochrane Database Syst Rev. 2022; 7(7): CD012432.

[360]

Teicher BA. TGFβ–directed therapeutics: 2020. Pharmacol Ther. 2021; 217: 107666.

[361]

Markham A. Baricitinib: first global approval. Drugs. 2017; 77(6): 697-704.

[362]

Liu W, Nicol L, Orwoll E. Current and developing pharmacologic agents for improving skeletal health in adults with osteogenesis imperfecta. Calcif Tissue Int. Published online March 12, 2024.

[363]

Al Hezaimi K, Rotstein I, Katz J, Nevins M, Nevins M. Effect of selective serotonin reuptake inhibitor (paroxetine) on newly formed bone volume: real-time in vivo micro-computed tomographic analysis. J Endod. 2023; 49(11): 1495-1500.

[364]

Marini F, Giusti F, Palmini G, Brandi ML. Role of wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int. 2023; 34(2): 213-238.

[365]

Wang H, Zhao S, Liu Y, Sun F, Huang X, Wu T. Sclerostin suppression facilitates uveal melanoma progression through activating wnt/β-catenin signaling via binding to membrane receptors LRP5/LRP6. Front Oncol. 2022; 12: 898047.

[366]

Bandeira L, Lewiecki EM, Bilezikian JP. Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther. 2017; 17(2): 255-263.

[367]

Wu D, Li L, Wen Z, Wang G. Romosozumab in osteoporosis: yesterday, today and tomorrow. J Transl Med. 2023; 21: 668.

[368]

McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014; 370(5): 412-420.

[369]

Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016; 375(16): 1532-1543.

[370]

Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017; 32(2): 198-202.

[371]

Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017; 377(15): 1417-1427.

[372]

Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008; 117(2): 244-279.

[373]

Urbano PCM, Soccol VT, Azevedo VF. Apoptosis and the FLIP and NF-kappa B proteins as pharmacodynamic criteria for biosimilar TNF-alpha antagonists. Biol Targets Ther. 2014; 8: 211-220.

[374]

Inoue K, Hu X, Zhao B. Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption. FASEB J. 2020; 34(2): 2392-2407.

[375]

Combe B, Kivitz A, Tanaka Y, et al. Filgotinib versus placebo or adalimumab in patients with rheumatoid arthritis and inadequate response to methotrexate: a phase III randomised clinical trial. Ann Rheum Dis. 2021; 80(7): 848-858.

[376]

Jin C, Tan K, Yao Z, et al. A novel anti-osteoporosis mechanism of VK2: interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J Agric Food Chem. 2023; 71(6): 2745-2761.

[377]

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013; 15(1): 195-218.

[378]

Unlu A, Nayir E, Dogukan Kalenderoglu M, Kirca O, Ozdogan M. Curcumin (turmeric) and cancer. J BUON. 2016; 21(5): 1050-1060.

[379]

Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020; 60(6): 887-939.

[380]

Herrington FD, Carmody RJ, Goodyear CS. Modulation of NF-κB signaling as a therapeutic target in autoimmunity. J Biomol Screen. 2016; 21(3): 223-242.

[381]

Weber CK, Liptay S, Wirth T, Adler G, Schmid RM. Suppression of NF-kappaB activity by sulfasalazine is mediated by direct inhibition of IkappaB kinases alpha and beta. Gastroenterology. 2000; 119(5): 1209-1218.

[382]

Verzella D, Cornice J, Arboretto P, et al. The NF-κB pharmacopeia: novel strategies to subdue an intractable target. Biomedicines. 2022; 10(9): 2233.

[383]

Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998; 396(6706): 77-80.

[384]

Grothe K, Flechsenhar K, Paehler T, et al. IκB kinase inhibition as a potential treatment of osteoarthritis—results of a clinical proof-of-concept study. Osteoarthritis Cartilage. 2017; 25(1): 46-52.

[385]

Li CH, Xu LL, Jian LL, et al. Stattic inhibits RANKL-mediated osteoclastogenesis by suppressing activation of STAT3 and NF-κB pathways. Int Immunopharmacol. 2018; 58: 136-144.

[386]

Yang X, Zhan N, Jin Y, et al. Tofacitinib restores the balance of γδtreg/γδt17 cells in rheumatoid arthritis by inhibiting the NLRP3 inflammasome. Theranostics. 2021; 11(3): 1446-1457.

[387]

Fleischmann R, Kremer J, Cush J, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012; 367(6): 495-507.

[388]

Chen J, Che Q, Kou Y, et al. A novel drug combination of tofacitinib and iguratimod alleviates rheumatoid arthritis and secondary osteoporosis. Int Immunopharmacol. 2023; 124: 110913. Pt B.

[389]

Letarouilly JG, Paccou J, Badr S, Chauveau C, Broux O, Clabaut A. Stimulatory effect of tofacitinib on bone marrow adipocytes differentiation. Front Endocrinol. 2022; 13: 881699.

[390]

Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med. 2017; 376(7): 652-662.

[391]

Scott LJ. Tocilizumab: a review in rheumatoid arthritis. Drugs. 2017; 77(17): 1865-1879.

[392]

Shimizu T, Kawashiri SY, Morimoto S, et al. Efficacy and safety of selective JAK 1 inhibitor filgotinib in active rheumatoid arthritis patients with inadequate response to methotrexate: comparative study with filgotinib and tocilizumab examined by clinical index as well as musculoskeletal ultrasound assessment (TRANSFORM study): study protocol for a randomized, open-label, parallel-group, multicenter, and non-inferiority clinical trial. Trials. 2023; 24(1): 161.

[393]

Emery P, Rondon J, Parrino J, et al. Safety and tolerability of subcutaneous sarilumab and intravenous tocilizumab in patients with rheumatoid arthritis. Rheumatol Oxf Engl. 2019; 58(5): 849-858.

[394]

Ozaki Y, Koide M, Furuya Y, et al. Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. PLoS One. 2017; 12(9): e0184904.

[395]

Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021; 39(1): 19-26.

[396]

Ko YJ, Sohn HM, Jang Y, et al. A novel modified RANKL variant can prevent osteoporosis by acting as a vaccine and an inhibitor. Clin Transl Med. 2021; 11(3): e368.

[397]

Chen C, Yin Y, Shi G, et al. A highly selective JAK3 inhibitor is developed for treating rheumatoid arthritis by suppressing γc cytokine–related JAK-STAT signal. Sci Adv. 2022; 8(33): eabo4363.

[398]

Xu Y, Yang Y, Hua Z, et al. BMP2 immune complexes promote new bone formation by facilitating the direct contact between osteoclasts and osteoblasts. Biomaterials. 2021; 275: 120890.

[399]

Li W, Yu L, Li W, et al. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: underlying mechanisms based on cell and molecular targets. Ageing Res Rev. 2023; 89: 101981.

[400]

Wang L, Yu Y, Ni S, et al. Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice. Theranostics. 2022; 12(13): 5645-5674.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/