Cancer-associated fibroblast-derived colony-stimulating factor 2 confers acquired osimertinib resistance in lung adenocarcinoma via promoting ribosome biosynthesis

Yutang Huang , Xiaoqing Wang , Chunjie Wen , Jingchan Wang , Honghao Zhou , Lanxiang Wu

MedComm ›› 2024, Vol. 5 ›› Issue (8) : e653

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (8) : e653 DOI: 10.1002/mco2.653
ORIGINAL ARTICLE

Cancer-associated fibroblast-derived colony-stimulating factor 2 confers acquired osimertinib resistance in lung adenocarcinoma via promoting ribosome biosynthesis

Author information +
History +
PDF

Abstract

Acquired resistance is a major obstacle to the therapeutic efficacy of osimertinib in lung adenocarcinoma (LUAD), but the underlying mechanisms are still not fully understood. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in LUAD tumor-microenvironment (TME) and have emerged as a key player in chemoresistance. However, the function of CAFs in osimertinib resistance is still unclear. Here, we showed that CAFs derived from osimertinib-resistant LUAD tissues (CAFOR) produced much more colony-stimulating factor 2 (CSF2) than those isolated from osimertinib-sensitive tissues. CAFOR-derived CSF2 activated the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway and upregulated lnc-CSRNP3 in LUAD cells. Lnc-CSRNP3 then promoted the expression of nearby gene CSRNP3 by recruiting chromodomain helicase DNA binding protein 9 (CHD9) and inhibited the phosphatase activity of the serine/threonine protein phosphatase 1 catalytic subunit α (PP1α), thereby induced osimertinib resistance by enhancing ribosome biogenesis. Collectively, our study reveals a critical role for CAFs in the development of osimertinib resistance and identifies the CSF2 pathway as an attractive target for monitoring osimertinib efficacy and overcoming osimertinib resistance in LUAD.

Keywords

cancer-associated fibroblasts / colony-stimulating factor 2 / lung adenocarcinoma / Osimertinib resistance / ribosome biosynthesis

Cite this article

Download citation ▾
Yutang Huang, Xiaoqing Wang, Chunjie Wen, Jingchan Wang, Honghao Zhou, Lanxiang Wu. Cancer-associated fibroblast-derived colony-stimulating factor 2 confers acquired osimertinib resistance in lung adenocarcinoma via promoting ribosome biosynthesis. MedComm, 2024, 5(8): e653 DOI:10.1002/mco2.653

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024; 74(1): 12-49.

[2]

Puiu A, Gomez Tapia C, Weiss MER, Singh V, Kamen A, Siebert M. Prediction uncertainty estimates elucidate the limitation of current NSCLC subtype classification in representing mutational heterogeneity. Sci Rep. 2024; 14(1): 6779.

[3]

Batra U, Biswas B, Prabhash K, Krishna MV. Differential clinicopathological features, treatments and outcomes in patients with Exon 19 deletion and Exon 21 L858R EGFR mutation-positive adenocarcinoma non-small-cell lung cancer. BMJ Open Respir Res. 2023; 10(1): e001492.

[4]

Yang J, Lee OJ, Son SM, et al. EGFR mutation status in lung adenocarcinoma-associated malignant pleural effusion and efficacy of EGFR tyrosine kinase inhibitors. Cancer Res Treat. 2018; 50(3): 908-916.

[5]

Karachaliou N, Codony-Servat J, Bracht JWP, et al. Characterising acquired resistance to erlotinib in non-small cell lung cancer patients. Expert Rev Respir Med. 2019; 13(10): 1019-1028.

[6]

Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: insight and foresight. Biochim Biophys Acta Rev Cancer. 2023; 1878(6): 188967.

[7]

Zalaquett Z, Kassis Y, et al. Acquired resistance mechanisms to osimertinib: the constant battle. Cancer Treat Rev. 2023; 116: 102557.

[8]

Dzobo K, Senthebane DA, Dandara C. The tumor microenvironment in tumorigenesis and therapy resistance revisited. Cancers (Basel). 2023; 15(2): 376.

[9]

Zhou Z, Guo S, Lai S, et al. Integrated single-cell and bulk RNA sequencing analysis identifies a cancer-associated fibroblast-related gene signature for predicting survival and therapy in gastric cancer. BMC Cancer. 2023; 23(1): 108.

[10]

Hu H, Piotrowska Z, Hare PJ, et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 2021; 39(11): 1531-1547. e10.

[11]

Pellinen T, Paavolainen L, Martin-Bernabe A, et al. Fibroblast subsets in non-small cell lung cancer: associations with survival, mutations, and immune features. J Natl Cancer Inst. 2023; 115(1): 71-82.

[12]

Choe C, Shin YS, Kim C, et al. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther. 2015; 8: 3665-3678.

[13]

Mink SR, Vashistha S, Zhang W, Hodge A, Agus DB, Jain A. Cancer-associated fibroblasts derived from EGFR-TKI-resistant tumors reverse EGFR pathway inhibition by EGFR-TKIs. Mol Cancer Res. 2010; 8(6): 809-820.

[14]

Su S, Chen J, Yao H, et al. CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018; 172(4): 841-856. e16.

[15]

Metcalf D, Begley CG, Johnson GR, et al. Biologic properties in vitro of a recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1986; 67(1): 37-45.

[16]

Smith BR. Regulation of hematopoiesis. Yale J Biol Med. 1990; 63(5): 371-380.

[17]

Huang YH, Yang PM, Chuah QY, et al. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells. Autophagy. 2014; 10(7): 1212-1228.

[18]

He K, Liu X, Hoffman RD, Shi RZ, Lv GY, Gao JL. G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio. 2022; 12(7): 1268-1285.

[19]

Valdembri D, Serini G, Vacca A, Ribatti D, Bussolino F. In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J. 2002; 16(2): 225-227.

[20]

Zgheib A, Lamy S, Annabi B. Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J Biol Chem. 2013; 288(19): 13378-13386.

[21]

Guo H, Zhi Y, Wang K, et al. Establishment of two oxaliplatin-resistant gallbladder cancer cell lines and comprehensive analysis of dysregulated genes. Open Med (Wars). 2023; 18(1): 20230690.

[22]

Li H, Zhong R, He C, et al. Colony-stimulating factor CSF2 mediates the phenotypic plasticity of small-cell lung cancer by regulating the p-STAT3/MYC pathway. Oncol Rep. 2022; 48(1): 122.

[23]

Kim D, Kim JS, Cheon I, et al. Identification and characterization of cancer-associated fibroblast subpopulations in lung adenocarcinoma. Cancers (Basel). 2022; 14(14): 3486.

[24]

Huang H, Wang Z, Zhang Y, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022; 40(6): 656-673. e7.

[25]

Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006; 13(11): 1235-1242.

[26]

Sang L, Yang L, Ge Q, Xie S, Zhou T, Lin A. Subcellular distribution, localization, and function of noncoding RNAs. Wiley Interdiscip Rev RNA. 2022; 13(6): e1729.

[27]

Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018; 172(3): 393-407.

[28]

Marfella CG, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007; 618(1-2): 30-40.

[29]

Hendrickx A, Beullens M, Ceulemans H, et al. Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol. 2009; 16(4): 365-371.

[30]

Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev. 2004; 84(1): 1-39.

[31]

Verbinnen I, Ferreira M, Bollen M. Biogenesis and activity regulation of protein phosphatase 1. Biochem Soc Trans. 2017; 45(1): 89-99.

[32]

Cai B, Ma W, Wang X, et al. Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ. 2020; 27(7): 2158-2175.

[33]

Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature. 1995; 374(6518): 177-180.

[34]

Scott PH, Cairns CA, Sutcliffe JE, et al. Regulation of RNA polymerase III transcription during cell cycle entry. J Biol Chem. 2001; 276(2): 1005-1014.

[35]

Nosrati N, Kapoor NR, Kumar V. Combinatorial action of transcription factors orchestrates cell cycle-dependent expression of the ribosomal protein genes and ribosome biogenesis. FEBS J. 2014; 281(10): 2339-2352.

[36]

El Hassouni B, Sarkisjan D, Vos JC, Giovannetti E, Peters GJ. Targeting the ribosome biogenesis key molecule fibrillarin to avoid chemoresistance. Curr Med Chem. 2019; 26(33): 6020-6032.

[37]

Morgillo F, Della Corte CM, Fasano M, Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open. 2016; 1(3): e000060.

[38]

Schmid S, Li JJN, Leighl NB. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer. 2020; 147: 123-129.

[39]

Kashima Y, Shibahara D, Suzuki A, et al. Single-cell analyses reveal diverse mechanisms of resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Res. 2021; 81(18): 4835-4848.

[40]

Ochi K, Suzawa K, Thu YM, et al. Drug repositioning of tranilast to sensitize a cancer therapy by targeting cancer-associated fibroblast. Cancer Sci. 2022; 113(10): 3428-3436.

[41]

Takatsu F, Suzawa K, Tomida S, et al. Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer. J Mol Med (Berl). 2023; 101(12): 1603-1614..

[42]

Zhu K, Lv Z, Xiong J, et al. MET inhibitor, capmatinib overcomes osimertinib resistance via suppression of MET/Akt/snail signaling in non-small cell lung cancer and decreased generation of cancer-associated fibroblasts. Aging (Albany NY). 2021; 13(5): 6890-6903.

[43]

Huang WC, Yadav VK, Cheng WH, et al. The MEK/ERK/miR-21 signaling is critical in osimertinib resistance in EGFR-mutant non-small cell lung cancer cells. Cancers (Basel). 2021; 13(23): 6005.

[44]

Remsing Rix LL, Sumi NJ, Hu Q, et al. IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Sci Signal. 2022; 15(747): eabj5879.

[45]

Vaish U, Jain T, Are AC, Dudeja V. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma: an update on heterogeneity and therapeutic targeting. Int J Mol Sci. 2021; 22(24): 13408.

[46]

Devereux S, Linch DC. Granulocyte-macrophage colony-stimulating factor. Biotherapy. 1990; 2(4): 305-313.

[47]

Zhang X, Hong R, Chen W, Xu M, Wang L. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019; 92: 103214.

[48]

Si J, Ma Y, Lv C, Hong Y, Tan H, Yang Y. HIF1A-AS2 induces osimertinib resistance in lung adenocarcinoma patients by regulating the miR-146b-5p/IL-6/STAT3 axis. Mol Ther Nucleic Acids. 2021; 26: 613-624.

[49]

Takahashi S, Noro R, Seike M, et al. Long non-coding RNA CRNDE is involved in resistance to EGFR tyrosine kinase inhibitor in EGFR-mutant lung cancer via eIF4A3/MUC1/EGFR signaling. Int J Mol Sci. 2021; 22(8): 4005.

[50]

Messad F, Louveau I, Koffi B, Gilbert H, Gondret F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. Bmc Genomics [Electronic Resource]. 2019; 20(1): 659.

[51]

Yamada Y, Sakuma J, Takeuchi I, et al. Identification of rs7350481 at chromosome 11q23.3 as a novel susceptibility locus for metabolic syndrome in Japanese individuals by an exome-wide association study. Oncotarget. 2017; 8(24): 39296-39308.

[52]

Zhang H, Qiu X, Yang G. The CSRNP gene family serves as a prognostic biomarker in clear cell renal cell carcinoma. Front Oncol. 2021; 11: 620126.

[53]

Kim B, Kang S, Kim SJ. Differential promoter methylation and histone modification contribute to the brain specific expression of the mouse Mbu-1 gene. Mol Cells. 2012; 34(5): 433-437.

[54]

Manning BJ, Yusufzai T. The ATP-dependent chromatin remodeling enzymes CHD6, CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. J Biol Chem. 2017; 292(28): 11927-11936.

[55]

Newton AH, Pask AJ. CHD9 upregulates RUNX2 and has a potential role in skeletal evolution. BMC Mol Cell Biol. 2020; 21(1): 27.

[56]

Shur I, Socher R, Benayahu D. In vivo association of CReMM/CHD9 with promoters in osteogenic cells. J Cell Physiol. 2006; 207(2): 374-378.

[57]

Flores-Delgado G, Liu CW, Sposto R, Berndt N. A limited screen for protein interactions reveals new roles for protein phosphatase 1 in cell cycle control and apoptosis. J Proteome Res. 2007; 6(3): 1165-1175.

[58]

Du W, Searle JS. The rb pathway and cancer therapeutics. Curr Drug Targets. 2009; 10(7): 581-589.

[59]

Xin ZC, Hu HW, Lao ZH, Zhu LQ, Biskup E, Zhang HW. p-CREB-1 at Ser 133 is a potential marker for breast cancer. Eur Rev Med Pharmacol Sci. 2020; 24(22): 11628-11638.

[60]

Khot A, Brajanovski N, Cameron DP, et al. First-in-human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers: results of a phase I dose-escalation study. Cancer Discov. 2019; 9(8): 1036-1049.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/