Identification of an alternative ligand-binding pocket in peroxisome proliferator-activated receptor gamma and its correlated selective agonist for promoting beige adipocyte differentiation

Qiang Tian1,2, Miaohua Wang1, Xueting Wang1, Zhenli Lei3, Owais Ahmad1, Dianhua Chen1, Wei Zheng1, Pingping Shen1,2(), Nanfei Yang1,2,3()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e650. DOI: 10.1002/mco2.650
ORIGINAL ARTICLE

Identification of an alternative ligand-binding pocket in peroxisome proliferator-activated receptor gamma and its correlated selective agonist for promoting beige adipocyte differentiation

  • Qiang Tian1,2, Miaohua Wang1, Xueting Wang1, Zhenli Lei3, Owais Ahmad1, Dianhua Chen1, Wei Zheng1, Pingping Shen1,2(), Nanfei Yang1,2,3()
Author information +
History +

Abstract

The pharmacological activation of peroxisome proliferator-activated receptor gamma (PPARγ) is a convenient and promising strategy for promoting beige adipocyte biogenesis to combat obesity-related metabolic disorders. However, thiazolidinediones (TZDs), the full agonists of PPARγ exhibit severe side effects in animal models and in clinical settings. Therefore, the development of efficient and safe PPARγ modulators for the treatment of metabolic diseases is emerging. In this study, using comprehensive methods, we report a previously unidentified ligand-binding pocket (LBP) in PPARγ and link it to beige adipocyte differentiation. Further virtual screening of 4097 natural compounds based on this novel LBP revealed that saikosaponin A (NJT-2), a terpenoid compound, can bind to PPARγ to induce coactivator recruitment and effectively activate PPARγ-mediated transcription of the beige adipocyte program. In a mouse model, NJT-2 administration efficiently promoted beige adipocyte biogenesis and improved obesity-associated metabolic dysfunction, with significantly fewer adverse effects than those observed with TZD. Our results not only provide an advanced molecular insight into the structural ligand-binding details in PPARγ, but also develop a linked selective and safe agonist for obesity treatment.

Cite this article

Download citation ▾
Qiang Tian, Miaohua Wang, Xueting Wang, Zhenli Lei, Owais Ahmad, Dianhua Chen, Wei Zheng, Pingping Shen, Nanfei Yang. Identification of an alternative ligand-binding pocket in peroxisome proliferator-activated receptor gamma and its correlated selective agonist for promoting beige adipocyte differentiation. MedComm, 2024, 5(7): e650 https://doi.org/10.1002/mco2.650

References

1 S Sauer. Ligands for the nuclear peroxisome proliferator-activated receptor gamma. Trends Pharmacol Sci. 2015;36(10):688-704.
2 IJ Lodhi, CF Semenkovich. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 2014;19(3):380-392.
3 A Christofides, E Konstantinidou, C Jani, VA Boussiotis. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338.
4 D Montaigne, L Butruille, B Staels. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18(12):809-823.
5 F Picard, J Auwerx. PPAR(gamma) and glucose homeostasis. Annu Rev Nutr. 2002;22:167-197.
6 Y Qiu, M Gan, X Wang, et al. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: a review. Int J Biol Macromol. 2023;253(5):127042.
7 P Hallenborg, RK Petersen, I Kouskoumvekaki, JW Newman, L Madsen, K Kristiansen. The elusive endogenous adipogenic PPARγ agonists: lining up the suspects. Prog Lipid Res. 2016;61:149-162.
8 M Diamant, RJ Heine. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs. 2003;63(13):1373-1405.
9 HE Lebovitz. Thiazolidinediones: the forgotten diabetes medications. Curr Diab Rep. 2019;19(12):151.
10 JD Wallach, K Wang, AD Zhang, et al. Updating insights into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analyses. BMJ. 2020;368:l7078.
11 SE Nissen, K Wolski. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457-2471.
12 F Alam, MA Islam, M Mohamed, et al. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. Sci Rep. 2019;9(1):5389.
13 L Wang, B Waltenberger, EM Pferschy-Wenzig, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92(1):73-89.
14 C Weidner, JC de Groot, A Prasad, et al. Amorfrutins are potent antidiabetic dietary natural products. Proc Natl Acad Sci U S A. 2012;109(19):7257-7262.
15 L Fuhr, M Rousseau, A Plauth, FC Schroeder, S Sauer. Amorfrutins are natural PPARγ agonists with potent anti-inflammatory properties. J Nat Prod. 2015;78(5):1160-1164.
16 U Kintscher. And in the end—telmisartan directly binds to PPARγ. Hypertens Res. 2012;35(7):704-705.
17 M Duarte, F Pelorosso, LN Nicolosi, et al. Telmisartan for treatment of Covid-19 patients: an open multicenter randomized clinical trial. EClinicalMedicine. 2021;37:100962.
18 H Takagi, M Niwa, Y Mizuno, SN Goto, T Umemoto. A meta-analysis of randomized trials of telmisartan vs. valsartan therapy for blood pressure reduction. Hypertens Res. 2013;36(7):627-633.
19 JH Choi, AS Banks, JL Estall, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature. 2010;466(7305):451-456.
20 DP Marciano, DS Kuruvilla, SV Boregowda, et al. Pharmacological repression of PPARγ promotes osteogenesis. Nat Commun. 2015;6:7443.
21 TS Hughes, PK Giri, IM de Vera, et al. An alternate binding site for PPARγ ligands. Nat Commun. 2014;5:3571.
22 JH Choi, AS Banks, TM Kamenecka, et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature. 2011;477(7365):477-481.
23 AM DePaoli, LS Higgins, RR Henry, C Mantzoros, FL Dunn. Can a selective PPARγ modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diabetes Care. 2014;37(7):1918-1923.
24 N Yang, Y Wang, Q Tian, et al. Blockage of PPARγ T166 phosphorylation enhances the inducibility of beige adipocytes and improves metabolic dysfunctions. Cell Death Differ. 2022;30:766-778.
25 X Li, J Ge, Y Li, et al. Integrative lipidomic and transcriptomic study unravels the therapeutic effects of saikosaponins A and D on non-alcoholic fatty liver disease. Acta Pharm Sin B. 2021;11(11):3527-3541.
26 X Li, X Li, N Huang, R Liu, R Sun. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine. 2018;50:73-87.
27 P Cohen, S Kajimura. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol. 2021;22(6):393-409.
28 J Chi, P Cohen. The multifaceted roles of PRDM16: adipose biology and beyond. Trends Endocrinol Metab. 2016;27(1):11-23.
29 SR Mihaylov, LM Castelli, Y-H Lin, et al. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun. 2023;14(1):5496.
30 J Pan, W Zhou, R Xu, L Xing, G Ji, Y Dang. Natural PPARs agonists for the treatment of nonalcoholic fatty liver disease. Biomed Pharmacother. 2022;151:113127.
31 MA Lee, L Tan, H Yang, YG Im, YJ Im. Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Sci Rep. 2017;7(1):16837.
32 JB Bruning, MJ Chalmers, S Prasad, et al. Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure. 2007;15(10):1258-1271.
33 H Jiang, XE Zhou, J Shi, et al. Identification and structural insight of an effective PPARγ modulator with improved therapeutic index for anti-diabetic drug discovery. Chem Sci. 2020;11(8):2260-2268.
34 J Wei, H Zhu, K Komura, et al. A synthetic PPAR-γ agonist triterpenoid ameliorates experimental fibrosis: PPAR-γ-independent suppression of fibrotic responses. Ann Rheum Dis. 2014;73(2):446-454.
35 S Inoue, RT Snowden, MJ Dyer, GM Cohen. CDDO induces apoptosis via the intrinsic pathway in lymphoid cells. Leukemia. 2004;18(5):948-952.
36 YY Wang, H Zhe, R Zhao. Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. Mol Cancer. 2014;13:30.
37 R Borella, L Forti, L Gibellini, et al. Synthesis and anticancer activity of CDDO and CDDO-Me, two derivatives of natural triterpenoids. Molecules. 2019;24(22):4097.
38 C Villarroel-Vicente, S Gutiérrez-Palomo, J Ferri, D Cortes, N Cabedo. Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: an overview. Eur J Med Chem. 2021;221:113535.
39 PY Ma, XY Li, YL Wang, et al. Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res. 2022;178:106175.
40 X Feng, A Sureda, S Jafari, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics. 2019;9(7):1923-1951.
41 P Yin, X Han, L Yu, et al. Pharmacokinetic analysis for simultaneous quantification of saikosaponin A-paeoniflorin in normal and poststroke depression rats: a comparative study. J Pharm Biomed Anal. 2023;233:115485.
42 MH Kwon, JS Jeong, J Ryu, YW Cho, HE Kang. Pharmacokinetics and brain distribution of the active components of DA-9805, saikosaponin A, paeonol, and imperatorin in rats. Pharmaceutics. 2018;10(3):133.
43 Y He, Z Hu, A Li, et al. Recent advances in biotransformation of saponins. Molecules. 2019;24(13):2635.
44 G Liu, Y Tian, G Li, L Xu, R Song, Z Zhang. Metabolism of saikosaponin a in rats: diverse oxidations on the aglycone moiety in liver and intestine in addition to hydrolysis of glycosidic bonds. Drug Metab Dispos. 2013;41(3):622-633.
45 H Yao, J Liu, S Xu, Z Zhu, J Xu. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov. 2017;12(2):121-140.
46 MA Corsello, NK Garg. Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Nat Prod Rep. 2015;32(3):359-366.
47 J Gutman, S Kovacs, G Dorsey, A Stergachis, FO Ter Kuile. Safety, tolerability, and efficacy of repeated doses of dihydroartemisinin-piperaquine for prevention and treatment of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2017;17(2):184-193.
48 F Guo, Q Zhang, B Zhang, et al. Burst-firing patterns in the prefrontal cortex underlying the neuronal mechanisms of depression probed by antidepressants. Eur J Neurosci. 2014;40(10):3538-3547.
49 GS Zhang, PY Hu, DX Li, et al. Formulations, hemolytic and pharmacokinetic studies on saikosaponin a and saikosaponin d compound liposomes. Molecules. 2015;20(4):5889-5907.
50 M Zhou, W Xie, Y Hong, N Deng, Y Wang, Y Zhu. Saikosaponin-a loaded methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles for improved solubility and reduced hemolysis of saikosaponin-a. Mater Lett. 2018;230:139-142.
PDF

Accesses

Citations

Detail

Sections
Recommended

/