Liquid–liquid phase separation in diseases

Xinyue Zhang1, Lin Yuan2, Wanlu Zhang1, Yi Zhang1, Qun Wu3, Chunting Li1, Min Wu4,5(), Yongye Huang1,6()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e640. DOI: 10.1002/mco2.640
REVIEW

Liquid–liquid phase separation in diseases

  • Xinyue Zhang1, Lin Yuan2, Wanlu Zhang1, Yi Zhang1, Qun Wu3, Chunting Li1, Min Wu4,5(), Yongye Huang1,6()
Author information +
History +

Abstract

Liquid–liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA–RNA and RNA–protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein–RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.

Keywords

cancer / neurodegenerative disease / phase separation / RNA methylation / stress granule

Cite this article

Download citation ▾
Xinyue Zhang, Lin Yuan, Wanlu Zhang, Yi Zhang, Qun Wu, Chunting Li, Min Wu, Yongye Huang. Liquid–liquid phase separation in diseases. MedComm, 2024, 5(7): e640 https://doi.org/10.1002/mco2.640

References

1 OC Ubah, HM Wallace. Cancer therapy: Targeting mitochondria and other sub-cellular organelles. Curr Pharm Des. 2014;20(2):201-222.
2 SF Banani, HO Lee, AA Hyman, MK Rosen. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285-298.
3 X Tong, R Tang, J Xu, et al. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther. 2022;7(1):221.
4 J Ren, Z Zhang, Z Zong, L Zhang, F Zhou. Emerging implications of phase separation in cancer. Adv Sci (Weinh). 2022;9(31):e2202855.
5 J Guillen-Boixet, A Kopach, AS Holehouse, et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell. 2020;181(2):346-361. e17.
6 DW Sanders, N Kedersha, DSW Lee, et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell. 2020;181(2):306-324. e28.
7 DM Mitrea, RW Kriwacki. Phase separation in biology; functional organization of a higher order. Cell Commun Signal. 2016;14:1.
8 JJ Ferrie, JP Karr, R Tjian, X Darzacq. “Structure”-function relationships in eukaryotic transcription factors: the role of intrinsically disordered regions in gene regulation. Mol Cell. 2022;82(21):3970-3984.
9 T Mittag, RV Pappu. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell. 2022;82(12):2201-2214.
10 S Boeynaems, S Chong, J Gsponer, et al. Phase separation in biology and disease; current perspectives and open questions. J Mol Biol. 2023;435(5):167971.
11 D Tauber, G Tauber, R Parker. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem Sci. 2020;45(9):764-778.
12 M Lavalee, N Curdy, C Laurent, JJ Fournie, DM Franchini. Cancer cell adaptability: turning ribonucleoprotein granules into targets. Trends Cancer. 2021;7(10):902-915.
13 TR Simmons, AD Ellington, LM Contreras. RNP-based control systems for genetic circuits in synthetic biology beyond CRISPR. Methods Mol Biol. 2022;2518:1-31.
14 M Alriquet, G Calloni, A Martinez-Limon, et al. The protective role of m1A during stress-induced granulation. J Mol Cell Biol. 2021;12(11):870-880.
15 Z Zhao, Y Qing, L Dong, et al. QKI shuttles internal m(7)G-modified transcripts into stress granules and modulates mRNA metabolism. Cell. 2023;186(15):3208-3226. e27.
16 R Delli Ponti, L Broglia, A Vandelli, et al. A high-throughput approach to predict A-to-I effects on RNA structure indicates a change of double-stranded content in noncoding RNAs. IUBMB Life. 2023;75(5):411-426.
17 Y Fu, X Zhuang. m(6)A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol. 2020;16(9):955-963.
18 B Nsengimana, FA Khan, EE Ngowi, et al. Processing body (P-body) and its mediators in cancer. Mol Cell Biochem. 2022;477(4):1217-1238.
19 K Suphakhong, M Terashima, S Wanna-Udom, et al. m6A RNA methylation regulates the transcription factors JUN and JUNB in TGF-beta-induced epithelial-mesenchymal transition of lung cancer cells. J Biol Chem. 2022;298(11):102554.
20 WJ Ni, H Lu, NN Ma, et al. RNA N(6) -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol. 2022;88(6):2525-2538.
21 KH Strang, TE Golde, BI Giasson. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019;99(7):912-928.
22 EM Mandelkow, E Mandelkow. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012;2(7):a006247.
23 GAP de Oliveira, Y Cordeiro, JL Silva, T Vieira. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. Adv Protein Chem Struct Biol. 2019;118:289-331.
24 B Tsang, I Pritisanac, SW Scherer, AM Moses, JD Forman-Kay. Phase separation as a missing mechanism for interpretation of disease mutations. Cell. 2020;183(7):1742-1756.
25 Z Feng, X Chen, X Wu, M Zhang. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J Biol Chem. 2019;294(40):14823-14835.
26 J Li, M Zhang, W Ma, et al. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed. 2022;3(1):13.
27 EW Martin, T Mittag. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry. 2018;57(17):2478-2487.
28 SF Banani, AM Rice, WB Peeples, et al. Compositional control of phase-separated cellular bodies. Cell. 2016;166(3):651-663.
29 R Ahmed, JD Forman-Kay. Aberrant phase separation: linking IDR mutations to disease. Cell Res. 2023;33(8):583-584.
30 M Goncalves-Kulik, F Schmid, MA Andrade-Navarro. One step closer to the understanding of the relationship IDR-LCR-structure. Genes (Basel). 2023;14(9):1711.
31 T Hirose, K Ninomiya, S Nakagawa, T Yamazaki. A guide to membraneless organelles and their various roles in gene regulation. Nat Rev Mol Cell Biol. 2023;24(4):288-304.
32 W Li, C Jiang, E Zhang. Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Transl Cancer Res. 2021;10(11):4929-4946.
33 J Li, Y Zhang, X Chen, L Ma, P Li, H Yu. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother. 2021;138:111520.
34 J Cable, C Brangwynne, G Seydoux, et al. Phase separation in biology and disease-a symposium report. Ann N Y Acad Sci. 2019;1452(1):3-11.
35 A Siegert, M Rankovic, F Favretto, et al. Interplay between tau and alpha-synuclein liquid-liquid phase separation. Protein Sci. 2021;30(7):1326-1336.
36 S Wegmann, B Eftekharzadeh, K Tepper, et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 2018;37(7):e98049.
37 J Sheu-Gruttadauria, IJ MacRae. Phase transitions in the assembly and function of human miRISC. Cell. 2018;173(4):946-957. e16.
38 J Liu, MA Carmell, FV Rivas, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437-1441.
39 LB Alexandrov, J Kim, NJ Haradhvala, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94-101.
40 Y Li, ND Roberts, JA Wala, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578(7793):112-121.
41 S Boyko, WK Surewicz. Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol. 2022;32(7):611-623.
42 A Zbinden, M Perez-Berlanga, P De Rossi, M Polymenidou. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev Cell. 2020;55(1):45-68.
43 JL Carey, L Guo. Liquid-liquid phase separation of TDP-43 and FUS in physiology and pathology of neurodegenerative diseases. Front Mol Biosci. 2022;9:826719.
44 Q Peng, S Tan, L Xia, et al. Phase separation in cancer: from the impacts and mechanisms to treatment potentials. Int J Biol Sci. 2022;18(13):5103-5122.
45 F Sanchez-Vega, M Mina, J Armenia, et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 2018;173(2):321-337. e10.
46 T Zhan, N Rindtorff, M Boutros. Wnt signaling in cancer. Oncogene. 2017;36(11):1461-1473.
47 N Huang, H Dong, B Shao. Phase separation in immune regulation and immune-related diseases. J Mol Med (Berl). 2022;100(10):1427-1440.
48 H Ma, M Liu, R Fu, et al. Phase separation in innate immune response and inflammation-related diseases. Front Immunol. 2023;14:1086192.
49 X Su, JA Ditlev, E Hui, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science. 2016;352(6285):595-599.
50 LE Wong, A Bhatt, PS Erdmann, et al. Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness. Nat Commun. 2020;11(1):848.
51 Q Li, P Gao. Phase separation in cGAS-STING signaling. Front Med. 2023;17(5):855-866.
52 M Rouches, SL Veatch, BB Machta. Surface densities prewet a near-critical membrane. Proc Natl Acad Sci USA. 2021;118(40):e2103401118.
53 S Banjade, MK Rosen. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife. 2014;3:e04123.
54 LB Case, JA Ditlev, MK Rosen. Regulation of transmembrane signaling by phase separation. Annu Rev Biophys. 2019;48:465-494.
55 K Jaqaman, JA Ditlev. Biomolecular condensates in membrane receptor signaling. Curr Opin Cell Biol. 2021;69:48-54.
56 E Hui, J Cheung, J Zhu, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355(6332):1428-1433.
57 A Grakoui, SK Bromley, C Sumen, et al. The immunological synapse: a molecular machine controlling T cell activation. Science. 1999;285(5425):221-227.
58 M Barda-Saad, A Braiman, R Titerence, SC Bunnell, VA Barr, LE Samelson. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat Immunol. 2005;6(1):80-89.
59 AD Douglass, RD Vale. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell. 2005;121(6):937-950.
60 JK Chung, WYC Huang, CB Carbone, et al. Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophys J. 2021;120(7):1257-1265.
61 W Yang, Y Bai, Y Xiong, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531(7596):651-655.
62 JC Houtman, H Yamaguchi, M Barda-Saad, et al. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol. 2006;13(9):798-805.
63 JA Ditlev, AR Vega, DV Koster, et al. A composition-dependent molecular clutch between T cell signaling condensates and actin. eLife. 2019;8:e42695.
64 WYC Huang, S Alvarez, Y Kondo, et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science. 2019;363(6431):1098-1103.
65 F Heinkel, L Abraham, M Ko, et al. Phase separation and clustering of an ABC transporter in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2019;116(33):16326-16331.
66 J Lin, A Weiss. Identification of the minimal tyrosine residues required for linker for activation of T cell function. J Biol Chem. 2001;276(31):29588-29595.
67 R Dong, KA Libby, F Blaeschke, et al. Rewired signaling network in T cells expressing the chimeric antigen receptor (CAR). EMBO J. 2020;39(16):e104730.
68 M Engelke, S Pirkuliyeva, J Kuhn, et al. Macromolecular assembly of the adaptor SLP-65 at intracellular vesicles in resting B cells. Sci Signal. 2014;7(339):ra79.
69 S Xia, Z Chen, C Shen, TM Fu. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein Cell. 2021;12(9):680-694.
70 Q Qiao, C Yang, C Zheng, et al. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell. 2013;51(6):766-779.
71 L David, Y Li, J Ma, E Garner, X Zhang, H Wu. Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome. Proc Natl Acad Sci USA. 2018;115(7):1499-1504.
72 L Sun, J Wu, F Du, X Chen, ZJ Chen. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786-791.
73 J Wu, L Sun, X Chen, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339(6121):826-830.
74 KP Hopfner, V Hornung. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501-521.
75 M Du, ZJ Chen. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361(6403):704-709.
76 S Chen, M Rong, Y Lv, D Zhu, Y Xiang. Regulation of cGAS activity by RNA-modulated phase separation. EMBO Rep. 2023;24(2):e51800.
77 W Xie, L Lama, C Adura, et al. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc Natl Acad Sci USA. 2019;116(24):11946-11955.
78 C Liu, J Yang, J Zheng, et al. Phase separation in cGAS-STING signaling: cytosolic DNA sensing and regulatory functions. ChemBioChem. 2023;24(10):e202300147.
79 Y Zhang, Z Ma, Y Wang, et al. Streptavidin promotes DNA binding and activation of cGAS to enhance innate immunity. iScience. 2020;23(9):101463.
80 G Xu, C Liu, S Zhou, et al. Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Mol Cell. 2021;81(13):2823-2837. e9.
81 P Yang, C Mathieu, RM Kolaitis, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181(2):325-345. e28.
82 ZS Liu, H Cai, W Xue, et al. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol. 2019;20(1):18-28.
83 F Meng, Z Yu, D Zhang, et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81(20):4147-4164. e7.
84 MJ Perugorria, P Olaizola, I Labiano, et al. Wnt-beta-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol. 2019;16(2):121-136.
85 JO Russell, SP Monga. Wnt/beta-catenin signaling in liver development, homeostasis, and pathobiology. Annu Rev Pathol. 2018;13:351-378.
86 D Piovesan, F Tabaro, L Paladin, et al. MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res. 2018;46(D1):D471-D476.
87 F Fagotto, E Jho, L Zeng, et al. Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J Cell Biol. 1999;145(4):741-756.
88 A Cliffe, F Hamada, M Bienz. A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol. 2003;13(11):960-966.
89 MI Pronobis, NM Rusan, M Peifer. A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient betacatenin destruction. eLife. 2015;4:e08022.
90 J Nong, K Kang, Q Shi, X Zhu, Q Tao, YG Chen. Phase separation of Axin organizes the beta-catenin destruction complex. J Cell Biol. 2021;220(4):e202012112.
91 M Gavagan, N Jameson, JG Zalatan. The Axin scaffold protects the kinase GSK3beta from cross-pathway inhibition. eLife. 2023;12:e85444.
92 KN Schaefer, M Peifer. Wnt/Beta-catenin signaling regulation and a role for biomolecular condensates. Dev Cell. 2019;48(4):429-444.
93 R Nusse, H Clevers. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985-999.
94 ZJ DeBruine, HE Xu, K Melcher. Assembly and architecture of the Wnt/beta-catenin signalosome at the membrane. Br J Pharmacol. 2017;174(24):4564-4574.
95 V Vamadevan, N Chaudhary, S Maddika. Ubiquitin-assisted phase separation of dishevelled-2 promotes Wnt signalling. J Cell Sci. 2022;135(24):jcs260284.
96 K Kang, Q Shi, X Wang, YG Chen. Dishevelled phase separation promotes Wnt signalosome assembly and destruction complex disassembly. J Cell Biol. 2022;221(12):e202205069.
97 J Masliah-Planchon, S Garinet, E Pasmant. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 2016;7(25):38892-38907.
98 L Santarpia, SM Lippman, AK El-Naggar. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):103-119.
99 L Shen, C Zhang, K Cui, X Liang, G Zhu, L Hong. Fer-mediated activation of the Ras-MAPK signaling pathway drives the proliferation, migration, and invasion of endometrial carcinoma cells. Mol Cell Biochem. 2023. doi:
100 M Tajan, A de Rocca Serra, P Valet, T Edouard, A Yart. SHP2 sails from physiology to pathology. Eur J Med Genet. 2015;58(10):509-525.
101 P Hof, S Pluskey, S Dhe-Paganon, MJ Eck, SE Shoelson. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998;92(4):441-450.
102 G Zhu, J Xie, W Kong, et al. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell. 2020;183(2):490-502. e18.
103 CJ Weaver, AL Patel, SY Shvartsman, MS Levine, N Treen. ERK signaling dissolves ERF repression condensates in living embryos. Proc Natl Acad Sci USA. 2022;119(9):e2119187119.
104 C Ibar, KD Irvine. Integration of Hippo-YAP signaling with metabolism. Dev Cell. 2020;54(2):256-267.
105 B Zhao, X Wei, W Li, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747-2761.
106 IM Moya, G Halder. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019;20(4):211-226.
107 F Yin, J Dong, LI Kang, X Liu. Hippo-YAP signaling in digestive system tumors. Am J Cancer Res. 2021;11(6):2495-2507.
108 F Zanconato, M Cordenonsi, S Piccolo. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29(6):783-803.
109 TT Bonello, D Cai, GC Fletcher, et al. Phase separation of Hippo signalling complexes. EMBO J. 2023;42(6):e112863.
110 D Cai, D Feliciano, P Dong, et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol. 2019;21(12):1578-1589.
111 S Ma, Z Meng, R Chen, KL Guan. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577-604.
112 X Sun, Z Ren, Y Cun, et al. Hippo-YAP signaling controls lineage differentiation of mouse embryonic stem cells through modulating the formation of super-enhancers. Nucleic Acids Res. 2020;48(13):7182-7196.
113 AT Nguyen-Lefebvre, M Bhat, JL Wrana. Sugar defeats the Hippo: glycogen regulation of the Hippo pathway in liver. Mol Cell. 2021;81(23):4768-4770.
114 Q Liu, J Li, W Zhang, et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 2021;184(22):5559-5576. e19.
115 J Hindson. Glycogen phase separation and liver cancer. Nat Rev Gastroenterol Hepatol. 2021;18(12):831.
116 M Yu, Z Peng, M Qin, et al. Interferon-gamma induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell. 2021;81(6):1216-1230. e9.
117 J Liu, J Wang, Y Liu, et al. Liquid-liquid phase separation of DDR1 counteracts the Hippo pathway to orchestrate arterial stiffening. Circ Res. 2023;132(1):87-105.
118 A Patel, HO Lee, L Jawerth, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162(5):1066-1077.
119 T Murakami, S Qamar, JQ Lin, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron. 2015;88(4):678-690.
120 VH Ryan, NL Fawzi. Physiological, pathological, and targetable membraneless organelles in neurons. Trends Neurosci. 2019;42(10):693-708.
121 NB Nedelsky, JP Taylor. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat Rev Neurol. 2019;15(5):272-286.
122 WM Babinchak, WK Surewicz. Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation. J Mol Biol. 2020;432(7):1910-1925.
123 SC Ling, M Polymenidou, DW Cleveland. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79(3):416-438.
124 A Ratti, E Buratti. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem. 2016;138(Suppl 1):95-111.
125 PJ Lukavsky, D Daujotyte, JR Tollervey, et al. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol. 2013;20(12):1443-1449.
126 J Garcia Morato, F Hans, F von Zweydorf, et al. Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nat Commun. 2022;13(1):1223.
127 E Buratti, T Dork, E Zuccato, F Pagani, M Romano, FE Baralle. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 2001;20(7):1774-1784.
128 A Prasad, V Bharathi, V Sivalingam, A Girdhar, BK Patel. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:25.
129 AE Conicella, GH Zerze, J Mittal, NL Fawzi. ALS Mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure. 2016;24(9):1537-1549.
130 A Wang, AE Conicella, HB Schmidt, et al. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 2018;37(5):e97452.
131 F Gasset-Rosa, S Lu, H Yu, et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron. 2019;102(2):339-357. e7.
132 H Yu, S Lu, K Gasior, et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science. 2021;371(6529):eabb4309.
133 J Tyedmers, A Mogk, B Bukau. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11(11):777-788.
134 FU Hartl, A Bracher, M Hayer-Hartl. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324-332.
135 M Brehme, C Voisine, T Rolland, et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 2014;9(3):1135-1150.
136 S Lu, J Hu, OA Arogundade, et al. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat Cell Biol. 2022;24(9):1378-1393.
137 V Romano, Z Quadri, FE Baralle, E Buratti. The structural integrity of TDP-43 N-terminus is required for efficient aggregate entrapment and consequent loss of protein function. Prion. 2015;9(1):1-9.
138 S Reber, J Stettler, G Filosa, et al. Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants. EMBO J. 2016;35(14):1504-1521.
139 JC Schwartz, CC Ebmeier, ER Podell, J Heimiller, DJ Taatjes, TR Cech. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev. 2012;26(24):2690-2695.
140 KD Raczynska, MD Ruepp, A Brzek, et al. FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRNPs and histone-specific transcription factors. Nucleic Acids Res. 2015;43(20):9711-9728.
141 Z Sun, Z Diaz, X Fang, et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 2011;9(4):e1000614.
142 BR Levone, SC Lenzken, M Antonaci, et al. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol. 2021;220(5):e202008030.
143 S Qamar, G Wang, SJ Randle, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions. Cell. 2018;173(3):720-734. e15.
144 TJ Kwiatkowski, DA Bosco, AL Leclerc, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205-1208.
145 D Dormann, R Rodde, D Edbauer, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010;29(16):2841-2857.
146 BA Maxwell, Y Gwon, A Mishra, et al. Ubiquitination is essential for recovery of cellular activities after heat shock. Science. 2021;372(6549):eabc3593.
147 B Wolozin, P Ivanov. Stress granules and neurodegeneration. Nat Rev Neurosci. 2019;20(11):649-666.
148 S Elbaum-Garfinkle, CP Brangwynne. Liquids, fibers, and gels: the many phases of neurodegeneration. Dev Cell. 2015;35(5):531-532.
149 Y Lin, DS Protter, MK Rosen, R Parker. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell. 2015;60(2):208-219.
150 P Brundin, R Melki, R Kopito. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11(4):301-307.
151 ZM March, OD King, J Shorter. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res. 2016;1647:9-18.
152 Y Furukawa, K Kaneko, S Watanabe, K Yamanaka, N Nukina. A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J Biol Chem. 2011;286(21):18664-18672.
153 T Nonaka, M Masuda-Suzukake, T Arai, et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 2013;4(1):124-134.
154 G Lee, N Cowan, M Kirschner. The primary structure and heterogeneity of tau protein from mouse brain. Science. 1988;239(4837):285-288.
155 M Goedert, DS Eisenberg, RA Crowther. Propagation of Tau aggregates and neurodegeneration. Annu Rev Neurosci. 2017;40:189-210.
156 EM Ingram, MG Spillantini. Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med. 2002;8(12):555-562.
157 Y Wang, E Mandelkow. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5-21.
158 H Ye, Y Han, P Li, Z Su, Y Huang. The role of post-translational modifications on the structure and function of Tau protein. J Mol Neurosci. 2022;72(8):1557-1571.
159 S Takeda, S Wegmann, H Cho, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun. 2015;6:8490.
160 S Boyko, X Qi, TH Chen, K Surewicz, WK Surewicz. Liquid-liquid phase separation of tau protein: the crucial role of electrostatic interactions. J Biol Chem. 2019;294(29):11054-11059.
161 M Islam, F Shen, D Regmi, K Petersen, MRU Karim, D Du. Tau liquid-liquid phase separation: at the crossroads of tau physiology and tauopathy. J Cell Physiol. 2022;239(6):e30853.
162 S Najafi, Y Lin, AP Longhini, et al. Liquid-liquid phase separation of Tau by self and complex coacervation. Protein Sci. 2021;30(7):1393-1407.
163 P Li, J Chen, X Wang, Z Su, M Gao, Y Huang. Liquid - liquid phase separation of tau: driving forces, regulation, and biological implications. Neurobiol Dis. 2023;183:106167.
164 X Zhang, Y Lin, NA Eschmann, et al. RNA stores tau reversibly in complex coacervates. PLoS Biol. 2017;15(7):e2002183.
165 K Ueda, H Fukushima, E Masliah, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA. 1993;90(23):11282-11286.
166 MG Spillantini, ML Schmidt, VM Lee, JQ Trojanowski, R Jakes, M Goedert. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839-840.
167 M Delenclos, JD Burgess, A Lamprokostopoulou, TF Outeiro, K Vekrellis, PJ McLean. Cellular models of alpha-synuclein toxicity and aggregation. J Neurochem. 2019;150(5):566-576.
168 J Burre, S Vivona, J Diao, M Sharma, AT Brunger, TC Sudhof. Properties of native brain alpha-synuclein. Nature. 2013;498(7453):E4-E6. discussion E6-7.
169 AS Sawner, S Ray, P Yadav, et al. Modulating alpha-synuclein liquid-liquid phase separation. Biochemistry. 2021;60(48):3676-3696.
170 D Ubbiali, M Fratini, L Piersimoni, et al. Direct observation of “elongated” conformational states in alpha-synuclein upon liquid-liquid phase separation. Angew Chem Int Ed Engl. 2022;61(46):e202205726.
171 S Ray, N Singh, R Kumar, et al. alpha-Synuclein aggregation nucleates through liquid-liquid phase separation. Nat Chem. 2020;12(8):705-716.
172 B Xu, S Huang, Y Liu, et al. Manganese promotes alpha-synuclein amyloid aggregation through the induction of protein phase transition. J Biol Chem. 2022;298(1):101469.
173 S Mukherjee, A Sakunthala, L Gadhe, et al. Liquid-liquid phase separation of alpha-synuclein: a new mechanistic insight for alpha-synuclein aggregation associated with Parkinson's disease pathogenesis. J Mol Biol. 2023;435(1):167713.
174 M Li, Y Fan, Q Li, X Wang, L Zhao, M Zhu. Liquid-liquid phase separation promotes protein aggregation and its implications in ferroptosis in Parkinson's disease dementia. Oxid Med Cell Longev. 2022;2022:7165387.
175 A Molliex, J Temirov, J Lee, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163(1):123-133.
176 K Hou, T Liu, J Li, M Xian, L Sun, J Wei. Liquid-liquid phase separation regulates alpha-synuclein aggregate and mitophagy in Parkinson's disease. Front Neurosci. 2023;17:1250532.
177 Y Xiang, Z Guo, P Zhu, J Chen, Y Huang. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019;8(5):1958-1975.
178 S Mehta, J Zhang. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer. 2022;22(4):239-252.
179 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
180 H Wu, M Fuxreiter. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell. 2016;165(5):1055-1066.
181 CH June, RS O'Connor, OU Kawalekar, S Ghassemi, MC Milone. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361-1365.
182 R Sachdev, M Hondele, M Linsenmeier, et al. Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. eLife. 2019;8:e41415.
183 O Beutel, R Maraspini, K Pombo-Garcia, C Martin-Lemaitre, A Honigmann. Phase separation of zonula occludens proteins drives formation of tight junctions. Cell. 2019;179(4):923-936. e11.
184 S Kilic, A Lezaja, M Gatti, et al. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 2019;38(16):e101379.
185 JE West, AJ Carey, GM Ylitalo, et al. Polycyclic aromatic hydrocarbons in Pacific herring (Clupea pallasii) embryos exposed to creosote-treated pilings during a piling-removal project in a nearshore marine habitat of Puget Sound. Mar Pollut Bull. 2019;142:253-262.
186 AG Larson, D Elnatan, MM Keenen, et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature. 2017;547(7662):236-240.
187 SC Tang, U Vijayakumar, Y Zhang, MJ Fullwood. Super-enhancers, phase-separated condensates, and 3D genome organization in cancer. Cancers (Basel). 2022;14(12):2866.
188 K Akiba, Y Katoh-Fukui, K Yoshida, et al. Role of liquid-liquid separation in endocrine and living cells. J Endocr Soc. 2021;5(10):bvab126.
189 G Gaglia, R Rashid, C Yapp, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22(2):151-158.
190 R Tatavosian, S Kent, K Brown, et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem. 2019;294(5):1451-1463.
191 B Nsengimana, FA Khan, UA Awan, et al. Pseudogenes and liquid phase separation in epigenetic expression. Front Oncol. 2022;12:912282.
192 A Boija, IA Klein, BR Sabari, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 2018;175(7):1842-1855. e16.
193 SJ Nair, L Yang, D Meluzzi, et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol. 2019;26(3):193-203.
194 WK Cho, JH Spille, M Hecht, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361(6400):412-415.
195 JW Russo, M Nouri, SP Balk. Androgen receptor interaction with mediator complex is enhanced in castration-resistant prostate cancer by CDK7 phosphorylation of MED1. Cancer Discov. 2019;9(11):1490-1492.
196 Y Yang, TL Willis, RW Button, et al. Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun. 2019;10(1):3759.
197 JJ Bouchard, JH Otero, DC Scott, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell. 2018;72(1):19-36. e8.
198 AS Singatulina, L Hamon, MV Sukhanova, et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 2019;27(6):1809-1821. e5.
199 E Alghoul, J Basbous, A Constantinou. Compartmentalization of the DNA damage response: mechanisms and functions. DNA Repair (Amst). 2023;128:103524.
200 JH Ahn, ES Davis, TA Daugird, et al. Phase separation drives aberrant chromatin looping and cancer development. Nature. 2021;595(7868):591-595.
201 K Taniue, N Akimitsu. Aberrant phase separation and cancer. FEBS J. 2022;289(1):17-39.
202 W Gan, X Dai, A Lunardi, et al. SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol Cell. 2015;59(6):917-930.
203 K Gao, X Jin, Y Tang, et al. Tumor suppressor SPOP mediates the proteasomal degradation of progesterone receptors (PRs) in breast cancer cells. Am J Cancer Res. 2015;5(10):3210-3220.
204 S Juhasz, A Elbakry, A Mathes, M Lobrich. ATRX promotes DNA repair synthesis and sister chromatid exchange during homologous recombination. Mol Cell. 2018;71(1):11-24. e7.
205 J An, S Ren, SJ Murphy, et al. Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol Cell. 2015;59(6):904-916.
206 C Gurrieri, P Capodieci, R Bernardi, et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst. 2004;96(4):269-279.
207 ZG Wang, D Ruggero, S Ronchetti, et al. PML is essential for multiple apoptotic pathways. Nat Genet. 1998;20(3):266-272.
208 A Kakizuka, WH Miller, K Umesono, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991;66(4):663-674.
209 T Zhang, Z Wang, M Liu, et al. Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage. Oncogene. 2022;41(29):3694-3704.
210 JC Schwartz, TR Cech, RR Parker. Biochemical properties and biological functions of FET proteins. Annu Rev Biochem. 2015;84:355-379.
211 S Reber, D Jutzi, H Lindsay, et al. The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid-liquid phase separation. Nucleic Acids Res. 2021;49(13):7713-7731.
212 H Hu, M Tian, C Ding, S Yu. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 2018;9:3083.
213 M Chen, ES Xu, NH Leisenring, et al. The fusion oncogene FUS-CHOP drives sarcomagenesis of high-grade spindle cell sarcomas in mice. Sarcoma. 2019;2019:1340261.
214 M Chen, JP Foster, IC Lock, et al. Radiation-induced phosphorylation of a prion-like domain regulates transformation by FUS-CHOP. Cancer Res. 2021;81(19):4939-4948.
215 M Li, C Chen. Regulation of metastasis in Ewing sarcoma. Cancers (Basel). 2022;14(19):4902.
216 G Boulay, GJ Sandoval, N Riggi, et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell. 2017;171(1):163-178. e19.
217 Y Oda, M Tsuneyoshi. Recent advances in the molecular pathology of soft tissue sarcoma: implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci. 2009;100(2):200-208.
218 L Yang, HA Chansky, DD Hickstein. EWS.Fli-1 fusion protein interacts with hyperphosphorylated RNA polymerase II and interferes with serine-arginine protein-mediated RNA splicing. J Biol Chem. 2000;275(48):37612-37618.
219 JJ Ryan, ML Sprunger, K Holthaus, J Shorter, ME Jackrel. Engineered protein disaggregases mitigate toxicity of aberrant prion-like fusion proteins underlying sarcoma. J Biol Chem. 2019;294(29):11286-11296.
220 CL Ren, Y Shan, P Zhang, HM Ding, YQ Ma. Uncovering the molecular mechanism for dual effect of ATP on phase separation in FUS solution. Sci Adv. 2022;8(37):eabo7885.
221 I Owen, D Yee, H Wyne, et al. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J Cell Sci. 2021;134(17):jcs258578.
222 RB Davis, T Kaur, MM Moosa, PR Banerjee. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci. 2021;30(7):1454-1466.
223 ML Nosella, M Tereshchenko, I Pritisanac, et al. O-linked-N-acetylglucosaminylation of the RNA-binding protein EWS N-terminal low complexity region reduces phase separation and enhances condensate dynamics. J Am Chem Soc. 2021;143(30):11520-11534.
224 NS Ahmed, LM Harrell, DR Wieland, MA Lay, VF Thompson, JC Schwartz. Fusion protein EWS-FLI1 is incorporated into a protein granule in cells. RNA. 2021;27(8):920-932.
225 A Navalkar, S Ghosh, S Pandey, A Paul, D Datta, SK Maji. Prion-like p53 amyloids in cancer. Biochemistry. 2020;59(2):146-155.
226 RC Allshire, HD Madhani. Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol. 2018;19(4):229-244.
227 M Mirza-Aghazadeh-Attari, A Mohammadzadeh, B Yousefi, A Mihanfar, A Karimian, M Majidinia. 53BP1: a key player of DNA damage response with critical functions in cancer. DNA Repair (Amst). 2019;73:110-119.
228 R Zhang, PD Adams. Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle. 2007;6(7):784-789.
229 Y Fujioka, JM Alam, D Noshiro, et al. Phase separation organizes the site of autophagosome formation. Nature. 2020;578(7794):301-305.
230 S Yasuda, H Tsuchiya, A Kaiho, et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature. 2020;578(7794):296-300.
231 SK Zaidi, DW Young, A Javed, et al. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer. 2007;7(6):454-463.
232 PB Singh, AG Newman. HP1-driven micro-phase separation of heterochromatin-like domains/complexes. Epigenet Insights. 2022;15:25168657221109766.
233 W Qin, A Stengl, E Ugur, et al. HP1beta carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus. 2021;12(1):44-57.
234 CL Novo, EV Wong, C Hockings, et al. Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nat Commun. 2022;13(1):3525.
235 L Zhang, X Geng, F Wang, et al. 53BP1 regulates heterochromatin through liquid phase separation. Nat Commun. 2022;13(1):360.
236 C Lukas, V Savic, S Bekker-Jensen, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13(3):243-253.
237 R Cuella-Martin, C Oliveira, HE Lockstone, S Snellenberg, N Grolmusova, JR Chapman. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol Cell. 2016;64(1):51-64.
238 C Qin, YL Wang, JY Zhou, et al. RAP80 phase separation at DNA double-strand break promotes BRCA1 recruitment. Nucleic Acids Res. 2023;51(18):9733-9747.
239 RG Roeder, WJ Rutter. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 1969;224(5216):234-237.
240 YE Guo, JC Manteiga, JE Henninger, et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572(7770):543-548.
241 K Wagh, DA Garcia, A Upadhyaya. Phase separation in transcription factor dynamics and chromatin organization. Curr Opin Struct Biol. 2021;71:148-155.
242 D Eick, M Geyer. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem Rev. 2013;113(11):8456-8490.
243 M Boehning, C Dugast-Darzacq, M Rankovic, et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol. 2018;25(9):833-840.
244 KA Burke, AM Janke, CL Rhine, NL Fawzi. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell. 2015;60(2):231-241.
245 I Kwon, M Kato, S Xiang, et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell. 2013;155(5):1049-1060.
246 Noe Gonzalez M, D Blears, JQ Svejstrup. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol. 2021;22(1):3-21.
247 CH Wu, Y Yamaguchi, LR Benjamin, et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 2003;17(11):1402-1414.
248 H Fu, R Liu, Z Jia, et al. Poly(ADP-ribosylation) of P-TEFb by PARP1 disrupts phase separation to inhibit global transcription after DNA damage. Nat Cell Biol. 2022;24(4):513-525.
249 H Lu, D Yu, AS Hansen, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018;558(7709):318-323.
250 BA Lewis, SK Das, RK Jha, D Levens. Self-assembly of promoter DNA and RNA Pol II machinery into transcriptionally active biomolecular condensates. Sci Adv. 2023;9(42):eadi4565.
251 C Li, Z Li, Z Wu, H Lu. Phase separation in gene transcription control. Acta Biochim Biophys Sin (Shanghai). 2023;55(7):1052-1063.
252 X Fang, L Wang, R Ishikawa, et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature. 2019;569(7755):265-269.
253 P Li, S Banjade, HC Cheng, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483(7389):336-340.
254 C Sonmez, I Baurle, A Magusin, et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proc Natl Acad Sci USA. 2011;108(20):8508-8513.
255 C Roden, AS Gladfelter. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol. 2021;22(3):183-195.
256 M Wu, G Xu, C Han, et al. lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription. Science. 2021;373(6554):547-555.
257 Y Su, Y Maimaitiyiming, L Wang, X Cheng, CH Hsu. Modulation of phase separation by RNA: a glimpse on N(6)-methyladenosine modification. Front Cell Dev Biol. 2021;9:786454.
258 MA Machnicka, K Milanowska, O Osman Oglou, et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 2013;41(Database issue):D262-D267.
259 J Roels, M Thenoz, B Szarzynska, et al. Aging of preleukemic thymocytes drives CpG island hypermethylation in T-cell acute lymphoblastic leukemia. Blood Cancer Discov. 2020;1(3):274-289.
260 A Putnam, L Thomas, G Seydoux. RNA granules: functional compartments or incidental condensates? Genes Dev. 2023;37(9-10):354-376.
261 RJ Ries, S Zaccara, P Klein, et al. m(6)A enhances the phase separation potential of mRNA. Nature. 2019;571(7765):424-428.
262 W Shao, X Bi, Y Pan, et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol. 2022;18(1):70-80.
263 H Qin, H Ni, Y Liu, et al. RNA-binding proteins in tumor progression. J Hematol Oncol. 2020;13(1):90.
264 X Wu, L Xu. The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev. 2022;184:114179.
265 S Piccolo, S Dupont, M Cordenonsi. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94(4):1287-1312.
266 X Hu, X Wu, K Berry, et al. Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol. 2023;25(2):323-336.
267 RH Li, T Tian, QW Ge, et al. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling. Cell Res. 2021;31(10):1088-1105.
268 RS Nozawa, T Yamamoto, M Takahashi, et al. Nuclear microenvironment in cancer: control through liquid-liquid phase separation. Cancer Sci. 2020;111(9):3155-3163.
269 P Thandapani. Super-enhancers in cancer. Pharmacol Ther. 2019;199:129-138.
270 S Sengupta, RE George. Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer. 2017;3(4):269-281.
271 M Li, M Liu, W Han, et al. LSD1 inhibition disrupts super-enhancer-driven oncogenic transcriptional programs in castration-resistant prostate cancer. Cancer Res. 2023;83(10):1684-1698.
272 B Lu, C Zou, M Yang, et al. Pharmacological inhibition of core regulatory circuitry liquid-liquid phase separation suppresses metastasis and chemoresistance in osteosarcoma. Adv Sci (Weinh). 2021;8(20):e2101895.
273 J Wei, W Zheng, NM Chapman, TL Geiger, H Chi. T cell metabolism in homeostasis and cancer immunity. Curr Opin Biotechnol. 2021;68:240-250.
274 A Danieli, S Martens. p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. J Cell Sci. 2018;131(19):jcs214304.
275 N Al-Husini, DT Tomares, O Bitar, WS Childers, JM Schrader. alpha-Proteobacterial RNA degradosomes assemble liquid-liquid phase-separated RNP bodies. Mol Cell. 2018;71(6):1027-1039. e14.
276 R Ikeda, D Noshiro, H Morishita, et al. Phosphorylation of phase-separated p62 bodies by ULK1 activates a redox-independent stress response. EMBO J. 2023;42(14):e113349.
277 SA Oakes. Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol. 2020;190(5):934-946.
278 MA Islam, MA Sooro, P Zhang. Autophagic regulation of p62 is critical for cancer therapy. Int J Mol Sci. 2018;19(5):1405.
279 M Sugiyama, T Yoshizumi, Y Yoshida, et al. p62 promotes amino acid sensitivity of mTOR pathway and hepatic differentiation in adult liver stem/progenitor cells. J Cell Physiol. 2017;232(8):2112-2124.
280 ER Gallagher, ELF Holzbaur. SQSTM1/P62 promotes lysophagy via formation of liquid-like condensates maintained by HSP27. Autophagy. 2023;19(11):3029-3030.
281 M Xia, H Yu, S Gu, et al. p62/SQSTM1 is involved in cisplatin resistance in human ovarian cancer cells via the Keap1-Nrf2-ARE system. Int J Oncol. 2014;45(6):2341-2348.
282 J Cadet, KJA Davies. Oxidative DNA damage & repair: an introduction. Free Radic Biol Med. 2017;107:2-12.
283 Y Saito, W Kimura. Roles of phase separation for cellular redox maintenance. Front Genet. 2021;12:691946.
284 F He, L Antonucci, M Karin. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis. 2020;41(4):405-416.
285 E Kania, B Pajak, A Orzechowski. Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int. 2015;2015:352794.
286 MD Bootman, T Chehab, G Bultynck, JB Parys, K Rietdorf. The regulation of autophagy by calcium signals: do we have a consensus? Cell Calcium. 2018;70:32-46.
287 Q Zheng, Y Chen, D Chen, et al. Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell. 2022;185(22):4082-4098. e22.
288 W Zhang, S Li, C Li, T Li, Y Huang. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol. 2022;13:1051998.
289 D Hanahan, M Monje. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell. 2023;41(3):573-580.
290 Q Xiao, CK McAtee, X Su. Phase separation in immune signalling. Nat Rev Immunol. 2022;22(3):188-199.
291 X Mao, J Xu, W Wang, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.
292 I Barbieri, T Kouzarides. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6):303-322.
293 N Jonkhout, J Tran, MA Smith, N Schonrock, JS Mattick, EM Novoa. The RNA modification landscape in human disease. RNA. 2017;23(12):1754-1769.
294 D Han, MM Xu. RNA Modification in the Immune System. Annu Rev Immunol. 2023;41:73-98.
295 N Liu, Q Dai, G Zheng, C He, M Parisien, T Pan. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518(7540):560-564.
296 Y Liang, G Zhan, KJ Chang, et al. The roles of m6A RNA modifiers in human cancer. J Chin Med Assoc. 2020;83(3):221-226.
297 J Li, K Chen, X Dong, et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 2022;55(1):e13157.
298 Z Bodi, A Bottley, N Archer, ST May, RG Fray. Yeast m6A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment. PLoS One. 2015;10(7):e0132090.
299 J Liu, Y Yue, D Han, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93-95.
300 G Jia, Y Fu, C He. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 2013;29(2):108-115.
301 CD Allis, T Jenuwein. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487-500.
302 H Shi, X Wang, Z Lu, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315-328.
303 CR Alarcon, H Goodarzi, H Lee, X Liu, S Tavazoie, SF Tavazoie. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015;162(6):1299-1308.
304 Q Ji, X Zong, Y Mao, SB Qian. A heat shock-responsive lncRNA Heat acts as a HSF1-directed transcriptional brake via m(6)A modification. Proc Natl Acad Sci USA. 2021;118(25):e2102175118.
305 Y An, H Duan. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21(1):14.
306 D Han, AP Longhini, X Zhang, V Hoang, MZ Wilson, KS Kosik. Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation. PLoS Biol. 2022;20(2):e3001535.
307 V Tassinari, V Cesarini, S Tomaselli, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22(1):51.
308 M Cheng, L Sheng, Q Gao, et al. The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappaB/MYC signaling network. Oncogene. 2019;38(19):3667-3680.
309 X Cai, X Wang, C Cao, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11-19.
310 I Barbieri, K Tzelepis, L Pandolfini, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017;552(7683):126-131.
311 LP Vu, BF Pickering, Y Cheng, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369-1376.
312 X Yan, F Liu, J Yan, et al. WTAP-VIRMA counteracts dsDNA binding of the m(6)A writer METTL3-METTL14 complex and maintains N(6)-adenosine methylation activity. Cell Discov. 2023;9(1):100.
313 X Wang, J Feng, Y Xue, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534(7608):575-578.
314 JZ Ma, F Yang, CC Zhou, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529-543.
315 H Bansal, Q Yihua, SP Iyer, et al. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia. 2014;28(5):1171-1174.
316 ZQ Zheng, ZH Huang, YL Liang, et al. VIRMA promotes nasopharyngeal carcinoma, tumorigenesis, and metastasis by upregulation of E2F7 in an m6A-dependent manner. J Biol Chem. 2023;299(5):104677.
317 X Qin, Y Long, X Bai, et al. The disordered C terminus of ALKBH5 promotes phase separation and paraspeckles assembly. J Biol Chem. 2023;299(8):105071.
318 C Zhang, D Samanta, H Lu, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113(14):E2047-E2056.
319 S Zhang, BS Zhao, A Zhou, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31(4):591-606. e6.
320 Z Li, P Qian, W Shao, et al. Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 2018;28(9):904-917.
321 L Zhong, D Liao, M Zhang, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019;442:252-261.
322 T Liu, Q Wei, J Jin, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48(7):3816-3831.
323 G Chang, L Shi, Y Ye, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38(6):857-871. e7.
324 Y Cheng, W Xie, BF Pickering, et al. N(6)-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021;39(7):958-972. e8.
325 Y Su, B Wang, J Huang, M Huang, T Lin. YTHDC1 positively regulates PTEN expression and plays a critical role in cisplatin resistance of bladder cancer. Cell Prolif. 2023;56(7):e13404.
326 Q Cui, H Shi, P Ye, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622-2634.
327 M Chen, L Wei, CT Law, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254-2270.
328 L Zhang, X Luo, S Qiao. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022;127(1):30-42.
329 ZW Zhang, X Teng, F Zhao, et al. METTL3 regulates m(6)A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to promote tumor progression in SHH-medulloblastoma. Cell Rep. 2022;41(4):111530.
330 Y Zhang, JG Qiu, XY Jia, et al. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Lett. 2022;553:215971.
331 Y Wang, J Chen, WQ Gao, R Yang. METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism. Cell Death Discov. 2022;8(1):143.
332 X Zhang, D Li, C Jia, H Cai, Z Lv, B Wu. METTL14 promotes tumorigenesis by regulating lncRNA OIP5-AS1/miR-98/ADAMTS8 signaling in papillary thyroid cancer. Cell Death Dis. 2021;12(6):617.
333 F Yang, WQ Yuan, J Li, YQ Luo. Knockdown of METTL14 suppresses the malignant progression of non-small cell lung cancer by reducing Twist expression. Oncol Lett. 2021;22(6):847.
334 Y Li, X He, X Lu, et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 2022;13(1):6350.
335 I Kehat, J Davis, M Tiburcy, et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011;108(2):176-183.
336 Z Dong, F Min, S Zhang, H Zhang, T Zeng. EGR1-driven METTL3 activation curtails VIM-mediated neuron injury in epilepsy. Neurochem Res. 2023;48(11):3349-3362.
337 LE Dorn, L Lasman, J Chen, et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 2019;139(4):533-545.
338 P Krishnamurthy, E Lambers, S Verma, et al. Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. FASEB J. 2010;24(7):2484-2494.
339 D Jian, Y Wang, L Jian, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020;10(20):8939-8956.
340 P Mathiyalagan, M Adamiak, J Mayourian, et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation. 2019;139(4):518-532.
341 T Berulava, E Buchholz, V Elerdashvili, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 2020;22(1):54-66.
342 H Song, X Feng, H Zhang, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15(8):1419-1437.
343 R Kumari, P Ranjan, ZG Suleiman, et al. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res. 2022;118(7):1680-1692.
344 T Lence, J Akhtar, M Bayer, et al. m(6)A modulates neuronal functions and sex determination in Drosophila. Nature. 2016;540(7632):242-247.
345 ME Hess, S Hess, KD Meyer, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013;16(8):1042-1048.
346 L Li, L Zang, F Zhang, et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet. 2017;26(13):2398-2411.
347 KJ Yoon, FR Ringeling, C Vissers, et al. Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell. 2017;171(4):877-889. e17.
348 H Xu, Y Dzhashiashvili, A Shah, et al. m(6)A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination. Neuron. 2020;105(2):293-309. e5.
349 C Ma, M Chang, H Lv, et al. RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 2018;19(1):68.
350 ES Lein, MJ Hawrylycz, N Ao, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168-176.
351 H Shi, X Zhang, YL Weng, et al. m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature. 2018;563(7730):249-253.
352 DB Dunn. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 1961;46:198-200.
353 D Wiener, S Schwartz. The epitranscriptome beyond m(6)A. Nat Rev Genet. 2021;22(2):119-131.
354 CG Baker. Transfer RNA and transfer RNA modification in differentiation and neoplasia. Introductory remarks. Cancer Res. 1971;31(5):598.
355 AK Hopper. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics. 2013;194(1):43-67.
356 J Li, H Zhang, H Wang. N(1)-methyladenosine modification in cancer biology: current status and future perspectives. Comput Struct Biotechnol J. 2022;20:6578-6585.
357 Y Zhao, Q Zhao, PJ Kaboli, et al. m1A regulated genes modulate PI3K/AKT/mTOR and ErbB pathways in gastrointestinal cancer. Transl Oncol. 2019;12(10):1323-1333.
358 B Wang, L Niu, Z Wang, Z Zhao. RNA m1A methyltransferase TRMT6 predicts poorer prognosis and promotes malignant behavior in glioma. Front Mol Biosci. 2021;8:692130.
359 F Macari, Y El-Houfi, G Boldina, et al. TRM6/61 connects PKCalpha with translational control through tRNAi(Met) stabilization: impact on tumorigenesis. Oncogene. 2016;35(14):1785-1796.
360 AM Shafik, H Zhou, J Lim, B Dickinson, P Jin. Dysregulated mitochondrial and cytosolic tRNA m1A methylation in Alzheimer's disease. Hum Mol Genet. 2022;31(10):1673-1680.
361 Z Qi, C Zhang, H Jian, et al. N(1)-Methyladenosine modification of mRNA regulates neuronal gene expression and oxygen glucose deprivation/reoxygenation induction. Cell Death Discov. 2023;9(1):159.
362 M Jorg, JE Plehn, M Kristen, et al. N1-methylation of adenosine (m(1)A) in ND5 mRNA leads to complex I dysfunction in Alzheimer's disease. Mol Psychiatry. 2024;29:1427–1439.
363 G Bourgeois, M Ney, I Gaspar, et al. Eukaryotic rRNA modification by yeast 5-methylcytosine-methyltransferases and human proliferation-associated antigen p120. PLoS One. 2015;10(7):e0133321.
364 M Li, Z Tao, Y Zhao, et al. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med. 2022;20(1):214.
365 M Turpin, G Salbert. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci. 2022;9:976862.
366 A Bird. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6-21.
367 Z Sun, S Xue, M Zhang, et al. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene. 2020;39(45):6906-6919.
368 Y Hu, C Chen, X Tong, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis. 2021;12(9):842.
369 JX Cheng, L Chen, Y Li, et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun. 2018;9(1):1163.
370 Y Tao, JG Felber, Z Zou, et al. Chemical proteomic discovery of isotype-selective covalent inhibitors of the RNA Methyltransferase NSUN2. Angew Chem Int Ed Engl. 2023;62(51):e202311924.
371 L Chi, P Delgado-Olguin. Expression of NOL1/NOP2/sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expr Patterns. 2013;13(8):319-327.
372 S Hussain, F Tuorto, S Menon, et al. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. Mol Cell Biol. 2013;33(8):1561-1570.
373 FJ Martinez, JH Lee, JE Lee, et al. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet. 2012;49(6):380-385.
374 L Van Haute, S Dietmann, L Kremer, et al. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun. 2016;7:12039.
375 L Trixl, T Amort, A Wille, et al. RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell Mol Life Sci. 2018;75(8):1483-1497.
376 A Doll, KH Grzeschik. Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome. Cytogenet Cell Genet. 2001;95(1-2):20-27.
377 S Blanco, M Frye. Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol. 2014;31:1-7.
378 T Harris, B Marquez, S Suarez, J Schimenti. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases. Biol Reprod. 2007;77(2):376-382.
379 S Kriaucionis, N Heintz. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929-930.
380 NW Penn, R Suwalski, C O'Riley, K Bojanowski, R Yura. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J. 1972;126(4):781-790.
381 B Delatte, F Wang, LV Ngoc, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 2016;351(6270):282-285.
382 HY Zhang, J Xiong, BL Qi, YQ Feng, BF Yuan. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals. Chem Commun (Camb). 2016;52(4):737-740.
383 C He, J Bozler, KA Janssen, et al. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol. 2021;28(1):62-70.
384 AE Arguello, A Li, X Sun, TW Eggert, E Mairhofer, RE Kleiner. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat Commun. 2022;13(1):4176.
385 R Wang, Z Luo, K He, MO Delaney, D Chen, J Sheng. Base pairing and structural insights into the 5-formylcytosine in RNA duplex. Nucleic Acids Res. 2016;44(10):4968-4977.
386 SM Huber, P van Delft, A Tanpure, EA Miska, S Balasubramanian. 2'-O-methyl-5-hydroxymethylcytidine: a second oxidative derivative of 5-methylcytidine in RNA. J Am Chem Soc. 2017;139(5):1766-1769.
387 D Koppers-Lalic, M Hackenberg, IV Bijnsdorp, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8(6):1649-1658.
388 MH Tan, Q Li, R Shanmugam, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017;550(7675):249-254.
389 AR Baker, FJ Slack. ADAR1 and its implications in cancer development and treatment. Trends Genet. 2022;38(8):821-830.
390 N Paz-Yaacov, L Bazak, I Buchumenski, et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep. 2015;13(2):267-276.
391 J Liu, F Wang, Y Zhang, J Liu, B Zhao. ADAR1-Mediated RNA editing and its role in cancer. Front Cell Dev Biol. 2022;10:956649.
392 Q Wang, M Miyakoda, W Yang, et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem. 2004;279(6):4952-4961.
393 M Higuchi, S Maas, FN Single, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406(6791):78-81.
394 Y Yang, S Okada, M Sakurai. Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biol. 2021;18(7):999-1013.
395 S Takeda, K Shigeyasu, Y Okugawa, et al. Activation of AZIN1 RNA editing is a novel mechanism that promotes invasive potential of cancer-associated fibroblasts in colorectal cancer. Cancer Lett. 2019;444:127-135.
396 Y Wei, H Zhang, Q Feng, et al. A novel mechanism for A-to-I RNA-edited AZIN1 in promoting tumor angiogenesis in colorectal cancer. Cell Death Dis. 2022;13(4):294.
397 Y Chen, H Lin, L Miao, J He. Role of N7-methylguanosine (m(7)G) in cancer. Trends Cell Biol. 2022;32(10):819-824.
398 Y Luo, Y Yao, P Wu, X Zi, N Sun, J He. The potential role of N(7)-methylguanosine (m7G) in cancer. J Hematol Oncol. 2022;15(1):63.
399 D Du, J He, C Ju, et al. When N(7)-methyladenosine modification meets cancer: emerging frontiers and promising therapeutic opportunities. Cancer Lett. 2023;562:216165.
400 R Ishimura, G Nagy, I Dotu, et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science. 2014;345(6195):455-459.
401 EA Orellana, Q Liu, E Yankova, et al. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81(16):3323-3338. e14.
402 I Sahun, D Marechal, PL Pereira, et al. Cognition and hippocampal plasticity in the mouse is altered by monosomy of a genomic region implicated in Down syndrome. Genetics. 2014;197(3):899-912.
403 PL Pereira, L Magnol, I Sahun, et al. A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum Mol Genet. 2009;18(24):4756-4769.
404 X Xia, Y Wang, JC Zheng. Internal m7G methylation: A novel epitranscriptomic contributor in brain development and diseases. Mol Ther Nucleic Acids. 2023;31:295-308.
405 J Chen, K Li, J Chen, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun (Lond). 2022;42(3):223-244.
406 J Ma, H Han, Y Huang, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29(12):3422-3435.
407 C Zorbas, E Nicolas, L Wacheul, E Huvelle, V Heurgue-Hamard, DL Lafontaine. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell. 2015;26(11):2080-2095.
408 J Letoquart, E Huvelle, L Wacheul, et al. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Proc Natl Acad Sci USA. 2014;111(51):E5518-E5526.
409 I Ohbayashi, M Konishi, K Ebine, M Sugiyama. Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing. Plant J. 2011;67(1):49-60.
410 M Jangani, TM Poolman, L Matthews, et al. The methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer. J Biol Chem. 2014;289(13):8931-8946.
411 Y Nakazawa, H Arai, N Fujita. The novel metastasis promoter Merm1/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zac1/p53-dependent apoptosis. Cancer Res. 2011;71(3):1146-1155.
412 H Zhao, W Su, Y Sun, Z Wu. WBSCR22 competes with long non-coding RNA Linc00346 for miR-509-5p binding site to regulate cancer stem cell phenotypes of colorectal cancer. Biochem Genet. 2020;58(3):384-398.
413 D Yan, L Tu, H Yuan, et al. WBSCR22 confers oxaliplatin resistance in human colorectal cancer. Sci Rep. 2017;7(1):15443.
414 M Cai, C Yang, Z Wang. N7-methylguanosine modification: from regulatory roles to therapeutic implications in cancer. Am J Cancer Res. 2023;13(5):1640-1655.
415 L Leetsi, K Ounap, A Abroi, R Kurg. The common partner of several methyltransferases TRMT112 regulates the expression of N6AMT1 isoforms in mammalian cells. Biomolecules. 2019;9(9):422.
416 J Karijolich, C Yi, YT Yu. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol. 2015;16(10):581-585.
417 N Guzzi, M Ciesla, PCT Ngoc, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173(5):1204-1216. e26.
418 MK Purchal, DE Eyler, M Tardu, et al. Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc Natl Acad Sci USA. 2022;119(4):e2109708119.
419 J Cerneckis, Q Cui, C He, C Yi, Y Shi. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol Sci. 2022;43(6):522-535.
420 M McMahon, A Contreras, M Holm, et al. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife. 2019;8:e48847.
421 A Babaian, K Rothe, D Girodat, et al. Loss of m(1)acp(3)Psi ribosomal RNA modification is a major feature of cancer. Cell Rep. 2020;31(5):107611.
422 L Ayadi, A Galvanin, F Pichot, V Marchand, Y Motorin. RNA ribose methylation (2'-O-methylation): occurrence, biosynthesis and biological functions. Biochim Biophys Acta Gene Regul Mech. 2019;1862(3):253-269.
423 BV Kumbhar, AD Kamble, KD Sonawane. Conformational preferences of modified nucleoside N(4)-acetylcytidine, ac4C occur at “wobble” 34th position in the anticodon loop of tRNA. Cell Biochem Biophys. 2013;66(3):797-816.
424 E Bruenger, JA Kowalak, Y Kuchino, et al. 5S rRNA modification in the hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum. FASEB J. 1993;7(1):196-200.
425 G Jin, M Xu, M Zou, S Duan. The processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic review. Mol Ther Nucleic Acids. 2020;20:13-24.
426 X Zheng, Q Wang, Y Zhou, et al. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun (Lond). 2022;42(12):1347-1366.
427 L Liao, Y He, SJ Li, et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res. 2023;33(5):355-371.
428 D Arango, D Sturgill, N Alhusaini, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7):1872-1886. e24.
429 G Wang, M Zhang, Y Zhang, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022;12(5):e738.
430 L Xie, X Zhong, W Cao, J Liu, X Zu, L Chen. Mechanisms of NAT10 as ac4C writer in diseases. Mol Ther Nucleic Acids. 2023;32:359-368.
431 Q Yang, X Lei, J He, et al. N4-acetylcytidine drives glycolysis addiction in gastric cancer via NAT10/SEPT9/HIF-1alpha positive feedback loop. Adv Sci (Weinh). 2023;10(23):e2300898.
432 T Xu, J Wang, Y Wu, et al. Ac4C enhances the translation efficiency of Vegfa mRNA and mediates central sensitization in spinal dorsal horn in neuropathic pain. Adv Sci (Weinh). 2023;10(35):e2303113.
433 Z Zhang, Y Zhang, Y Cai, et al. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-kappaB pathway in macrophages. Biochim Biophys Acta Mol Cell Res. 2023;1870(7):119521.
434 Y Ma, W Li, C Fan, Y Wang, H Jiang, W Yang. Comprehensive analysis of long non-coding RNAs N4-acetylcytidine in Alzheimer's disease mice model using high-throughput sequencing. J Alzheimers Dis. 2022;90(4):1659-1675.
435 P Boccaletto, MA Machnicka, E Purta, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303-D307.
436 S Higa-Nakamine, T Suzuki, T Uechi, et al. Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res. 2012;40(1):391-398.
437 D Tollervey, H Lehtonen, R Jansen, H Kern, EC Hurt. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell. 1993;72(3):443-457.
438 H Su, T Xu, S Ganapathy, et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene. 2014;33(11):1348-1358.
439 Z Bian, C Xu, Y Xie, et al. SNORD11B-mediated 2'-O-methylation of primary let-7a in colorectal carcinogenesis. Oncogene. 2023;42(41):3035-3046.
440 H Zhou, F Wang, H Chen, et al. Increased expression of long-noncoding RNA ZFAS1 is associated with epithelial-mesenchymal transition of gastric cancer. Aging (Albany NY). 2016;8(9):2023-2038.
441 H Wu, W Qin, S Lu, et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2'-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer. 2020;19(1):95.
442 B Lu, X Chen, X Liu, et al. C/D box small nucleolar RNA SNORD104 promotes endometrial cancer by regulating the 2'-O-methylation of PARP1. J Transl Med. 2022;20(1):618.
443 S Jasinski-Bergner, J Blumke, C Wickenhauser, B Seliger. Relevance of 2'-O-methylation and pseudouridylation for the malignant melanoma. Cancers (Basel). 2021;13(5):1167.
444 C Pauli, M Kienhofer, S Gollner, C Muller-Tidow. Epitranscriptomic modifications in acute myeloid leukemia: m(6)A and 2'-O-methylation as targets for novel therapeutic strategies. Biol Chem. 2021;402(12):1531-1546.
445 M Feder, J Pas, LS Wyrwicz, JM Bujnicki. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2'-O-methyltransferases. Gene. 2003;302(1-2):129-138.
446 DG Dimitrova, L Teysset, C Carre. RNA 2'-O-methylation (Nm) modification in human diseases. Genes (Basel). 2019;10(2):117.
447 GD Leschziner, AJ Coffey, T Andrew, et al. Q8IYL2 is a candidate gene for the familial epilepsy syndrome of partial epilepsy with pericentral spikes (PEPS). Epilepsy Res. 2011;96(1-2):109-115.
448 L Jordano, EC Robinson, A Mirza, N Skeik, L Stanberry, J Manunga. Effects of iliac tortuosity index on fenestrated endovascular aortic aneurysm repair for pararenal and thoracoabdominal aortic aneurysms. J Endovasc Ther. 2023:15266028231172375.
449 R Weissbach, AD Scadden. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA. 2012;18(3):462-471.
450 RR Dev, R Ganji, SP Singh, S Mahalingam, S Banerjee, S Khosla. Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem J. 2017;474(12):2009-2026.
451 JH Lee, R Wang, F Xiong, et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol Cell. 2021;81(16):3368-3385. e9.
452 JR Buchan, R Parker. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009;36(6):932-941.
453 KA Alexander, A Cote, SC Nguyen, et al. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol Cell. 2021;81(8):1666-1681. e6.
454 AA Hyman, CA Weber, F Julicher. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39-58.
455 G Laflamme, K Mekhail. Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Commun Biol. 2020;3(1):773.
456 S Geula, S Moshitch-Moshkovitz, D Dominissini, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science. 2015;347(6225):1002-1006.
457 Y Chen, R Wan, Z Zou, et al. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. Nat Cell Biol. 2023;25(11):1676-1690.
458 L Chen, Y Fu, Z Hu, et al. Nuclear m(6) A reader YTHDC1 suppresses proximal alternative polyadenylation sites by interfering with the 3' processing machinery. EMBO Rep. 2022;23(11):e54686.
459 M Alriquet, A Martinez-Limon, G Hanspach, et al. Assembly of proteins by free RNA during the early phase of proteostasis stress. J Proteome Res. 2019;18(7):2835-2847.
460 Y Sun, H Dai, X Dai, et al. m(1)A in CAG repeat RNA binds to TDP-43 and induces neurodegeneration. Nature. 2023;623(7987):580-587.
461 L Guo, H Ke, H Zhang, et al. TDP43 promotes stemness of breast cancer stem cells through CD44 variant splicing isoforms. Cell Death Dis. 2022;13(5):428.
462 H Ke, L Zhao, H Zhang, et al. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc Natl Acad Sci USA. 2018;115(15):E3426-E3435.
463 L Wang, G Zhan, Y Maimaitiyiming, et al. m(6)A modification confers thermal vulnerability to HPV E7 oncotranscripts via reverse regulation of its reader protein IGF2BP1 upon heat stress. Cell Rep. 2022;41(4):111546.
464 Q Zhu, C Zhang, T Qu, et al. MNX1-AS1 promotes phase separation of IGF2BP1 to drive c-Myc-mediated cell cycle progression and proliferation in lung cancer. Cancer Res. 2022;82(23):4340-4358.
465 WJ Zeng, C Lu, Y Shi, et al. Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 2020;1867(10):118795.
466 A Jiang, S Zhang, X Wang, D Li. RBM15 condensates modulate m(6)A modification of STYK1 to promote tumorigenesis. Comput Struct Biotechnol J. 2022;20:4825-4836.
467 AC Murthy, GL Dignon, Y Kan, et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol. 2019;26(7):637-648.
468 N Wang, Y Yu, R Wang, Y Chen, J Tang. mRNA-modified FUS/NRF2 signalling inhibits ferroptosis and promotes prostate cancer growth. Comput Math Methods Med. 2022;2022:8509626.
469 R Yoneda, N Ueda, R Kurokawa. m(6)A modified short RNA fragments inhibit cytoplasmic TLS/FUS aggregation induced by hyperosmotic stress. Int J Mol Sci. 2021;22(20):11014.
470 W Zhao, X Qi, L Liu, S Ma, J Liu, J Wu. Epigenetic regulation of m(6)A modifications in human cancer. Mol Ther Nucleic Acids. 2020;19:405-412.
471 K Tsuchiya, K Yoshimura, Y Inoue, et al. YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer. Oncoimmunology. 2021;10(1):1962656.
472 L Zhang, Y Li, L Zhou, et al. The m6A Reader YTHDF2 promotes bladder cancer progression by suppressing RIG-I-mediated immune response. Cancer Res. 2023;83(11):1834-1850.
473 Y Yang, Y Yan, J Yin, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6)-methyladenosine-dependent manner. Signal Transduct Target Ther. 2023;8(1):63.
474 M Zhang, J Wang, Y Jin, et al. YTHDF2-mediated FGF14-AS2 decay promotes osteolytic metastasis of breast cancer by enhancing RUNX2 mRNA translation. Br J Cancer. 2022;127(12):2141-2153.
475 X Chen, X Zhou, X Wang. m(6)A binding protein YTHDF2 in cancer. Exp Hematol Oncol. 2022;11(1):21.
476 X Wang, T Chen, C Li, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 2022;15(1):122.
477 A Schwed-Gross, H Hamiel, GP Faber, et al. Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics, leading to cell death. J Cell Sci. 2022;135(14):jcs259629.
478 A Khong, T Matheny, TN Huynh, V Babl, R Parker. Limited effects of m(6)A modification on mRNA partitioning into stress granules. Nat Commun. 2022;13(1):3735.
479 X Sun, PD Kaufman. Ki-67: more than a proliferation marker. Chromosoma. 2018;127(2):175-186.
480 T Scholzen, J Gerdes. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311-322.
481 S Cuylen, C Blaukopf, AZ Politi, et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. 2016;535(7611):308-312.
482 W Qin, JS Cheah, C Xu, et al. Dynamic mapping of proteome trafficking within and between living cells by TransitID. Cell. 2023;186(15):3307-3324. e30.
483 P Anderson, N Kedersha. RNA granules. J Cell Biol. 2006;172(6):803-808.
484 JR Wheeler, T Matheny, S Jain, R Abrisch, R Parker. Distinct stages in stress granule assembly and disassembly. eLife. 2016;5:e18413.
485 N Kedersha, MR Cho, W Li, et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol. 2000;151(6):1257-1268.
486 K Abdelmohsen, S Srikantan, Y Kuwano, M Gorospe. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA. 2008;105(51):20297-20302.
487 K Taniuchi, I Nishimori, MA Hollingsworth. Intracellular CD24 inhibits cell invasion by posttranscriptional regulation of BART through interaction with G3BP. Cancer Res. 2011;71(3):895-905.
488 JJ Li, D Xie. RACK1, a versatile hub in cancer. Oncogene. 2015;34(15):1890-1898.
489 K Thedieck, B Holzwarth, MT Prentzell, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell. 2013;154(4):859-874.
490 C Park, S Choi, YE Kim, et al. Stress granules contain Rbfox2 with cell cycle-related mRNAs. Sci Rep. 2017;7(1):11211.
491 J Zhao, X Fu, H Chen, et al. G3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancer. Br J Cancer. 2021;124(2):425-436.
492 Y Li, J Wang, S Zhong, J Li, W Du. Overexpression of G3BP1 facilitates the progression of colon cancer by activating beta?catenin signaling. Mol Med Rep. 2020;22(5):4403-4411.
493 SR Viswanathan, JT Powers, W Einhorn, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009;41(7):843-848.
494 T Hu, W Hou, E Xiao, M Long. Mechanism and effect of stress granule formation in cancer and its potential roles in breast cancer therapy. Genes Dis. 2022;9(3):659-667.
495 MJ Fournier, C Gareau, R Mazroui. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int. 2010;10:12.
496 D Mateju, B Eichenberger, F Voigt, J Eglinger, G Roth, JA Chao. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell. 2020;183(7):1801-1812. e13.
497 N Legrand, DA Dixon, C Sobolewski. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol. 2020;26(35):5223-5247.
498 C Mao, X Wang, Y Liu, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78(13):3484-3496.
499 H Li, PH Lin, P Gupta, et al. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer. 2021;20(1):118.
500 X Gao, L Jiang, Y Gong, et al. Stress granule: a promising target for cancer treatment. Br J Pharmacol. 2019;176(23):4421-4433.
501 G Fonteneau, A Redding, H Hoag-Lee, et al. Stress granules determine the development of obesity-associated pancreatic cancer. Cancer Discov. 2022;12(8):1984-2005.
502 F Wang, J Li, S Fan, Z Jin, C Huang. Targeting stress granules: a novel therapeutic strategy for human diseases. Pharmacol Res. 2020;161:105143.
503 H Zhou, J Luo, K Mou, et al. Stress granules: functions and mechanisms in cancer. Cell Biosci. 2023;13(1):86.
504 J Park, Y Wu, W Shao, et al. Poly(GR) interacts with key stress granule factors promoting its assembly into cytoplasmic inclusions. Cell Rep. 2023;42(8):112822.
505 AP Sfakianos, LE Mellor, YF Pang, et al. The mTOR-S6 kinase pathway promotes stress granule assembly. Cell Death Differ. 2018;25(10):1766-1780.
506 E Grabocka, D Bar-Sagi. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell. 2016;167(7):1803-1813. e12.
507 T Vanderweyde, K Youmans, L Liu-Yesucevitz, B Wolozin. Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology. 2013;59(6):524-533.
508 D Dormann, C Haass. TDP-43 and FUS: a nuclear affair. Trends Neurosci. 2011;34(7):339-348.
509 DA Bosco, N Lemay, HK Ko, et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet. 2010;19(21):4160-4175.
510 LA Becker, B Huang, G Bieri, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367-371.
511 DJ Apicco, PEA Ash, B Maziuk, et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci. 2018;21(1):72-80.
512 Y Dor, H Cedar. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392(10149):777-786.
513 H Seimiya. Crossroads of telomere biology and anticancer drug discovery. Cancer Sci. 2020;111(9):3089-3099.
514 L Liao, Y He, SJ Li, et al. Anti-HIV drug elvitegravir suppresses cancer metastasis via increased proteasomal degradation of m6A methyltransferase METTL3. Cancer Res. 2022;82(13):2444-2457.
515 E Yankova, W Blackaby, M Albertella, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597-601.
516 F Fiorentino, M Menna, D Rotili, S Valente, A Mai. METTL3 from target validation to the first small-molecule inhibitors: a medicinal chemistry journey. J Med Chem. 2023;66(3):1654-1677.
517 JN Wang, F Wang, J Ke, et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med. 2022;14(640):eabk2709.
518 ML Sobah, C Liongue, AC Ward. SOCS proteins in immunity, inflammatory diseases, and immune-related cancer. Front Med (Lausanne). 2021;8:727987.
519 X Yang, S Zhang, C He, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020;19(1):46.
520 H Zhou, K Yin, Y Zhang, J Tian, S Wang. The RNA m6A writer METTL14 in cancers: roles, structures, and applications. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188609.
521 G Morad, BA Helmink, P Sharma, JA Wargo. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184(21):5309-5337.
522 J Qu, H Yan, Y Hou, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol. 2022;15(1):8.
523 J Chen, C Xu, K Yang, et al. Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment. Nat Commun. 2023;14(1):1161.
524 A Malacrida, M Rivara, A Di Domizio, et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem. 2020;28(4):115300.
525 N Li, Y Kang, L Wang, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020;117(33):20159-20170.
526 B El Hassouni, D Sarkisjan, JC Vos, E Giovannetti, GJ Peters. Targeting the ribosome biogenesis key molecule fibrillarin to avoid chemoresistance. Curr Med Chem. 2019;26(33):6020-6032.
527 P Pietras, A Aulas, MM Fay, et al. Translation inhibition and suppression of stress granules formation by cisplatin. Biomed Pharmacother. 2022;145:112382.
528 RJ Wheeler. Therapeutics-how to treat phase separation-associated diseases. Emerg Top Life Sci. 2020;4(3):307-318.
529 BA Conti, M Oppikofer. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol Sci. 2022;43(10):820-837.
530 M Biesaga, M Frigole-Vivas, X Salvatella. Intrinsically disordered proteins and biomolecular condensates as drug targets. Curr Opin Chem Biol. 2021;62:90-100.
531 Z Zou, J Wei, Y Chen, et al. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol Cell. 2023;83(23):4304-4317.e8.
532 Y Wang, C Yu, G Pei, W Jia, T Li, P Li. Dissolution of oncofusion transcription factor condensates for cancer therapy. Nat Chem Biol. 2023;19(10):1223-1234.
533 X Li, S Ma, Y Deng, P Yi, J Yu. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022;21(1):76.
534 H Huang, H Weng, J Chen. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270-288.
535 C Feng, R Song, G Sun, et al. Immobilization of coacervate microcapsules in multilayer sodium alginate beads for efficient oral anticancer drug delivery. Biomacromolecules. 2014;15(3):985-996.
536 TZ Jia, PH Wang, T Niwa, I Mamajanov. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci. 2021;46(3):79.
537 W Xiao, MD Jakimowicz, I Zampetakis, et al. Biopolymeric coacervate microvectors for the delivery of functional proteins to cells. Adv Biosyst. 2020;4(11):e2000101.
538 U Sahin, K Kariko, O Tureci. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759-780.
539 S Qin, X Tang, Y Chen, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166.
540 J Fu, H Dong, J Wu, Y Jin. Emerging progress of RNA-based antitumor therapeutics. Int J Biol Sci. 2023;19(10):3159-3183.
PDF

Accesses

Citations

Detail

Sections
Recommended

/