Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier

Cui Yang, Guangdong Liu, Xi Chen, Weidong Le()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e638. DOI: 10.1002/mco2.638
REVIEW

Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier

  • Cui Yang, Guangdong Liu, Xi Chen, Weidong Le()
Author information +
History +

Abstract

The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.

Keywords

Alzheimer's disease / cerebellum / dementia / neurodegenerative diseases / pathological and biochemical profiles / structural and functional neuroimaging

Cite this article

Download citation ▾
Cui Yang, Guangdong Liu, Xi Chen, Weidong Le. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm, 2024, 5(7): e638 https://doi.org/10.1002/mco2.638

References

1 DJ Graham, DR Wylie. Zebrin-immunopositive and -immunonegative stripe pairs represent functional units in the pigeon vestibulocerebellum. J Neurosci. 2012;32(37):12769-12779.
2 KA Aldinger, Z Thomson, IG Phelps, et al. Spatial and cell type transcriptional landscape of human cerebellar development. Nat Neurosci. 2021;24(8):1163-1175.
3 P Chadderton, TW Margrie, M Hausser. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428(6985):856-860.
4 A Zanatta, C Cherici, A Bargoni, et al. Vincenzo Malacarne (1744-1816) and the first description of the human cerebellum. Cerebellum. 2018;17(4):461-464.
5 CI De Zeeuw, SG Lisberger, JL Raymond. Diversity and dynamism in the cerebellum. Nat Neurosci. 2021;24(2):160-167.
6 JL Verpeut, S Bergeler, M Kislin, et al. Cerebellar contributions to a brainwide network for flexible behavior in mice. Commun Biol. 2023;6(1):605.
7 JD Schmahmann, X Guell, CJ Stoodley, MA Halko. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337-364.
8 H Yu, M Wang, Q Yang, et al. The electrophysiological and neuropathological profiles of cerebellum in APP(swe)/PS1(DeltaE9) mice: A hypothesis on the role of cerebellum in Alzheimer's disease. Alzheimers Dement. 2023;19(6):2365-2375.
9 PL Strick, RP Dum, JA Fiez. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413-434.
10 NM Beeraka, VN Nikolenko, ZF Khaidarovich, et al. Recent investigations on the functional role of cerebellar neural networks in motor functions & nonmotor functions - neurodegeneration. Curr Neuropharmacol. 2022;20(10):1865-1878.
11 J Zhou, P Jangili, S Son, MS Ji, M Won, JS Kim. Fluorescent diagnostic probes in neurodegenerative diseases. Adv Mater. 2020;32(51):e2001945.
12 E Vegeto, A Villa, S Della Torre, et al. The role of sex and sex hormones in neurodegenerative diseases. Endocr Rev. 2020;41(2):273-319.
13 A Shamsi, M Furkan, RH Khan, MS Khan, M Shahwan, DK Yadav. Comprehensive insight into the molecular interaction of rutin with human transferrin: Implication of natural compounds in neurodegenerative diseases. Int J Biol Macromol. 2023;253(Pt 1):126643.
14 MY Tang, FA Gorin, PJ Lein. Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. Ageing Neurodegener Dis. 2022;2:2.
15 H Liu, H Qiu, J Yang, J Ni, W Le. Chronic hypoxia facilitates Alzheimer's disease through demethylation of gamma-secretase by downregulating DNA methyltransferase 3b. Alzheimers Dement. 2016;12(2):130-143.
16 F Amin, A Shamsi, MN Asghar, et al. Alzheimer's: a progressive brain disease: causes, symptoms, and prevention. Biological, Diagnostic and herapeutic Advances in Alzheimer's Diesease. Springer, Singapore; 2019.
17 P Chen, K Zhao, H Zhang, et al. Altered global signal topography in Alzheimer's disease. EBioMedicine. 2023;89:104455.
18 JA Bernard. Don't forget the little brain: A framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev. 2022;137:104639.
19 Q Liu, C Liu, Y Chen, Y Zhang. Cognitive dysfunction following cerebellar stroke: insights gained from neuropsychological and neuroimaging research. Neural Plast. 2022;2022:3148739.
20 Q Yao, F Tang, Y Wang, et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: a randomized clinical trial. Brain Stimul. 2022;15(4):910-920.
21 DS Roy, A Arons, TI Mitchell, M Pignatelli, TJ Ryan, S Tonegawa. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature. 2016;531(7595):508-512.
22 S Calafate, G Ozturan, N Thrupp, et al. Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer's disease. Nat Neurosci. 2023;26(6):1021-1031.
23 AK Leonpacher, ME Peters, LT Drye, et al. Effects of citalopram on neuropsychiatric symptoms in Alzheimer's dementia: evidence from the CitAD Study. Am J Psychiatry. 2016;173(5):473-480.
24 GD Femminella, G Rengo, K Komici, et al. Autonomic dysfunction in Alzheimer's disease: tools for assessment and review of the literature. J Alzheimers Dis. 2014;42(2):369-377.
25 MW Albers, GC Gilmore, J Kaye, et al. At the interface of sensory and motor dysfunctions and Alzheimer's disease. Alzheimers Dement. 2015;11(1):70-98.
26 H Ding, W Qin, T Jiang, Y Zhang, C Yu. Volumetric variation in subregions of the cerebellum correlates with working memory performance. Neurosci Lett. 2012;508(1):47-51.
27 GA Blokland, KL McMahon, PM Thompson, et al. Genetic effects on the cerebellar role in working memory: same brain, different genes? Neuroimage. 2014;86:392-403.
28 G Zhao, H Zhang, L Ma, et al. Reduced volume of the left cerebellar lobule VIIb and its increased connectivity within the cerebellum predict more general psychopathology one year later via worse cognitive flexibility in children. Dev Cogn Neurosci. 2023;63:101296.
29 I Begue, Y Elandaloussi, F Delavari, et al. The cerebellum and cognitive function: anatomical evidence from a transdiagnostic sample. Cerebellum. 2023.
30 M Kuper, P Kaschani, M Thurling, et al. Cerebellar fMRI activation increases with increasing working memory demands. Cerebellum. 2016;15(3):322-335.
31 J Mehnert, L Schulte, D Timmann, A May. Activity and connectivity of the cerebellum in trigeminal nociception. Neuroimage. 2017;150:112-118.
32 KH E, SH Chen, MH Ho, JE Desmond. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593-615.
33 RM Kelly, PL Strick. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432-8444.
34 C Habas, N Kamdar, D Nguyen, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586-8594.
35 FM Krienen, RL Buckner. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485-2497.
36 P Marien, A Beaton. The enigmatic linguistic cerebellum: clinical relevance and unanswered questions on nonmotor speech and language deficits in cerebellar disorders. Cerebellum Ataxias. 2014;1:12.
37 H Nakatani, Y Nakamura, K Okanoya. Respective involvement of the right cerebellar Crus I and II in syntactic and semantic processing for comprehension of language. Cerebellum. 2023;22(4):739-755.
38 CJ Stoodley, JD Schmahmann. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489-501.
39 CJ Stoodley, JP MacMore, N Makris, JC Sherman, JD Schmahmann. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. Neuroimage Clin. 2016;12:765-775.
40 MMK Bruchhage, S Correia, P Malloy, S Salloway, S Deoni. Machine learning classification identifies cerebellar contributions to early and moderate cognitive decline in Alzheimer's disease. Front Aging Neurosci. 2020;12:524024.
41 F Hoche, X Guell, MG Vangel, JC Sherman, JD Schmahmann. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248-270.
42 S Diekelmann, J Born. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114-126.
43 L Peter-Derex, P Yammine, H Bastuji, B Croisile. Sleep and Alzheimer's disease. Sleep Med Rev. 2015;19:29-38.
44 CI De Zeeuw, FE Hoebeek, M Schonewille. Causes and consequences of oscillations in the cerebellar cortex. Neuron. 2008;58(5):655-658.
45 P Andre, P Arrighi. Hipnic modulation of cerebellar information processing: implications for the cerebro-cerebellar dialogue. Cerebellum. 2003;2(2):84-95.
46 D Popa, M Spolidoro, RD Proville, N Guyon, L Belliveau, C Lena. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33(15):6552-6556.
47 A Torres-Herraez, TC Watson, L Rondi-Reig. Delta oscillations coordinate intracerebellar and cerebello-hippocampal network dynamics during sleep. J Neurosci. 2022;42(11):2268-2281.
48 G Huang, Y Fang, W Zhang, et al. Altered thalamic functional connectivity and cerebral blood flow in insomnia disorder: a resting-state functional magnetic resonance imaging study. Clin Imaging. 2022;88:17-23.
49 S Li, BA Wang, C Li, et al. Progressive gray matter hypertrophy with severity stages of insomnia disorder and its relevance for mood symptoms. Eur Radiol. 2021;31(8):6312-6322.
50 S Lin, X Ye, Y Yang, et al. Enhanced functional connectome of cerebellum in chronic insomnia patients. Brain Behav. 2023;13(7):e3103.
51 CB Canto, Y Onuki, B Bruinsma, YD van der Werf, CI De Zeeuw. The sleeping cerebellum. Trends Neurosci. 2017;40(5):309-323.
52 B Song, JC Zhu. A narrative review of cerebellar malfunctions and sleep disturbances. Front Neurosci. 2021;15:590619.
53 M Desseilles, T Dang-Vu, M Schabus, V Sterpenich, P Maquet, S Schwartz. Neuroimaging insights into the pathophysiology of sleep disorders. Sleep. 2008;31(6):777-794.
54 JL Pedroso, P Braga-Neto, AC Felicio, et al. Sleep disorders in machado-joseph disease: frequency, discriminative thresholds, predictive values, and correlation with ataxia-related motor and non-motor features. Cerebellum. 2011;10(2):291-295.
55 M Grube, FE Cooper, PF Chinnery, TD Griffiths. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci USA. 2010;107(25):11597-11601.
56 K Debas, J Carrier, P Orban, et al. Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc Natl Acad Sci USA. 2010;107(41):17839-17844.
57 PA Lewis, TJ Couch, MP Walker. Keeping time in your sleep: overnight consolidation of temporal rhythm. Neuropsychologia. 2011;49(1):115-123.
58 M Barakat, J Carrier, K Debas, et al. Sleep spindles predict neural and behavioral changes in motor sequence consolidation. Hum Brain Mapp. 2013;34(11):2918-2928.
59 S Fogel, C Vien, A Karni, H Benali, J Carrier, J Doyon. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation. Neurobiol Aging. 2017;49:154-164.
60 JN Cousins, W El-Deredy, LM Parkes, N Hennies, PA Lewis. Cued reactivation of motor learning during sleep leads to overnight changes in functional brain activity and connectivity. PLoS Biol. 2016;14(5):e1002451.
61 S Fischer, M Hallschmid, AL Elsner, J Born. Sleep forms memory for finger skills. Proc Natl Acad Sci USA. 2002;99(18):11987-11991.
62 P Maquet, S Laureys, P Peigneux, et al. Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci. 2000;3(8):831-836.
63 H Ohno, R Urushihara, H Sei, Y Morita. REM sleep deprivation suppresses acquisition of classical eyeblink conditioning. Sleep. 2002;25(8):877-881.
64 P Maquet, S Schwartz, R Passingham, C Frith. Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J Neurosci. 2003;23(4):1432-1440.
65 YE Geda, LS Schneider, LN Gitlin, et al. Neuropsychiatric symptoms in Alzheimer's disease: past progress and anticipation of the future. Alzheimers Dement. 2013;9(5):602-608.
66 HB Lee, CG Lyketsos. Depression in Alzheimer's disease: heterogeneity and related issues. Biol Psychiatry. 2003;54(3):353-362.
67 E Becker, CL Orellana Rios, C Lahmann, G Rucker, J Bauer, M Boeker. Anxiety as a risk factor of Alzheimer's disease and vascular dementia. Br J Psychiatry. 2018;213(5):654-660.
68 M Adamaszek, F D'Agata, R Ferrucci, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16(2):552-576.
69 O Baumann, JB Mattingley. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61(4):805-811.
70 H Han, J Chen, C Jeong, GH Glover. Influence of the cortical midline structures on moral emotion and motivation in moral decision-making. Behav Brain Res. 2016;302:237-251.
71 M Lupo, L Siciliano, M Leggio. From cerebellar alterations to mood disorders: a systematic review. Neurosci Biobehav Rev. 2019;103:21-28.
72 JM Annoni, R Ptak, AS Caldara-Schnetzer, A Khateb, BZ Pollermann. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann Neurol. 2003;53(5):654-658.
73 K Saxena, A Simonetti, CD Verrico, et al. Neurocognitive correlates of cerebellar volumetric alterations in youth with pediatric bipolar spectrum disorders and bipolar offspring. Curr Neuropharmacol. 2023;21(6):1367-1378.
74 O Collins, S Dillon, C Finucane, B Lawlor, RA Kenny. Parasympathetic autonomic dysfunction is common in mild cognitive impairment. Neurobiol Aging. 2012;33(10):2324-2333.
75 F Krohn, M Novello, RS van der Giessen, CI De Zeeuw, JJM Pel, LWJ Bosman. The integrated brain network that controls respiration. Elife. 2023;12:e83654.
76 S Seseke, J Baudewig, K Kallenberg, RH Ringert, F Seseke, P Dechent. Voluntary pelvic floor muscle control—an fMRI study. Neuroimage. 2006;31(4):1399-1407.
77 HA Kim, H Lee. Orthostatic hypotension in acute cerebellar infarction. J Neurol. 2016;263(1):120-126.
78 N Nisimaru. Cardiovascular modules in the cerebellum. Jpn J Physiol. 2004;54(5):431-448.
79 SY Lee, MH Chen, PL Chiang, et al. Reduced gray matter volume and respiratory dysfunction in Parkinson's disease: a voxel-based morphometry study. BMC Neurol. 2018;18(1):73.
80 AP Klein, JL Ulmer, SA Quinet, V Mathews, LP Mark. Nonmotor functions of the cerebellum: an introduction. AJNR Am J Neuroradiol. 2016;37(6):1005-1009.
81 JN Zhu, WH Yung, B Kwok-Chong Chow, YS Chan, JJ Wang. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52(1):93-106.
82 EV Golanov, DJ Reis. Vasodilation evoked from medulla and cerebellum is coupled to bursts of cortical EEG activity in rats. Am J Physiol. 1995;268(2 Pt 2):R454-R467.
83 E Dietrichs. Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science. 1984;223(4636):591-593.
84 CE Vaaga, ST Brown, IM Raman. Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray. Elife. 2020;9:e54302.
85 N Xiao, G Wu, Z Zhou, et al. Positive feedback of efferent copy via pontine nucleus facilitates cerebellum-mediated associative learning. Cell Rep. 2023;42(2):112072.
86 G Li, Z Chen, L Zhou, et al. Altered structure and functional connectivity of the central autonomic network in idiopathic rapid eye movement sleep behaviour disorder. J Sleep Res. 2021;30(3):e13136.
87 S Chokroverty, R Sachdeo, J Masdeu. Autonomic dysfunction and sleep apnea in olivopontocerebellar degeneration. Arch Neurol. 1984;41(9):926-931.
88 C Murphy. Olfactory and other sensory impairments in Alzheimer disease. Nat Rev Neurol. 2019;15(1):11-24.
89 N Sobel, V Prabhakaran, CA Hartley, et al. Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci. 1998;18(21):8990-9001.
90 I Savic, B Gulyas, M Larsson, P Roland. Olfactory functions are mediated by parallel and hierarchical processing. Neuron. 2000;26(3):735-745.
91 ZH Zhang, X Liu, B Jing, et al. Cerebellar involvement in olfaction: An fMRI Study. J Neuroimaging. 2021;31(3):517-523.
92 A Wabnegger, A Schienle. Cerebellar gray matter and olfactory performance. Chem Senses. 2019;44(7):507-510.
93 AM Grimes, CL Grady, NL Foster, T Sunderland, NJ Patronas. Central auditory function in Alzheimer's disease. Neurology. 1985;35(3):352-358.
94 PM Sens, CI de Almeida. Participation of the cerebellum in auditory processing. Braz J Otorhinolaryngol. 2007;73(2):266-270.
95 L Sang, W Qin, Y Liu, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage. 2012;61(4):1213-1225.
96 O Baumann, JB Mattingley. Scaling of neural responses to visual and auditory motion in the human cerebellum. J Neurosci. 2010;30(12):4489-4495.
97 YR Ji, Y Tona, T Wafa, et al. Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2. Nat Commun. 2022;13(1):6330.
98 AH Lockwood, RJ Salvi, ML Coad, et al. The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities. Cereb Cortex. 1999;9(1):65-76.
99 XM Xu, Y Feng, J Wang, et al. Auditory-limbic-cerebellum interactions and cognitive impairments in noise-induced hearing loss. CNS Neurosci Ther. 2023;29(3):932-940.
100 YC Chen, X Li, L Liu, et al. Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. Elife. 2015;4:e06576.
101 NE Anderson, S Sheffield, JK Hope. Superficial siderosis of the central nervous system: a late complication of cerebellar tumors. Neurology. 1999;52(1):163-169.
102 SR Komandla, K Vankadari, M Milap, H V, RM Kandadai. 18F-FDG PET/CT findings in a rare case of paraneoplastic vestibulocerebellar syndrome associated with isolated antiamphiphysin antibodies. Clin Nucl Med. 2022;47(2):e125-e128.
103 DA Llano, SS Kwok, V Devanarayan, Alzheimer's disease neuroimaging I. Reported hearing loss in Alzheimer's disease is associated with loss of brainstem and cerebellar volume. Front Hum Neurosci. 2021;15:739754.
104 M Manto, JM Bower, AB Conforto, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457-487.
105 EJ Tehovnik, E Froudarakis, F Scala, SM Smirnakis, SS Patel, AS Tolias. Visuomotor control in mice and primates. Neurosci Biobehav Rev. 2021;130:185-200.
106 CL Striemer, PA Chouinard, MA Goodale, S de Ribaupierre. Overlapping neural circuits for visual attention and eye movements in the human cerebellum. Neuropsychologia. 2015;69:9-21.
107 X Guell, JDE Gabrieli, JD Schmahmann. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage. 2018;172:437-449.
108 Z Ismail, SE Black, R Camicioli, et al. Recommendations of the 5th Canadian Consensus Conference on the diagnosis and treatment of dementia. Alzheimers Dement. 2020;16(8):1182-1195.
109 PD Fletcher, LE Downey, HL Golden, et al. Pain and temperature processing in dementia: a clinical and neuroanatomical analysis. Brain. 2015;138(Pt 11):3360-3372.
110 G Kojima, A Liljas, S Iliffe, K Walters. Prevalence of frailty in mild to moderate Alzheimer's disease: a systematic review and meta-analysis. Curr Alzheimer Res. 2017;14(12):1256-1263.
111 I Mavroudis. Cerebellar pathology in Alzheimer's disease. Hell J Nucl Med. 2019;22(Suppl):174-179.
112 K Kansal, Z Yang, AM Fishman, et al. Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain. 2017;140(3):707-720.
113 JL Pedroso, P Braga-Neto, PV de Souza, OG Barsottini. The cerebellum in Parkinson's disease and Parkinsonism in cerebellar disorders. Brain. 2013;136(Pt 9):e248.
114 A Droby, MM El Mendili, N Giladi, JM Hausdorff, I Maidan, A Mirelman. Gait and cognitive abnormalities are associated with regional cerebellar atrophy in elderly fallers—a pilot study. Gait Posture. 2021;90:99-105.
115 T Fettrow, K Hupfeld, C Hass, O Pasternak, R Seidler. Neural correlates of gait adaptation in younger and older adults. Sci Rep. 2023;13(1):3842.
116 B Maiti, KS Rawson, AB Tanenbaum, et al. Functional connectivity of vermis correlates with future gait impairments in Parkinson's disease. Mov Disord. 2021;36(11):2559-2568.
117 IS Park, NJ Lee, IJ Rhyu. Roles of the declive, folium, and tuber cerebellar vermian lobules in sportspeople. J Clin Neurol. 2018;14(1):1-7.
118 NH Barmack, VE Pettorossi. Adaptive balance in posterior cerebellum. Front Neurol. 2021;12:635259.
119 KK Gill, D Lang, JG Zwicker. Cerebellar and brainstem differences in children with developmental coordination disorder: A voxel-based morphometry study. Front Hum Neurosci. 2022;16:921505.
120 AL de Almeida Marcelino, A Horn, P Krause, AA Kuhn, WJ Neumann. Subthalamic neuromodulation improves short-term motor learning in Parkinson's disease. Brain. 2019;142(8):2198-2206.
121 WT Chen, KH Chou, LK Liu, et al. Reduced cerebellar gray matter is a neural signature of physical frailty. Hum Brain Mapp. 2015;36(9):3666-3676.
122 T Li, W Le, J Jankovic. Linking the cerebellum to Parkinson disease: an update. Nat Rev Neurol. 2023;19(11):645-654.
123 R Bai, J Guo, XY Ye, Y Xie, T Xie. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev. 2022;77:101619.
124 JO Ogbodo, CP Agbo, UO Njoku, et al. Alzheimer's Disease: Pathogenesis and therapeutic interventions. Curr Aging Sci. 2022;15(1):2-25.
125 C Yang, Q Yang, Y Xiang, XR Zeng, J Xiao, WD Le. The neuroprotective effects of oxygen therapy in Alzheimer's disease: a narrative review. Neural Regen Res. 2023;18(1):57-63.
126 JM Heckmann, WC Low, C de Villiers, et al. Novel presenilin 1 mutation with profound neurofibrillary pathology in an indigenous Southern African family with early-onset Alzheimer's disease. Brain. 2004;127(Pt 1):133-142.
127 LA Rudzinski, RM Fletcher, DW Dickson, et al. Early onset familial Alzheimer Disease with spastic paraparesis, dysarthria, and seizures and N135S mutation in PSEN1. Alzheimer Dis Assoc Disord. 2008;22(3):299-307.
128 D Sepulveda-Falla, A Barrera-Ocampo, C Hagel, et al. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest. 2014;124(4):1552-1567.
129 K Chaudhari, L Wang, J Kruse, et al. Early loss of cerebellar Purkinje cells in human and a transgenic mouse model of Alzheimer's disease. Neurol Res. 2021;43(7):570-581.
130 L Aragao Gomes, V Uytterhoeven, D Lopez-Sanmartin, et al. Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol. 2021;141(2):173-192.
131 K Andersen, BB Andersen, B Pakkenberg. Stereological quantification of the cerebellum in patients with Alzheimer's disease. Neurobiol Aging. 2012;33(1):197. e11-e20.
132 M Kozuki, T Kurata, K Miyazaki, et al. Atorvastatin and pitavastatin protect cerebellar Purkinje cells in AD model mice and preserve the cytokines MCP-1 and TNF-alpha. Brain Res. 2011;1388:32-38.
133 G Esquerda-Canals, J Marti, G Rivera-Hernandez, L Gimenez-Llort, S Villegas. Loss of deep cerebellar nuclei neurons in the 3xTg-AD mice and protection by an anti-amyloid beta antibody fragment. MAbs. 2013;5(5):660-664.
134 IA Mavroudis, MG Manani, F Petrides, et al. Dendritic and spinal pathology of the Purkinje cells from the human cerebellar vermis in Alzheimer's disease. Psychiatr Danub. 2013;25(3):221-226.
135 G Monti, M Kjolby, AMG Jensen, et al. Expression of an alternatively spliced variant of SORL1 in neuronal dendrites is decreased in patients with Alzheimer's disease. Acta Neuropathol Commun. 2021;9(1):43.
136 C Espino de la Fuente-Munoz, M Rosas-Lemus, P Moreno-Castilla, et al. Age-dependent decline in synaptic mitochondrial function is exacerbated in vulnerable brain regions of female 3xTg-AD mice. Int J Mol Sci. 2020;21(22):8727.
137 A Delacourte, L Buee. [Alzheimer's disease: the glial reaction is general and severe in all areas of the central nervous system]. C R Acad Sci III. 1989;308(13):359-365.
138 A Delacourte. General and dramatic glial reaction in Alzheimer brains. Neurology. 1990;40(1):33-37.
139 HM Hassan, MR Elnagar, E Abdelrazik, et al. Neuroprotective effect of naringin against cerebellar changes in Alzheimer's disease through modulation of autophagy, oxidative stress and tau expression: An experimental study. Front Neuroanat. 2022;16:1012422.
140 A Justin Thenmozhi, TR William Raja, T Manivasagam, U Janakiraman, MM Essa. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer's disease. Nutr Neurosci. 2017;20(6):360-368.
141 T Vanmierlo, VW Bloks, LC van Vark-van der Zee, et al. Alterations in brain cholesterol metabolism in the APPSLxPS1mut mouse, a model for Alzheimer's disease. J Alzheimers Dis. 2010;19(1):117-127.
142 KL Chang, LR Wong, HN Pee, S Yang, PC Ho. Reverting metabolic dysfunction in cortex and cerebellum of APP/PS1 Mice, a model for Alzheimer's disease by pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARgamma) agonist. Mol Neurobiol. 2019;56(11):7267-7283.
143 RM Salek, J Xia, A Innes, et al. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer's disease. Neurochem Int. 2010;56(8):937-947.
144 KH Kim, M Moon, SB Yu, I Mook-Jung, JI Kim. RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. J Alzheimers Dis. 2012;29(4):793-808.
145 WJ Lee, JA Brown, HR Kim, et al. Regional Abeta-tau interactions promote onset and acceleration of Alzheimer's disease tau spreading. Neuron. 2022;110(12):1932-1943. e5.
146 IA Mavroudis, DF Fotiou, LF Adipepe, et al. Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer's disease. Am J Alzheimers Dis Other Demen. 2010;25(7):585-591.
147 H Shimada, S Minatani, J Takeuchi, et al. Heavy tau burden with subtle amyloid beta accumulation in the cerebral cortex and cerebellum in a case of familial Alzheimer's disease with APP osaka mutation. Int J Mol Sci. 2020;21(12):4443.
148 EF Garland, O Dennett, LC Lau, et al. The mitochondrial protein TSPO in Alzheimer's disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation. 2023;20(1):186.
149 F Dinkel, D Trujillo-Rodriguez, A Villegas, et al. Decreased deposition of beta-amyloid 1–38 and increased deposition of beta-amyloid 1–42 in brain tissue of presenilin-1 e280A familial Alzheimer's disease patients. Front Aging Neurosci. 2020;12:220.
150 V Ghisays, F Lopera, DD Goradia, et al. PET evidence of preclinical cerebellar amyloid plaque deposition in autosomal dominant Alzheimer's disease-causing Presenilin-1 E280A mutation carriers. Neuroimage Clin. 2021;31:102749.
151 D Sepulveda-Falla, J Matschke, C Bernreuther, et al. Deposition of hyperphosphorylated tau in cerebellum of PS1 E280A Alzheimer's disease. Brain Pathol. 2011;21(4):452-463.
152 E Hoxha, E Boda, F Montarolo, R Parolisi, F Tempia. Excitability and synaptic alterations in the cerebellum of APP/PS1 mice. PLoS One. 2012;7(4):e34726.
153 Y Kuwabara, M Ishizeki, N Watamura, et al. Impairments of long-term depression induction and motor coordination precede Abeta accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice. J Neurochem. 2014;130(3):432-443.
154 L Ordonez-Gutierrez, I Fernandez-Perez, JL Herrera, M Anton, I Benito-Cuesta, F Wandosell. AbetaPP/PS1 transgenic mice show sex differences in the cerebellum associated with aging. J Alzheimers Dis. 2016;54(2):645-656.
155 J Du, B Sun, K Chen, L Fan, Z Wang. Antagonist of peroxisome proliferator-activated receptor gamma induces cerebellar amyloid-beta levels and motor dysfunction in APP/PS1 transgenic mice. Biochem Biophys Res Commun. 2009;384(3):357-361.
156 A Mengr, L Hruba, A Exnerova, et al. Palmitoylated prolactin-releasing peptide reduced abeta plaques and microgliosis in the cerebellum: APP/PS1 mice study. Curr Alzheimer Res. 2021;18(8):607-622.
157 H Xiong, D Callaghan, J Wodzinska, et al. Biochemical and behavioral characterization of the double transgenic mouse model (APPswe/PS1dE9) of Alzheimer's disease. Neurosci Bull. 2011;27(4):221-232.
158 S Lomoio, I Lopez-Gonzalez, E Aso, et al. Cerebellar amyloid-beta plaques: disturbed cortical circuitry in AbetaPP/PS1 transgenic mice as a model of familial Alzheimer's disease. J Alzheimers Dis. 2012;31(2):285-300.
159 KC Tsui, J Roy, SC Chau, et al. Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer's disease. Front Aging Neurosci. 2022;14:964336.
160 B Brock, R Basha, K DiPalma, et al. Co-localization and distribution of cerebral APP and SP1 and its relationship to amyloidogenesis. J Alzheimers Dis. 2008;13(1):71-80.
161 Y Sun, H Zhang, X Zhang, et al. Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of Alzheimer's disease. Redox Biol. 2023;62:102690.
162 Y Fukutani, NJ Cairns, MN Rossor, PL Lantos. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer's disease. Neurosci Lett. 1996;214(1):33-36.
163 J Wegiel, HM Wisniewski, J Dziewiatkowski, et al. Cerebellar atrophy in Alzheimer's disease-clinicopathological correlations. Brain Res. 1999;818(1):41-50.
164 SJ Baloyannis. Golgi apparatus and protein trafficking in Alzheimer's disease. J Alzheimers Dis. 2014;42(Suppl 3):S153-S162.
165 SR Saroja, A Sharma, PR Hof, AC Pereira. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer's disease. Alzheimers Dement. 2022;18(9):1602-1615.
166 R Russo, F Cattaneo, P Lippiello, et al. Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol Aging. 2018;68:123-133.
167 SJ Baloyannis. Dendritic pathology in Alzheimer's disease. J Neurol Sci. 2009;283(1-2):153-157.
168 EE Reza-Zaldivar, MA Hernandez-Sapiens, B Minjarez, et al. Dendritic spine and synaptic plasticity in Alzheimer's disease: a focus on microRNA. Front Cell Dev Biol. 2020;8:255.
169 L Fontana, L Ghezzi, AH Cross, L Piccio. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J Exp Med. 2021;218(2):e20190086.
170 MK Singh-Bains, V Linke, MDR Austria, et al. Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis. 2019;132:104589.
171 MI Alvarez, L Rivas, C Lacruz, A Toledano. Astroglial cell subtypes in the cerebella of normal adults, elderly adults, and patients with Alzheimer's disease: a histological and immunohistochemical comparison. Glia. 2015;63(2):287-312.
172 K Krbot, P Hermann, MK Skoric, et al. Distinct microglia profile in Creutzfeldt-Jakob disease and Alzheimer's disease is independent of disease kinetics. Neuropathology. 2018;38(6):591-600.
173 TI Williams, BC Lynn, WR Markesbery, MA Lovell. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging. 2006;27(8):1094-1099.
174 HU Klein, C Trumpff, HS Yang, et al. Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer's disease brain. Mol Neurodegener. 2021;16(1):75.
175 R Waseem, A Shamsi, SN Kazim, A Islam. An insight into mitochondrial dysfunction and its implications in neurological diseases. Curr Drug Targets. 2021;22(14):1585-1595.
176 CA Finney, F Delerue, WA Gold, DA Brown, A Shvetcov. Artificial intelligence-driven meta-analysis of brain gene expression identifies novel gene candidates and a role for mitochondria in Alzheimer's disease. Comput Struct Biotechnol J. 2023;21:388-400.
177 SJ Schonberger, PF Edgar, R Kydd, RL Faull, GJ Cooper. Proteomic analysis of the brain in Alzheimer's disease: molecular phenotype of a complex disease process. Proteomics. 2001;1(12):1519-1528.
178 RA Bekdash. The cholinergic system, the adrenergic system and the neuropathology of Alzheimer's disease. Int J Mol Sci. 2021;22(3):1273.
179 KL Davis, RC Mohs, D Marin, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA. 1999;281(15):1401-1406.
180 F Di Lorenzo, A Martorana, V Ponzo, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients. Front Aging Neurosci. 2013;5:2.
181 TD Bird, S Stranahan, SM Sumi, M Raskind. Alzheimer's disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol. 1983;14(3):284-293.
182 DA Santana, A Bedrat, RD Puga, et al. The role of H3K9 acetylation and gene expression in different brain regions of Alzheimer's disease patients. Epigenomics. 2022;14(11):651-670.
183 BM Francis, J Yang, E Hajderi, et al. Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer's disease. Neuropsychopharmacology. 2012;37(8):1934-1944.
184 TC Faria, HL Maldonado, LC Santos, et al. Characterization of cerebellum-specific ribosomal DNA epigenetic modifications in alzheimer's disease: should the cerebellum serve as a control tissue after all? Mol Neurobiol. 2020;57(6):2563-2571.
185 X Zhao, H Yao, X Li. Unearthing of key genes driving the pathogenesis of Alzheimer's disease via bioinformatics. Front Genet. 2021;12:641100.
186 KJ Liang, ES Carlson. Resistance, vulnerability and resilience: a review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem. 2020;170:106981.
187 S Toniolo, L Serra, G Olivito, C Marra, M Bozzali, M Cercignani. Patterns of cerebellar gray matter atrophy across Alzheimer's disease progression. Front Cell Neurosci. 2018;12:430.
188 HM Gellersen, X Guell, S Sami. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer's disease. Neuroimage Clin. 2021;30:102605.
189 HIL Jacobs, DA Hopkins, HC Mayrhofer, et al. The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain. 2018;141(1):37-47.
190 H Tabatabaei-Jafari, E Walsh, ME Shaw, N Cherbuin, Alzheimer's Disease Neuroimaging I. The cerebellum shrinks faster than normal ageing in Alzheimer's disease but not in mild cognitive impairment. Hum Brain Mapp. 2017;38(6):3141-3150.
191 W Zheng, X Liu, H Song, K Li, Z Wang. Altered functional connectivity of cognitive-related cerebellar subregions in Alzheimer's disease. Front Aging Neurosci. 2017;9:143.
192 Z Zhou, R Zhu, W Shao, et al. Changes in resting-state functional connectivity of cerebellum in amnestic mild cognitive impairment and Alzheimer's disease: a case-control study. Front Syst Neurosci. 2021;15:596221.
193 DW Kang, SM Wang, YH Um, et al. Distinctive association of the functional connectivity of the posterior cingulate cortex on memory performances in early and late amnestic mild cognitive impairment patients. Front Aging Neurosci. 2021;13:696735.
194 G Olivito, L Serra, C Marra, et al. Cerebellar dentate nucleus functional connectivity with cerebral cortex in Alzheimer's disease and memory: a seed-based approach. Neurobiol Aging. 2020;89:32-40.
195 F Bai, Z Zhang, DR Watson, et al. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biol Psychiatry. 2009;65(11):951-958.
196 F Bai, W Liao, DR Watson, et al. Mapping the altered patterns of cerebellar resting-state function in longitudinal amnestic mild cognitive impairment patients. J Alzheimers Dis. 2011;23(1):87-99.
197 F Tang, D Zhu, W Ma, Q Yao, Q Li, J Shi. Differences changes in cerebellar functional connectivity between mild cognitive impairment and Alzheimer's disease: a seed-based approach. Front Neurol. 2021;12:645171.
198 C Babiloni, K Blinowska, L Bonanni, et al. What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging. 2020;85:58-73.
199 F Zhang, R Zhong, S Li, et al. Alteration in sleep architecture and electroencephalogram as an early sign of Alzheimer's disease preceding the disease pathology and cognitive decline. Alzheimers Dement. 2019;15(4):590-597.
200 ER Paitel, KA Nielson. Cerebellar EEG source localization reveals age-related compensatory activity moderated by genetic risk for Alzheimer's disease. Psychophysiology. 2023;60(12):e14395.
201 G Cheron, D Ristori, J Marquez-Ruiz, AM Cebolla, L Ris. Electrophysiological alterations of the Purkinje cells and deep cerebellar neurons in a mouse model of Alzheimer disease (electrophysiology on cerebellum of AD mice). Eur J Neurosci. 2022;56(9):5547-5563.
202 YZ Huang, M Sommer, G Thickbroom, et al. Consensus: new methodologies for brain stimulation. Brain Stimul. 2009;2(1):2-13.
203 Y Jin, T Kim, T Kim. Effect of physical exercise on mitochondrial dysfunction and purkinje cell survival in the cerebellum of 3xTg-AD mice. J Integr Neurosci. 2023;22(5):117.
204 I Kiris, W Kukula-Koch, M Karayel-Basar, B Gurel, J Coskun, AT Baykal. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer's disease mouse model: alleviating effect of palmatine. Biomed Pharmacother. 2023;158:114111.
205 MK Herbert, MB Aerts, HB Kuiperij, et al. Addition of MHPG to Alzheimer's disease biomarkers improves differentiation of dementia with Lewy bodies from Alzheimer's disease but not other dementias. Alzheimers Dement. 2014;10(4):448-455. e2.
206 L Poh, S Razak, HM Lim, et al. AIM2 inflammasome mediates apoptotic and pyroptotic death in the cerebellum following chronic hypoperfusion. Exp Neurol. 2021;346:113856.
207 I Ozen, H Mai, A De Maio, et al. Purkinje cell vulnerability induced by diffuse traumatic brain injury is linked to disruption of long-range neuronal circuits. Acta Neuropathol Commun. 2022;10(1):129.
208 J Parmar, G von Jonquieres, N Gorlamandala, et al. TRPC channels activated by G protein-coupled receptors drive Ca(2+) dysregulation leading to secondary brain injury in the mouse model. Transl Stroke Res. 2023.
209 NZ Lax, IS Pienaar, AK Reeve, et al. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. Brain. 2012;135(Pt 6):1736-1750.
210 FE Chukwudelunzu, JF Meschia, NR Graff-Radford, JA Lucas. Extensive metabolic and neuropsychological abnormalities associated with discrete infarction of the genu of the internal capsule. J Neurol Neurosurg Psychiatry. 2001;71(5):658-662.
211 N Kidani, T Hishikawa, M Hiramatsu, et al. Cerebellar blood flow and gene expression in crossed cerebellar diaschisis after transient middle cerebral artery occlusion in rats. Int J Mol Sci. 2020;21(11):4137.
212 O Kantor, C Schmitz, J Feiser, et al. Moderate loss of cerebellar Purkinje cells after chronic bilateral common carotid artery occlusion in rats. Acta Neuropathol. 2007;113(5):549-558.
213 Z Xu, J Wang, H Lyu, et al. Alterations of white matter microstructure in subcortical vascular mild cognitive impairment with and without depressive symptoms. J Alzheimers Dis. 2020;73(4):1565-1573.
214 D Xia, R Sui, L Min, L Zhang, Z Zhang. Fastigial nucleus stimulation ameliorates cognitive impairment via modulating autophagy and inflammasomes activation in a rat model of vascular dementia. J Cell Biochem. 2019;120(4):5108-5117.
215 JE Galvin, S Chrisphonte, I Cohen, et al. Characterization of dementia with Lewy bodies (DLB) and mild cognitive impairment using the Lewy body dementia module (LBD-MOD). Alzheimers Dement. 2021;17(10):1675-1686.
216 F Mori, YS Piao, S Hayashi, et al. Alpha-synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J Neuropathol Exp Neurol. 2003;62(8):812-819.
217 P Reho, S Saez-Atienzar, P Ruffo, et al. Differential methylation analysis in neuropathologically confirmed dementia with Lewy bodies. Commun Biol. 2024;7(1):35.
218 BS Ye, S Lee, H Yoo, et al. Distinguishing between dementia with Lewy bodies and Alzheimer's disease using metabolic patterns. Neurobiol Aging. 2020;87:11-17.
219 J Tulloch, L Leong, S Chen, et al. APOE DNA methylation is altered in Lewy body dementia. Alzheimers Dement. 2018;14(7):889-894.
220 S Hirano, A Sugiyama, K Arai. Noradrenergic pathway to the cerebellum: the study must go on. Cerebellum. 2023;22(6):1052-1054.
221 SJ Colloby, JT O'Brien, JP Taylor. Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: a VBM-DARTEL study. Psychiatry Res. 2014;223(3):187-191.
222 T Monvoisin-Joly, E Furcieri, E Chabran, et al. Neural basis of writing in prodromal to mild dementia with lewy bodies. Int J Geriatr Psychiatry. 2024;39(1):e6056.
223 E Choi, JW Han, SW Suh, et al. Altered resting state brain metabolic connectivity in dementia with Lewy bodies. Front Neurol. 2022;13:847935.
224 SP Caminiti, M Tettamanti, A Sala, et al. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies. J Cereb Blood Flow Metab. 2017;37(4):1311-1325.
225 NA Singh, AW Goodrich, J Graff-Radford, et al. Altered structural and functional connectivity in posterior cortical atrophy and dementia with lewy bodies. Neuroimage. 2024;290:120564.
226 N Miyazawa, T Shinohara, T Nagasaka, M Hayashi. Hypermetabolism in patients with dementia with Lewy bodies. Clin Nucl Med. 2010;35(7):490-493.
227 J Lu, J Ge, K Chen, et al. Consistent abnormalities in metabolic patterns of lewy body dementias. Mov Disord. 2022;37(9):1861-1871.
228 EL van der Ende, C Heller, A Sogorb-Esteve, et al. Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study. J Neuroinflammation. 2022;19(1):217.
229 Y Chen, R Landin-Romero, F Kumfor, M Irish, JR Hodges, O Piguet. Cerebellar structural connectivity and contributions to cognition in frontotemporal dementias. Cortex. 2020;129:57-67.
230 M Bocchetta, MJ Cardoso, DM Cash, S Ourselin, JD Warren, JD Rohrer. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia. Neuroimage Clin. 2016;11:287-290.
231 K Ishihara, S Araki, N Ihori, J Shiota, M Kawamura, I Nakano. An autopsy case of frontotemporal dementia with severe dysarthria and motor neuron disease showing numerous basophilic inclusions. Neuropathology. 2006;26(5):447-454.
232 R Hasan, J Humphrey, C Bettencourt, et al. Transcriptomic analysis of frontotemporal lobar degeneration with TDP-43 pathology reveals cellular alterations across multiple brain regions. Acta Neuropathol. 2022;143(3):383-401.
233 A Kaliszewska, J Allison, TT Col, C Shaw, N Arias. Elucidating the role of cerebellar synaptic dysfunction in C9orf72-ALS/FTD—a systematic review and meta-analysis. Cerebellum. 2022;21(4):681-714.
234 P Gami-Patel, I van Dijken, LH Meeter, et al. Unfolded protein response activation in C9orf72 frontotemporal dementia is associated with dipeptide pathology and granulovacuolar degeneration in granule cells. Brain Pathol. 2021;31(1):163-173.
235 A Quaegebeur, I Glaria, T Lashley, AM Isaacs. Soluble and insoluble dipeptide repeat protein measurements in C9orf72-frontotemporal dementia brains show regional differential solubility and correlation of poly-GR with clinical severity. Acta Neuropathol Commun. 2020;8(1):184.
236 V Bottero, F Alrafati, JA Santiago, JA Potashkin. Transcriptomic and network meta-analysis of frontotemporal dementias. Front Mol Neurosci. 2021;14:747798.
237 F Zhang, A Rakhimbekova, T Lashley, T Madl. Brain regions show different metabolic and protein arginine methylation phenotypes in frontotemporal dementias and Alzheimer's disease. Prog Neurobiol. 2023;221:102400.
238 JM Papma, LC Jiskoot, JL Panman, et al. Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion. Neurology. 2017;89(12):1256-1264.
239 JL Whitwell, BF Boeve, SD Weigand, et al. Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images. Eur J Neurol. 2015;22(5):745-752.
240 L Sellami, M Bocchetta, M Masellis, et al. Distinct neuroanatomical correlates of neuropsychiatric symptoms in the three main forms of genetic frontotemporal dementia in the GENFI cohort. J Alzheimers Dis. 2018;65(1):147-163.
241 Y Chen, F Kumfor, R Landin-Romero, M Irish, O Piguet. The cerebellum in frontotemporal dementia: a meta-analysis of neuroimaging studies. Neuropsychol Rev. 2019;29(4):450-464.
242 MC McKenna, RH Chipika, S Li Hi Shing, et al. Infratentorial pathology in frontotemporal dementia: cerebellar grey and white matter alterations in FTD phenotypes. J Neurol. 2021;268(12):4687-4697.
243 EG Spinelli, A Ghirelli, S Basaia, et al. Structural MRI signatures in genetic presentations of the frontotemporal dementia/motor neuron disease spectrum. Neurology. 2021;97(16):e1594-e1607.
244 J Jankovic, EK Tan. Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795-808.
245 T Li, W Le. Biomarkers for Parkinson's disease: how good are they? Neurosci Bull. 2020;36(2):183-194.
246 MJ Hurley, DC Mash, P Jenner. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson's disease examined by RT-PCR. Eur J Neurosci. 2003;18(9):2668-2672.
247 LM Chahine, TG Beach, MC Brumm, et al. In vivo distribution of alpha-synuclein in multiple tissues and biofluids in Parkinson disease. Neurology. 2020;95(9):e1267-e1284.
248 K Seidel, M Bouzrou, N Heidemann, et al. Involvement of the cerebellum in Parkinson disease and dementia with Lewy bodies. Ann Neurol. 2017;81(6):898-903.
249 P Heman, C Barcia, A Gómez, et al. Nigral degeneration correlates with persistent activation of cerebellar Purkinje cells in MPTP-treated monkeys. Histol Histopathol. 2012;27(1):89-94.
250 M Takada, T Sugimoto, T Hattori. MPTP neurotoxicity to cerebellar Purkinje cells in mice. Neurosci Lett. 1993;150(1):49-52.
251 YA Khadrawy, IM Mourad, HS Mohammed, NA Noor, HS Aboul Ezz. Cerebellar neurochemical and histopathological changes in rat model of Parkinson's disease induced by intrastriatal injection of rotenone. Gen Physiol Biophys. 2017;36(1):99-108.
252 JM Lee, TW Kim, SS Park, et al. Treadmill exercise improves motor function by suppressing Purkinje cell loss in parkinson disease rats. Int Neurourol J. 2018;22(Suppl 3):S147-S155.
253 H Fikry, LA Saleh, S Abdel Gawad. Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinson's disease model. CNS Neurosci Ther. 2022;28(5):732-748.
254 TL Ingram, F Shephard, S Sarmad, CA Ortori, DA Barrett, L Chakrabarti. Sex specific inflammatory profiles of cerebellar mitochondria are attenuated in Parkinson's disease. Aging (Albany NY). 2020;12(17):17713-17737.
255 M Scholefield, SJ Church, G Taylor, D Knight, RD Unwin, GJS Cooper. Multi-regional alterations in glucose and purine metabolic pathways in the Parkinson's disease dementia brain. NPJ Parkinsons Dis. 2023;9(1):66.
256 MS Nandhu, J Paul, KP Kuruvila, PM Abraham, S Antony, CS Paulose. Glutamate and NMDA receptors activation leads to cerebellar dysfunction and impaired motor coordination in unilateral 6-hydroxydopamine lesioned Parkinson's rat: functional recovery with bone marrow cells, serotonin and GABA. Mol Cell Biochem. 2011;353(1-2):47-57.
257 HM Gellersen, CC Guo, C O'Callaghan, RH Tan, S Sami, M Hornberger. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88(9):780-788.
258 R Erro, S Ponticorvo, R Manara, et al. Subcortical atrophy and perfusion patterns in Parkinson disease and multiple system atrophy. Parkinsonism Relat Disord. 2020;72:49-55.
259 C O'Callaghan, M Hornberger, JH Balsters, GM Halliday, SJ Lewis, JM Shine. Cerebellar atrophy in Parkinson's disease and its implication for network connectivity. Brain. 2016;139(Pt 3):845-855.
260 CC Piccinin, LS Campos, RP Guimaraes, et al. Differential pattern of cerebellar atrophy in tremor-predominant and akinetic/rigidity-predominant Parkinson's disease. Cerebellum. 2017;16(3):623-628.
261 G Kim, O Gautier, E Tassoni-Tsuchida, XR Ma, AD Gitler. ALS genetics: gains, losses, and implications for future therapies. Neuron. 2020;108(5):822-842.
262 R Rusina, R Vandenberghe, R Bruffaerts. Cognitive and behavioral manifestations in ALS: beyond motor system involvement. Diagnostics (Basel). 2021;11(4):624.
263 H Takahashi, K Oyanagi, F Ikuta, M Tanaka, T Yuasa, T Miyatake. Widespread multiple system degeneration in a patient with familial amyotrophic lateral sclerosis. J Neurol Sci. 1993;120(1):15-21.
264 A Hirano, LT Kurland, GP Sayre. Familial amyotrophic lateral sclerosis. A subgroup characterized by posterior and spinocerebellar tract involvement and hyaline inclusions in the anterior horn cells. Arch Neurol. 1967;16(3):232-243.
265 M Swash, CL Scholtz, G Vowles, DA Ingram. Selective and asymmetric vulnerability of corticospinal and spinocerebellar tracts in motor neuron disease. J Neurol Neurosurg Psychiatry. 1988;51(6):785-789.
266 SL Huang, LS Wu, M Lee, et al. A robust TDP-43 knock-in mouse model of ALS. Acta Neuropathol Commun. 2020;8(1):3.
267 F Geser, NJ Brandmeir, LK Kwong, et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol. 2008;65(5):636-641.
268 BG Trist, JA Fifita, A Hogan, et al. Co-deposition of SOD1, TDP-43 and p62 proteinopathies in ALS: evidence for multifaceted pathways underlying neurodegeneration. Acta Neuropathol Commun. 2022;10(1):122.
269 A Seppanen, M Pikkarainen, P Hartikainen, SC Hofmann, K Majamaa, I Alafuzoff. Expression of collagen XVII and ubiquitin-binding protein p62 in motor neuron disease. Brain Res. 2009;1247:171-177.
270 A King, S Maekawa, I Bodi, C Troakes, S Al-Sarraj. Ubiquitinated, p62 immunopositive cerebellar cortical neuronal inclusions are evident across the spectrum of TDP-43 proteinopathies but are only rarely additionally immunopositive for phosphorylation-dependent TDP-43. Neuropathology. 2011;31(3):239-249.
271 M Pikkarainen, P Hartikainen, I Alafuzoff. Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions visualized with ubiquitin-binding protein p62 immunohistochemistry. J Neuropathol Exp Neurol. 2008;67(4):280-298.
272 C Qi, BM Verheijen, Y Kokubo, et al. Tau filaments from amyotrophic lateral sclerosis/parkinsonism-dementia complex adopt the CTE fold. Proc Natl Acad Sci USA. 2023;120(51):e2306767120.
273 S Morimoto, H Hatsuta, Y Kokubo, et al. Unusual tau pathology of the cerebellum in patients with amyotrophic lateral sclerosis/parkinsonism-dementia complex from the Kii Peninsula, Japan. Brain Pathol. 2018;28(2):287-291.
274 A Baranczyk-Kuzma, E Usarek, M Kuzma-Kozakiewcz, et al. Age-related changes in tau expression in transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res. 2007;32(3):415-421.
275 S Garofalo, G Cocozza, G Bernardini, et al. Blocking immune cell infiltration of the central nervous system to tame neuroinflammation in amyotrophic lateral sclerosis. Brain Behav Immun. 2022;105:1-14.
276 CS Kao, R van Bruggen, JR Kim, et al. Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS. Nat Commun. 2020;11(1):5304.
277 E Shavit-Stein, I Abu Rahal, D Bushi, et al. Brain protease activated receptor 1 pathway: a therapeutic target in the superoxide dismutase 1 (SOD1) mouse model of amyotrophic lateral sclerosis. Int J Mol Sci. 2020;21(10):3419.
278 B Gille, M De Schaepdryver, J Goossens, et al. Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 2019;45(3):291-304.
279 RH Tan, JJ Kril, C McGinley, et al. Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions. Ann Neurol. 2016;79(2):295-305.
280 Y Takehisa, H Ujike, H Ishizu, et al. Familial amyotrophic lateral sclerosis with a novel Leu126Ser mutation in the copper/zinc superoxide dismutase gene showing mild clinical features and lewy body-like hyaline inclusions. Arch Neurol. 2001;58(5):736-740.
281 Y Machida, K Tsuchiya, M Anno, et al. Sporadic amyotrophic lateral sclerosis with multiple system degeneration: a report of an autopsy case without respirator administration. Acta Neuropathol. 1999;98(5):512-515.
282 H Sugihara, M Horiuchi, T Kamo, et al. A case of primary lateral sclerosis taking a prolonged clinical course with dementia and having an unusual dendritic ballooning. Neuropathology. 1999;19(1):77-84.
283 D Saberi, B Ott, C Dahlke, et al. The spatiotemporal pattern of degeneration in the cerebellum of the wobbler mouse. J Neuropathol Exp Neurol. 2016;75(4):347-357.
284 FT Wunsch, N Metzler-Nolte, C Theiss, V Matschke. Defects in glutathione system in an animal model of amyotrophic lateral sclerosis. Antioxidants (Basel). 2023;12(5):1014.
285 C Jung, CM Higgins, Z Xu. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem. 2002;83(3):535-545.
286 R Kabiljo, A Iacoangeli, A Al-Chalabi, I Rosenzweig. Amyotrophic lateral sclerosis and cerebellum. Sci Rep. 2022;12(1):12586.
287 S Pan, X Liu, T Liu, et al. Causal inference of genetic variants and genes in amyotrophic lateral sclerosis. Front Genet. 2022;13:917142.
288 T Prell, J Grosskreutz. The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7-8):507-515.
289 M Nowakowska-Kotas, A Korbecki, S Budrewicz, J Bladowska. Investigation of cerebellar damage in adult amyotrophic lateral sclerosis patients using magnetic resonance imaging and diffusion tensor imaging. Adv Clin Exp Med. 2023.
290 HJ Kim, SI Oh, M de Leon, et al. Structural explanation of poor prognosis of amyotrophic lateral sclerosis in the non-demented state. Eur J Neurol. 2017;24(1):122-129.
291 P Bede, O Hardiman. Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(3-4):232-241.
292 F Christidi, E Karavasilis, G Velonakis, et al. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study. Brain Imaging Behav. 2018;12(6):1730-1741.
293 F Christidi, E Karavasilis, F Riederer, et al. Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging Behav. 2018;12(2):547-563.
294 RH Tan, E Devenney, C Dobson-Stone, et al. Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One. 2014;9(8):e105632.
295 G Chen, B Zhou, H Zhu, et al. White matter volume loss in amyotrophic lateral sclerosis: A meta-analysis of voxel-based morphometry studies. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:110-117.
296 V Hartung, T Prell, C Gaser, et al. Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis. PLoS One. 2014;9(8):e104894.
297 DW Zang, Q Yang, HX Wang, G Egan, EC Lopes, SS Cheema. Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci. 2004;20(7):1745-1751.
298 K Bharti, JG S, M Benatar, et al. Functional alterations in large-scale resting-state networks of amyotrophic lateral sclerosis: a multi-site study across Canada and the United States. PLoS One. 2022;17(6):e0269154.
299 A Meoded, AE Morrissette, R Katipally, O Schanz, SJ Gotts, MK Floeter. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis. Neuroimage Clin. 2015;7:288-296.
300 F Zhou, H Gong, F Li, et al. Altered motor network functional connectivity in amyotrophic lateral sclerosis: a resting-state functional magnetic resonance imaging study. Neuroreport. 2013;24(12):657-662.
301 M Abidi, G de Marco, A Couillandre, et al. Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol. 2020;27(1):121-128.
302 RL Barry, S Babu, SA Anteraper, et al. Ultra-high field (7T) functional magnetic resonance imaging in amyotrophic lateral sclerosis: a pilot study. Neuroimage Clin. 2021;30:102648.
303 F Trojsi, F Di Nardo, G Caiazzo, et al. Hippocampal connectivity in amyotrophic lateral sclerosis (ALS): more than Papez circuit impairment. Brain Imaging Behav. 2021;15(4):2126-2138.
304 P Liu, Y Tang, W Li, et al. Brain metabolic signatures in patients with genetic and nongenetic amyotrophic lateral sclerosis. CNS Neurosci Ther. 2023;29(9):2530-2539.
305 JA Matias-Guiu, V Pytel, MN Cabrera-Martin, et al. Amyloid-and FDG-PET imaging in amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging. 2016;43(11):2050-2060.
306 MS Buhour, F Doidy, A Mondou, et al. Voxel-based mapping of grey matter volume and glucose metabolism profiles in amyotrophic lateral sclerosis. EJNMMI Res. 2017;7(1):21.
307 A Cistaro, MC Valentini, A Chio, et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur J Nucl Med Mol Imaging. 2012;39(2):251-259.
308 SJ Tabrizi, R Ghosh, BR Leavitt. Huntingtin lowering strategies for disease modification in Huntington's disease. Neuron. 2019;101(5):801-819.
309 C Fusilli, S Migliore, T Mazza, et al. Biological and clinical manifestations of juvenile Huntington's disease: a retrospective analysis. Lancet Neurol. 2018;17(11):986-993.
310 TM To, JT Ta, AM Patel, S Arndorfer, IM Abbass, R Gandhy. Healthcare resource utilization and cost among individuals with late-onset versus adult-onset Huntington's disease: a claims?based retrospective cohort study. J Med Econ. 2023;26(1):862-870.
311 M Ranganathan, SK Kostyk, DC Allain, JA Race, AM Daley. Age of onset and behavioral manifestations in Huntington's disease: An Enroll-HD cohort analysis. Clin Genet. 2021;99(1):133-142.
312 DV Jeste, L Barban, J Parisi. Reduced Purkinje cell density in Huntington's disease. Exp Neurol. 1984;85(1):78-86.
313 MK Singh-Bains, NF Mehrabi, T Sehji, et al. Cerebellar degeneration correlates with motor symptoms in Huntington disease. Ann Neurol. 2019;85(3):396-405.
314 K Sakai, C Ishida, A Morinaga, K Takahashi, M Yamada. Case study: somatic sprouts and Halo-like amorphous materials of the Purkinje cells in Huntington's disease. Cerebellum. 2015;14(6):707-710.
315 SE Dougherty, JL Reeves, M Lesort, PJ Detloff, RM Cowell. Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol. 2013;240:96-102.
316 SE Dougherty, JL Reeves, EK Lucas, KL Gamble, M Lesort, RM Cowell. Disruption of Purkinje cell function prior to huntingtin accumulation and cell loss in an animal model of Huntington disease. Exp Neurol. 2012;236(1):171-178.
317 S Bauer, CY Chen, M Jonson, L Kaczmarczyk, SS Magadi, WS Jackson. Cerebellar granule neurons induce Cyclin D1 before the onset of motor symptoms in Huntington's disease mice. Acta Neuropathol Commun. 2023;11(1):17.
318 Z Bayram-Weston, L Jones, SB Dunnett, SP Brooks. Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Res Bull. 2012;88(2-3):104-112.
319 I Kawakami, O Katsuse, N Aoki, et al. Autopsy case of concurrent Huntington's disease and neurofibromatosis type 1. Psychogeriatrics. 2014;14(1):81-86.
320 CS Latimer, ME Flanagan, PJ Cimino, et al. Neuropathological comparison of adult onset and juvenile huntington's disease with cerebellar atrophy: a report of a father and son. J Huntingtons Dis. 2017;6(4):337-348.
321 Z Bayram-Weston, L Jones, SB Dunnett, SP Brooks. Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Res Bull. 2012;88(2-3):137-147.
322 MF Beal, KJ Swartz, SF Finn, ED Bird, JB Martin. Amino acid and neuropeptide neurotransmitters in Huntington's disease cerebellum. Brain Res. 1988;454(1-2):393-396.
323 CJ Carter. Glutamine synthetase activity in Huntington's disease. Life Sci. 1982;31(11):1151-1159.
324 K Van Laere, C Casteels, I Dhollander, et al. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med. 2010;51(9):1413-1417.
325 H Seo, KC Sonntag, O Isacson. Generalized brain and skin proteasome inhibition in Huntington's disease. Ann Neurol. 2004;56(3):319-328.
326 H Seo, W Kim, O Isacson. Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients. Hum Mol Genet. 2008;17(20):3144-3153.
327 A Silvestroni, RL Faull, AD Strand, T Moller. Distinct neuroinflammatory profile in post-mortem human Huntington's disease. Neuroreport. 2009;20(12):1098-1103.
328 L Yang, NY Calingasan, J Chen, JJ Ley, DA Becker, MF Beal. A novel azulenyl nitrone antioxidant protects against MPTP and 3-nitropropionic acid neurotoxicities. Exp Neurol. 2005;191(1):86-93.
329 M Deschepper, B Hoogendoorn, S Brooks, SB Dunnett, L Jones. Proteomic changes in the brains of Huntington's disease mouse models reflect pathology and implicate mitochondrial changes. Brain Res Bull. 2012;88(2-3):210-222.
330 RR Handley, SJ Reid, S Patassini, et al. Metabolic disruption identified in the Huntington's disease transgenic sheep model. Sci Rep. 2016;6:20681.
331 A Delva, L Michiels, M Koole, K Van Laere, W Vandenberghe. Synaptic damage and its clinical correlates in people with early Huntington disease: a PET study. Neurology. 2022;98(1):e83-e94.
332 CA Denny, PA Desplats, EA Thomas, TN Seyfried. Cerebellar lipid differences between R6/1 transgenic mice and humans with Huntington's disease. J Neurochem. 2010;115(3):748-758.
333 V Gaura, S Lavisse, P Payoux, et al. Association between motor symptoms and brain metabolism in early Huntington disease. JAMA Neurol. 2017;74(9):1088-1096.
334 A Gallardo-Orihuela, I Hervas-Corpion, C Hierro-Bujalance, et al. Transcriptional correlates of the pathological phenotype in a Huntington's disease mouse model. Sci Rep. 2019;9(1):18696.
335 EA Thomas, G Coppola, PA Desplats, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci USA. 2008;105(40):15564-15569.
336 BL Santos-Lobato, JSS Rocha, LC Rocha. Case report: Cerebellar sparing in juvenile Huntington's disease. Front Neurol. 2022;13:1089193.
337 PC de Azevedo, RP Guimaraes, CC Piccinin, et al. Cerebellar gray matter alterations in Huntington disease: a voxel-based morphometry study. Cerebellum. 2017;16(5-6):923-928.
338 A Tereshchenko, V Magnotta, E Epping, et al. Brain structure in juvenile-onset Huntington disease. Neurology. 2019;92(17):e1939-e1947.
339 HH Ruocco, I Lopes-Cendes, TL Laurito, LM Li, F Cendes. Clinical presentation of juvenile Huntington disease. Arq Neuropsiquiatr. 2006;64(1):5-9.
340 S Sakazume, S Yoshinari, E Oguma, et al. A patient with early onset Huntington disease and severe cerebellar atrophy. Am J Med Genet A. 2009;149A(4):598-601.
341 HH Ruocco, L Bonilha, LM Li, I Lopes-Cendes, F Cendes. Longitudinal analysis of regional grey matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry. 2008;79(2):130-135.
342 RC Wolf, PA Thomann, F Sambataro, et al. Abnormal cerebellar volume and corticocerebellar dysfunction in early manifest Huntington's disease. J Neurol. 2015;262(4):859-869.
343 B Gomez-Anson, M Alegret, E Munoz, et al. Prefrontal cortex volume reduction on MRI in preclinical Huntington's disease relates to visuomotor performance and CAG number. Parkinsonism Relat Disord. 2009;15(3):213-219.
344 N Kanzato, M Saito, T Horikiri, Y Komine, M Nakagawa, T Matsuzaki. Atypical rigid form of Huntington's disease: a case with peripheral amyotrophy and congenital defects of a lower limb. Intern Med. 1998;37(11):978-981.
345 C Fennema-Notestine, SL Archibald, MW Jacobson, et al. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology. 2004;63(6):989-995.
346 G Padron-Rivera, R Diaz, I Vaca-Palomares, A Ochoa, CR Hernandez-Castillo, J Fernandez-Ruiz. Cerebellar degeneration signature in Huntington's disease. Cerebellum. 2021;20(6):942-945.
347 W Scharmuller, R Ille, A Schienle. Cerebellar contribution to anger recognition deficits in Huntington's disease. Cerebellum. 2013;12(6):819-825.
348 EM Rees, R Farmer, JH Cole, et al. Cerebellar abnormalities in Huntington's disease: a role in motor and psychiatric impairment? Mov Disord. 2014;29(13):1648-1654.
349 G Nicolas, D Devys, A Goldenberg, et al. Juvenile Huntington disease in an 18-month-old boy revealed by global developmental delay and reduced cerebellar volume. Am J Med Genet A. 2011;155A(4):815-818.
350 C Sarappa, E Salvatore, A Filla, et al. Functional MRI signal fluctuations highlight altered resting brain activity in Huntington's disease. Brain Imaging Behav. 2017;11(5):1459-1469.
351 N Georgiou-Karistianis, JC Stout, DJ Dominguez, et al. Functional magnetic resonance imaging of working memory in Huntington's disease: cross-sectional data from the IMAGE-HD study. Hum Brain Mapp. 2014;35(5):1847-1864.
352 T Bocci, D Baloscio, R Ferrucci, F Sartucci, A Priori. Cerebellar direct current stimulation (ctDCS) in the treatment of Huntington's disease: a pilot study and a short review of the literature. Front Neurol. 2020;11:614717.
353 F Prestori, F Moccia, E D'Angelo. Disrupted calcium signaling in animal models of human spinocerebellar ataxia (SCA). Int J Mol Sci. 2019;21(1):216.
354 C Osório, JJ White, H Lu, et al. Pre-ataxic loss of intrinsic plasticity and motor learning in a mouse model of SCA1. Brain. 2023;146(6):2332-2345.
355 M Corral-Juan, C Serrano-Munuera, A Rábano, et al. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain. 2018;141(7):1981-1997.
356 M Ripolone, V Lucchini, D Ronchi, et al. Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. J Neurosci Res. 2018;96(9):1576-1585.
357 C Rodríguez-Cueto, C Benito, J Fernández-Ruiz, J Romero, M Hernández-Gálvez, M Gómez-Ruiz. Changes in CB(1) and CB(2) receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias. Br J Pharmacol. 2014;171(6):1472-1489.
358 C Rodríguez-Cueto, C Benito, J Romero, M Hernández-Gálvez, M Gómez-Ruiz, J Fernández-Ruiz. Endocannabinoid-hydrolysing enzymes in the post-mortem cerebellum of humans affected by hereditary autosomal dominant ataxias. Pathobiology. 2014;81(3):149-159.
359 D Lee, YI Lee, YS Lee, SB Lee. The mechanisms of nuclear proteotoxicity in polyglutamine spinocerebellar ataxias. Front Neurosci. 2020;14:489.
360 IM Adanyeguh, PG Henry, TM Nguyen, et al. In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7. Mov Disord. 2015;30(5):662-670.
361 J Krahe, F Binkofski, JB Schulz, K Reetz, S Romanzetti. Neurochemical profiles in hereditary ataxias: a meta-analysis of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev. 2020;108:854-865.
362 G Goel, PK Pal, S Ravishankar, et al. Gray matter volume deficits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism Relat Disord. 2011;17(7):521-527.
363 LS Politi, S Bianchi Marzoli, C Godi, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis Sci. 2016;57(6):2714-2720.
364 Y Xie, Z Chen, Z Long, et al. Identification of the largest SCA36 pedigree in Asia: with multimodel neuroimaging evaluation for the first time. Cerebellum. 2022;21(3):358-367.
365 JB Schulz, J Borkert, S Wolf, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49(1):158-168.
366 CR Hernandez-Castillo, M King, J Diedrichsen, J Fernandez-Ruiz. Unique degeneration signatures in the cerebellar cortex for spinocerebellar ataxias 2, 3, and 7. Neuroimage Clin. 2018;20:931-938.
367 J Hu, X Chen, M Li, et al. Pattern of cerebellar grey matter loss associated with ataxia severity in spinocerebellar ataxias type 3: a multi-voxel pattern analysis. Brain Imaging Behav. 2022;16(1):379-388.
368 A Chirino-Pérez, I Vaca-Palomares, DL Torres, et al. Cognitive impairments in spinocerebellar ataxia type 10 and their relation to cortical thickness. Mov Disord. 2021;36(12):2910-2921.
369 F D'Agata, P Caroppo, A Boghi, et al. Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct. 2011;216(3):275-288.
370 MR Carey. The cerebellum. Curr Biol. 2024;34(1):R7-R11.
371 Y Wang, L Chai, C Chu, et al. Uncovering the genetic profiles underlying the intrinsic organization of the human cerebellum. Mol Psychiatry. 2022;27(5):2619-2634.
372 SA Austin, AV Santhanam, LV d'Uscio, ZS Katusic. Regional heterogeneity of cerebral microvessels and brain susceptibility to oxidative stress. PLoS One. 2015;10(12):e0144062.
373 H Mitoma, S Kakei, M Manto. Development of cerebellar reserve. Cells. 2022;11(19):3013.
PDF

Accesses

Citations

Detail

Sections
Recommended

/