CREB3 suppresses hepatocellular carcinoma progression by depressing AKT signaling through competitively binding with insulin receptor and transcriptionally activating RNA-binding motif protein 38

Yi He1,2,3,4, Shenqi Han1,3,4, Han Li1,3,4, Yu Wu1,3,4, Wenlong Jia1,3,4, Zeyu Chen1,3,4, Yonglong Pan1,2,3,4, Ning Cai1,3,4, Jingyuan Wen1,3,4, Ganxun Li1,3,4, Junnan Liang1,3,4, Jianping Zhao1,3,4, Qiumeng Liu1,3,4, Huifang Liang1,3,4(), Zeyang Ding1,3,4(), Zhao Huang1,3,4(), Bixiang Zhang1,3,4()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e633. DOI: 10.1002/mco2.633
ORIGINAL ARTICLE

CREB3 suppresses hepatocellular carcinoma progression by depressing AKT signaling through competitively binding with insulin receptor and transcriptionally activating RNA-binding motif protein 38

  • Yi He1,2,3,4, Shenqi Han1,3,4, Han Li1,3,4, Yu Wu1,3,4, Wenlong Jia1,3,4, Zeyu Chen1,3,4, Yonglong Pan1,2,3,4, Ning Cai1,3,4, Jingyuan Wen1,3,4, Ganxun Li1,3,4, Junnan Liang1,3,4, Jianping Zhao1,3,4, Qiumeng Liu1,3,4, Huifang Liang1,3,4(), Zeyang Ding1,3,4(), Zhao Huang1,3,4(), Bixiang Zhang1,3,4()
Author information +
History +

Abstract

cAMP responsive element binding protein 3 (CREB3), belonging to bZIP family, was reported to play multiple roles in various cancers, but its role in hepatocellular carcinoma (HCC) is still unclear. cAMP responsive element binding protein 3 like 3 (CREB3L3), another member of bZIP family, was thought to be transcription factor (TF) to regulate hepatic metabolism. Nevertheless, except for being TFs, other function of bZIP family were poorly understood. In this study, we found CREB3 inhibited growth and metastasis of HCC in vitro and in vivo. RNA sequencing indicated CREB3 regulated AKT signaling to influence HCC progression. Mass spectrometry analysis revealed CREB3 interacted with insulin receptor (INSR). Mechanistically, CREB3 suppressed AKT phosphorylation by inhibiting the interaction of INSR with insulin receptor substrate 1 (IRS1). In our study, CREB3 was firstly proved to affect activation of substrates by interacting with tyrosine kinase receptor. Besides, CREB3 could act as a TF to transactivate RNA-binding motif protein 38 (RBM38) expression, leading to suppressed AKT phosphorylation. Rescue experiments further confirmed the independence between the two functional manners. In conclusion, CREB3 acted as a tumor suppressor in HCC, which inhibited AKT phosphorylation through independently interfering interaction of INSR with IRS1, and transcriptionally activating RBM38.

Keywords

AKT signaling / cAMP responsive element binding protein 3 (CREB3) / hepatocellular carcinoma (HCC) / insulin receptor (INSR) / RNA-binding motif protein 38 (RBM38)

Cite this article

Download citation ▾
Yi He, Shenqi Han, Han Li, Yu Wu, Wenlong Jia, Zeyu Chen, Yonglong Pan, Ning Cai, Jingyuan Wen, Ganxun Li, Junnan Liang, Jianping Zhao, Qiumeng Liu, Huifang Liang, Zeyang Ding, Zhao Huang, Bixiang Zhang. CREB3 suppresses hepatocellular carcinoma progression by depressing AKT signaling through competitively binding with insulin receptor and transcriptionally activating RNA-binding motif protein 38. MedComm, 2024, 5(7): e633 https://doi.org/10.1002/mco2.633

References

1 A Forner, JM Llovet, J Bruix. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245-1255. doi:
2 A Ally, M Balasundaram, R Carlsen, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327-1341. doi:
3 K Schulze, S Imbeaud, E Letouzé, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505-511. doi:
4 C Guichard, G Amaddeo, S Imbeaud, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694-698. doi:
5 Y Totoki, K Tatsuno, KR Covington, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46(12):1267-1273. doi:
6 DY Chiang, A Villanueva, Y Hoshida, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68(16):6779-6788. doi:
7 M Pollak. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915-928. doi:
8 E Benabou, Z Salamé, D Wendum, et al. Insulin receptor isoform A favors tumor progression in human hepatocellular carcinoma by increasing stem/progenitor cell features. Cancer Lett. 2019;450:155-168. doi:
9 XJ Sun, P Rothenberg, CR Kahn, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991;352(6330):73-77.
10 PR Shepherd, DJ Withers, K Siddle. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998;333(3):471-490. Pt.
11 Y-P Wang, L-Y Huang, W-M Sun, et al. Insulin receptor tyrosine kinase substrate activates EGFR/ERK signalling pathway and promotes cell proliferation of hepatocellular carcinoma. Cancer Lett. 2013;337(1):96-106. doi:
12 M-HT Ngo, H-Y Jeng, Y-C Kuo, et al. The role of IGF/IGF-1R signaling in hepatocellular carcinomas: stemness-related properties and drug resistance. Int J Mol Sci. 2021;22(4):1931. doi:
13 W Yuxiong, L Faping, L Bin, et al. Regulatory mechanisms of the cAMP-responsive element binding protein 3 (CREB3) family in cancers. Biomed Pharmacother. 2023;166:115335. doi:
14 T Murakami, A Saito, S-i Hino, et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol. 2009;11(10):1205-1211. doi:
15 BV Howley, LA Link, S Grelet, M El-Sabban, PH Howe. A CREB3-regulated ER-Golgi trafficking signature promotes metastatic progression in breast cancer. Oncogene. 2018;37(10):1308-1325. doi:
16 J Jeong, S Park, H-T An, M Kang, J Ko. Small leucine zipper protein functions as a negative regulator of estrogen receptor α in breast cancer. PLoS One. 2017;12(6):e0180197. doi:
17 Y Kim, J Kim, SW Jang, J Ko. The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer. Oncogene. 2015;34(2):226-236. doi:
18 J Ko, SW Jang, YS Kim, et al. Human LZIP binds to CCR1 and differentially affects the chemotactic activities of CCR1-dependent chemokines. FASEB J. 2004;18(7):890-892. doi:
19 L Sampieri, P Di Giusto, C Alvarez. CREB3 transcription factors: ER-Golgi stress transducers as hubs for cellular homeostasis. Front Cell Dev Biol. 2019;7:123. doi:
20 MS Brown, J Ye, RB Rawson, JL Goldstein. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000;100(4):391-398.
21 Z Ding, G Jin, W Wang, et al. Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Hepatology (Baltimore, Md). 2014;60(5):1620-1636. doi:
22 A Matsumoto, M Ono, Y Fujimoto, RL Gallo, M Bernfield, Y Kohgo. Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer. 1997;74(5):482-491.
23 L-Y Tian, DJ Smit, M Jücker. The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci. 2023;24(3):2652. doi:
24 EJ Sun, M Wankell, P Palamuthusingam, C McFarlane, L Hebbard. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines. 2021;9(11):1639. doi:
25 R Lu, P Yang, P O'Hare, V Misra. Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Mol Cell Biol. 1997;17(9):5117-5126.
26 RL Luciano, AC Wilson. N-terminal transcriptional activation domain of LZIP comprises two LxxLL motifs and the host cell factor-1 binding motif. Proc Natl Acad Sci USA. 2000;97(20):10757-10762.
27 S Kolmykov, I Yevshin, M Kulyashov, et al. GTRD: an integrated view of transcription regulation. Nucleic Acids Res. 2021;49(D1):D104-D111. doi:
28 JA Castro-Mondragon, R Riudavets-Puig, I Rauluseviciute, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50(D1):D165-D173. doi:
29 S Boyault, DS Rickman, A de Reyniès, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology (Baltimore, Md). 2007;45(1):42-52.
30 Y Hoshida, SMB Nijman, M Kobayashi, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385-7392. doi:
31 J Calderaro, G Couchy, S Imbeaud, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol. 2017;67(4):727-738. doi:
32 K Okkenhaug, M Graupera, B Vanhaesebroeck. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016;6(10):1090-1105.
33 W Brogiolo, H Stocker, T Ikeya, F Rintelen, R Fernandez, E Hafen. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol. 2001;11(4):213-221.
34 F Frasca, G Pandini, P Scalia, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19(5):3278-3288.
35 JA Davila, RO Morgan, Y Shaib, KA McGlynn, HB El-Serag. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut. 2005;54(4):533-539.
36 J-J Yoo, EJ Cho, K Han, et al. Glucose variability and risk of hepatocellular carcinoma in patients with diabetes: a nationwide population-based study. Cancer Epidemiol Biomarkers Prev. 2021;30(5):974-981. doi:
37 V Besic, H Shi, RS Stubbs, MT Hayes. Aberrant liver insulin receptor isoform a expression normalises with remission of type 2 diabetes after gastric bypass surgery. PLoS One. 2015;10(3):e0119270. doi:
38 A Belfiore, F Frasca, G Pandini, L Sciacca, R Vigneri. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30(6):586-623. doi:
39 H Chettouh, L Fartoux, L Aoudjehane, et al. Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res. 2013;73(13):3974-3986. doi:
40 J Liu, S Visser-Grieve, J Boudreau, et al. Insulin activates the insulin receptor to downregulate the PTEN tumour suppressor. Oncogene. 2014;33(29):3878-3885. doi:
41 G Milazzo, F Giorgino, G Damante, et al. Insulin receptor expression and function in human breast cancer cell lines. Cancer Res. 1992;52(14):3924-3930.
42 L Frittitta, A Cerrato, MG Sacco, N Weidner, ID Goldfine, R Vigneri. The insulin receptor content is increased in breast cancers initiated by three different oncogenes in transgenic mice. Breast Cancer Res Treat. 1997;45(2):141-147.
43 M Andersen, D N?rgaard-Pedersen, J Brandt, I Pettersson, R Slaaby. IGF1 and IGF2 specificities to the two insulin receptor isoforms are determined by insulin receptor amino acid 718. PLoS One. 2017;12(6):e0178885. doi:
44 BP Ceresa, AW Kao, SR Santeler, JE Pessin. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol Cell Biol. 1998;18(7):3862-3870.
45 J Boucher, A Kleinridders, CR Kahn. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1):a009191. doi:
46 V Trischitta, KY Wong, A Brunetti, R Scalisi, R Vigneri, ID Goldfine. Endocytosis, recycling, and degradation of the insulin receptor. Studies with monoclonal antireceptor antibodies that do not activate receptor kinase. J Biol Chem. 1989;264(9):5041-5046.
47 J Ye, R Liang, T Bai, et al. RBM38 plays a tumor-suppressor role via stabilizing the p53-mdm2 loop function in hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):212. doi:
48 X-J Zhou, J Wu, L Shi, et al. PTEN expression is upregulated by a RNA-binding protein RBM38 via enhancing its mRNA stability in breast cancer. J Exp Clin Cancer Res. 2017;36(1):149. doi:
49 S Xu, S Ling, Q Shan, et al. Self-activated cascade-responsive sorafenib and USP22 shRNA co-delivery system for synergetic hepatocellular carcinoma therapy. Adv Sci. 2021;8(5):2003042. doi:
50 Z Huang, L Chu, J Liang, et al. H19 promotes HCC bone metastasis through reducing osteoprotegerin expression in a protein phosphatase 1 catalytic subunit Alpha/p38 mitogen-activated protein kinase-dependent manner and sponging microRNA 200b-3p. Hepatology (Baltimore, Md). 2021;74(1):214-232. doi:
51 C Coulouarn, VM Factor, SS Thorgeirsson. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology (Baltimore, Md). 2008;47(6):2059-2067. doi:
52 S Han, L Xue, Y Wei, et al. Bone lesion-derived extracellular vesicles fuel prometastatic cascades in hepatocellular carcinoma by transferring ALKBH5-targeting miR-3190-5p. Adv Sci. 2023;10(17):e2207080. doi:
53 J Ma, T Chen, S Wu, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47(D1):D1211-D1217. doi:
54 T Chen, J Ma, Y Liu, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50(D1):D1522-D1527. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/