Natural killer cells in cancer immunotherapy

DanRu Wang1, LingYun Dou1, LiHao Sui1, Yiquan Xue1(), Sheng Xu1,2()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e626. DOI: 10.1002/mco2.626
REVIEW

Natural killer cells in cancer immunotherapy

  • DanRu Wang1, LingYun Dou1, LiHao Sui1, Yiquan Xue1(), Sheng Xu1,2()
Author information +
History +

Abstract

Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands—the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.

Keywords

CAR-NK / MICA/B / NK cell / NKG2D / tumor immunotherapy / tumor vaccine

Cite this article

Download citation ▾
DanRu Wang, LingYun Dou, LiHao Sui, Yiquan Xue, Sheng Xu. Natural killer cells in cancer immunotherapy. MedComm, 2024, 5(7): e626 https://doi.org/10.1002/mco2.626

References

1 R Kiessling, E Klein, H Wigzell. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5(2):112-117.
2 RB Herberman, ME Nunn, HT Holden, DH Lavrin. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975;16(2):230-239.
3 S Xing, L Ferrari de Andrade. NKG2D and MICA/B shedding: a ‘tag game’ between NK cells and malignant cells. Clin Transl Immunol. 2020;9(12):e1230.
4 NK Wolf, DU Kissiov, DH Raulet. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol. 2023;23(2):90-105.
5 S Sivori, P Vacca, G Del Zotto, E Munari, MC Mingari, L Moretta. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 2019;16(5):430-441.
6 DS Kaufman, RA Schoon, PJ Leibson. MHC class I expression on tumor targets inhibits natural killer cell-mediated cytotoxicity without interfering with target recognition. J Immunol. 1993;150(4):1429-1436.
7 B Le Maux Chansac, A Moretta, I Vergnon, et al. NK cells infiltrating a MHC class I-deficient lung adenocarcinoma display impaired cytotoxic activity toward autologous tumor cells associated with altered NK cell-triggering receptors. J Immunol. 2005;175(9):5790-5798.
8 A Vojdani, S Koksoy, E Vojdani, M Engelman, C Benzvi, A Lerner. Natural killer cells and cytotoxic T cells: complementary partners against microorganisms and cancer. Microorganisms. 2024;12(1):230.
9 J Rosenberg, J Huang. CD8(+) T cells and NK cells: parallel and complementary soldiers of immunotherapy. Curr Opin Chem Eng. 2018;19:9-20.
10 M Vitale, C Bottino, S Sivori, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 1998;187(12):2065-2072.
11 S Sivori, M Vitale, L Morelli, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 1997;186(7):1129-1136.
12 LL Lanier. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3(6):575-582.
13 V Groh, S Bahram, S Bauer, A Herman, M Beauchamp, T Spies. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA. 1996;93(22):12445-12450.
14 E Vivier, L Rebuffet, E Narni-Mancinelli, S Cornen, RY Igarashi, VR Fantin. Natural killer cell therapies. Nature. 2024;626(8000):727-736.
15 TE O'Sullivan, JC Sun, LL Lanier. Natural killer cell memory. Immunity. 2015;43(4):634-645.
16 E Gianchecchi, DV Delfino, A Fierabracci. Natural killer cells: potential biomarkers and therapeutic target in autoimmune diseases? Front Immunol. 2021;12:616853.
17 AM Mujal, RB Delconte, JC Sun. Natural killer cells: from innate to adaptive features. Annu Rev Immunol. 2021;39:417-447.
18 C Bottino, R Castriconi, L Moretta, A Moretta. Cellular ligands of activating NK receptors. Trends Immunol. 2005;26(4):221-226.
19 L Raffaghello, I Prigione, I Airoldi, et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia (New York, NY). 2004;6(5):558-568.
20 WC Suen, WY Lee, KT Leung, XH Pan, G Li. Natural killer cell-based cancer immunotherapy: a review on 10 years completed clinical trials. Cancer Invest. 2018;36(8):431-457.
21 HF Pross, MG Baines. Spontaneous human lymphocyte-mediated cytotoxicity againts tumour target cells. I. The effect of malignant disease. Int J Cancer. 1976;18(5):593-604.
22 M Boyiadzis, KA Foon, RB Herberman. NK cells in cancer immunotherapy: three decades of discovery. Discov Med. 2006;6(36):243-248.
23 LL Lanier, JH Phillips, J Hackett, M Tutt, V Kumar. Natural killer cells: definition of a cell type rather than a function. J Immunol. 1986;137(9):2735-2739.
24 K Imai, S Matsuyama, S Miyake, K Suga, K Nakachi. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet (London, England). 2000;356(9244):1795-1799.
25 S Nersesian, SL Schwartz, SR Grantham, et al. NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl Oncol. 2021;14(1):100930.
26 C Pasero, G Gravis, S Granjeaud, et al. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget. 2015;6(16):14360-14373.
27 J Cursons, F Souza-Fonseca-Guimaraes, M Foroutan, et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol Res. 2019;7(7):1162-1174.
28 B Li, Y Jiang, G Li, GA Fisher, R Li. Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. JCI Insight. 2020;5(9):e136570.
29 E Montaldo, G Del Zotto, M Della Chiesa, et al. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A. 2013;83(8):702-713.
30 MA Cooper, TA Fehniger, MA Caligiuri. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633-640.
31 AG Freud, BL Mundy-Bosse, J Yu, MA Caligiuri. The broad spectrum of human natural killer cell diversity. Immunity. 2017;47(5):820-833.
32 E Vivier, E Tomasello, M Baratin, T Walzer, S Ugolini. Functions of natural killer cells. Nat Immunol. 2008;9(5):503-510.
33 R Jacobs, G Hintzen, A Kemper, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol. 2001;31(10):3121-3127.
34 K K?rre, HG Ljunggren, G Piontek, R Kiessling. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319(6055):675-678.
35 D Pende, S Parolini, A Pessino, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999;190(10):1505-1516.
36 A Moretta, C Bottino, M Vitale, et al. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol. 1996;14:619-648.
37 A Moretta, R Biassoni, C Bottino, et al. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol Rev. 1997;155:105-117.
38 N Wagtmann, S Rajagopalan, CC Winter, M Peruzzi, EO Long. Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity. 1995;3(6):801-809.
39 VM Braud, DS Allan, CA O'Callaghan, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391(6669):795-799.
40 EO Long, DN Burshtyn, WP Clark, et al. Killer cell inhibitory receptors: diversity, specificity, and function. Immunol Rev. 1997;155:135-144.
41 M Colonna. Specificity and function of immunoglobulin superfamily NK cell inhibitory and stimulatory receptors. Immunol Rev. 1997;155:127-133.
42 LL Lanier. Natural killer cells: from no receptors to too many. Immunity. 1997;6(4):371-378.
43 DH Raulet. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3(10):781-790.
44 JV Ravetch, S Bolland. IgG Fc receptors. Annu Rev Immunol. 2001;19:275-290.
45 MJ Smyth, E Cretney, JM Kelly, et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42(4):501-510.
46 D Piccioli, S Sbrana, E Melandri, NM Valiante. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002;195(3):335-341.
47 F Gerosa, B Baldani-Guerra, C Nisii, V Marchesini, G Carra, G Trinchieri. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med. 2002;195(3):327-333.
48 G Ferlazzo, ML Tsang, L Moretta, G Melioli, RM Steinman, C Münz. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med. 2002;195(3):343-351.
49 I Waldhauer, A Steinle. NK cells and cancer immunosurveillance. Oncogene. 2008;27(45):5932-5943.
50 JP Houchins, T Yabe, C McSherry, FH Bach. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med. 1991;173(4):1017-1020.
51 S Bauer, V Groh, J Wu, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285(5428):727-729.
52 LL Lanier. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495-502.
53 DE Oppenheim, SJ Roberts, SL Clarke, et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol. 2005;6(9):928-937.
54 P Sharma, S Goswami, D Raychaudhuri, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652-1669.
55 DJ Baker, Z Arany, JA Baur, JA Epstein, CH June. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619(7971):707-715.
56 Y Wang, S Jin, Q Zhuang, et al. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. MedComm. 2023;4(6):e422.
57 S Curio, G Jonsson, S Marinovi?. A summary of current NKG2D-based CAR clinical trials. Immunother Adv. 2021;1(1):ltab018.
58 DA Sallman, T Kerre, V Havelange, et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial. Lancet Haematol. 2023;10(3):e191-e202.
59 H Zhou, Y Luo, JF Lo, et al. DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. Proc Natl Acad Sci USA. 2005;102(31):10846-10851.
60 S Badrinath, MO Dellacherie, A Li, et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature. 2022;606(7916):992-998.
61 P Vishwasrao, SK Hui, DL Smith, V Khairnar. Role of NK cells in cancer and immunotherapy. Onco. 2021;1(2):158-175.
62 SJ Burgess, K Maasho, M Masilamani, S Narayanan, F Borrego, JE Coligan. The NKG2D receptor: immunobiology and clinical implications. Immunol Res. 2008;40(1):18-34.
63 C Guillerey, ND Huntington, MJ Smyth. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025-1036.
64 L Chiossone, PY Dumas, M Vienne, E Vivier. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671-688.
65 M Cheng, Y Chen, W Xiao, R Sun, Z Tian. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10(3):230-252.
66 N Anfossi, P André, S Guia, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25(2):331-342.
67 RL Ferris, EM Jaffee, S Ferrone. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28(28):4390-4399.
68 S Bournazos, TT Wang, R Dahan, J Maamary, JV Ravetch. Signaling by antibodies: recent progress. Annu Rev Immunol. 2017;35:285-311.
69 Y Li, JS Orange. Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. PLoS Biol. 2021;19(8):e3001328.
70 I Prager, C Watzl. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukocyte Biol. 2019;105(6):1319-1329.
71 YT Bryceson, ME March, HG Ljunggren, EO Long. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006;107(1):159-166.
72 S Mukherjee, H Jensen, W Stewart, et al. In silico modeling identifies CD45 as a regulator of IL-2 synergy in the NKG2D-mediated activation of immature human NK cells. Sci Signal. 2017;10(485):eaai9062.
73 JS Miller, C Morishima, DG McNeel, et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin Cancer Res. 2018;24(7):1525-1535.
74 A Marcus, AJ Mao, M Lensink-Vasan, L Wang, RE Vance, DH Raulet. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity. 2018;49(4):754-763. e4.
75 MG Morvan, LL Lanier. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7-19.
76 YT Bryceson, ME March, HG Ljunggren, EO Long. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73-91.
77 R Mocikat, H Braumüller, A Gumy, et al. Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity. 2003;19(4):561-569.
78 R Koka, P Burkett, M Chien, S Chai, DL Boone, A Ma. Cutting Edge: murine dendritic cells require IL-15Rα to prime NK cells1. J Immunol. 2004;173(6):3594-3598.
79 MA Degli-Esposti, MJ Smyth. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol. 2005;5(2):112-124.
80 N Shimasaki, A Jain, D Campana. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200-218.
81 J Wang, CD Li, L Sun. Recent advances in molecular mechanisms of the NKG2D pathway in hepatocellular carcinoma. Biomolecules. 2020;10(2):301.
82 MC Ochoa, L Minute, I Rodriguez, et al. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol. 2017;95(4):347-355.
83 A Moretta, C Bottino, M Vitale, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol. 2001;19:197-223.
84 E Tomasello, L Olcese, F Vély, et al. Gene structure, expression pattern, and biological activity of mouse killer cell activating receptor-associated protein (KARAP)/DAP-12. J Biol Chem. 1998;273(51):34115-34119.
85 E Pogge von Strandmann, VR Simhadri, B von Tresckow, et al. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity. 2007;27(6):965-974.
86 F Baychelier, A Sennepin, M Ermonval, K Dorgham, P Debré, V Vieillard. Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood. 2013;122(17):2935-2942.
87 B Rosental, M Brusilovsky, U Hadad, et al. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol. 2011;187(11):5693-5702.
88 AN Zelensky, JE Gready. The C-type lectin-like domain superfamily. FEBS J. 2005;272(24):6179-6217.
89 GD Brown, JA Willment, L Whitehead. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18(6):374-389.
90 B Plougastel, J Trowsdale. Cloning of NKG2-F, a new member of the NKG2 family of human natural killer cell receptor genes. Eur J Immunol. 1997;27(11):2835-2839.
91 T Bellón, AB Heredia, M Llano, et al. Triggering of effector functions on a CD8+ T cell clone upon the aggregation of an activatory CD94/kp39 heterodimer. J Immunol. 1999;162(7):3996-4002.
92 LL Lanier, B Corliss, J Wu, JH Phillips. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity. 1998;8(6):693-701.
93 JP Houchins, LL Lanier, EC Niemi, JH Phillips, JC Ryan. Natural killer cell cytolytic activity is inhibited by NKG2-A and activated by NKG2-C. J Immunol. 1997;158(8):3603-3609.
94 M Carretero, G Palmieri, M Llano, et al. Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. Eur J Immunol. 1998;28(4):1280-1291.
95 N Lee, M Llano, M Carretero, et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA. 1998;95(9):5199-5204.
96 M Colonna, J Samaridis. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science. 1995;268(5209):405-408.
97 N Wagtmann, R Biassoni, C Cantoni, et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity. 1995;2(5):439-449.
98 P Parham, PJ Norman, L Abi-Rached, LA Guethlein. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Philos Trans R Soc Lond B Biol Sci. 2012;367(1590):800-811.
99 T Graef, AK Moesta, PJ Norman, et al. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J Exp Med. 2009;206(11):2557-2572.
100 R Biassoni, C Cantoni, M Falco, et al. The human leukocyte antigen (HLA)-C-specific “activatory” or “inhibitory” natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions. J Exp Med. 1996;183(2):645-650.
101 P Parham, LA Guethlein. Genetics of natural killer cells in human health, disease, and survival. Annu Rev Immunol. 2018;36:519-548.
102 W Wang, AK Erbe, KA Alderson, et al. Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. Cancer Immunol Immunother. 2016;65(9):1047-1059.
103 D Pende, M Falco, M Vitale, et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. 2019;10:1179.
104 CC Stebbins, C Watzl, DD Billadeau, PJ Leibson, DN Burshtyn, EO Long. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol. 2003;23(17):6291-6299.
105 D Liu, ME Peterson, EO Long. The adaptor protein Crk controls activation and inhibition of natural killer cells. Immunity. 2012;36(4):600-611.
106 ME Peterson, EO Long. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity. 2008;29(4):578-588.
107 C Sun, J Xu, Q Huang, et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology. 2017;6(1):e1264562.
108 EO Long. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev. 2008;224:70-84.
109 MB Fuertes, CI Domaica, NW Zwirner. Leveraging NKG2D ligands in immuno-oncology. Front Immunol. 2021;12:713158.
110 AC Huang, MA Postow, RJ Orlowski, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545(7652):60-65.
111 S Pesce, M Greppi, G Tabellini, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol. 2017;139(1):335-346. e3.
112 XM Zhou, WQ Li, YH Wu, et al. Intrinsic expression of immune checkpoint molecule TIGIT could help tumor growth in vivo by suppressing the function of NK and CD8(+) T cells. Front Immunol. 2018;9:2821.
113 Q Zhang, J Bi, X Zheng, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 2018;19(7):723-732.
114 CJ Chan, L Martinet, S Gilfillan, et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol. 2014;15(5):431-438.
115 H Sun, Q Huang, M Huang, et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology (Baltimore, Md). 2019;70(1):168-183.
116 I Voskoboinik, JC Whisstock, JA Trapani. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388-400.
117 A López-Soto, S Gonzalez, MJ Smyth, L Galluzzi. Control of metastasis by NK cells. Cancer Cell. 2017;32(2):135-154.
118 J Zhang, F Basher, JD Wu. NKG2D ligands in tumor immunity: two sides of a coin. Front Immunol. 2015;6:97.
119 C Watzl. The NKG2D receptor and its ligands-recognition beyond the “missing self”? Microbes Infect. 2003;5(1):31-37.
120 AM Jamieson, A Diefenbach, CW McMahon, N Xiong, JR Carlyle, DH Raulet. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity. 2004.
121 A Diefenbach, AM Jamieson, SD Liu, N Shastri, DH Raulet. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1(2):119-126.
122 K Prajapati, C Perez, LBP Rojas, B Burke, JA Guevara-Patino. Functions of NKG2D in CD8(+) T cells: an opportunity for immunotherapy. Cell Mol Immunol. 2018;15(5):470-479.
123 C Huang, Z Xiang, Y Zhang, et al. NKG2D as a cell surface marker on γδ-T cells for predicting pregnancy outcomes in patients with unexplained repeated implantation failure. Front Immunol. 2021;12:631077.
124 H Li, Z Xiang, T Feng, et al. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells. Cell Mol Immunol. 2013;10(2):159-164.
125 Z Xiang, Y Liu, J Zheng, et al. Targeted activation of human Vγ9Vδ2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell. 2014;26(4):565-576.
126 S Nedellec, C Sabourin, M Bonneville, E Scotet. NKG2D costimulates human V gamma 9 V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol. 2010;185(1):55-63.
127 CA Crane, K Austgen, K Haberthur, et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc Natl Acad Sci USA. 2014;111(35):12823-12828.
128 K Ogasawara, LL Lanier. NKG2D in NK and T cell-mediated immunity. J Clin Immunol. 2005;25(6):534-540.
129 D Cosman, J Müllberg, CL Sutherland, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001;14(2):123-133.
130 S Bahram, M Bresnahan, DE Geraghty, T Spies. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA. 1994;91(14):6259-6263.
131 AK Baranwal, NK Mehra. Major histocompatibility complex class i chain-related A (MICA) molecules: relevance in solid organ transplantation. Front Immunol. 2017;8:182.
132 HA Stephens. MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol. 2001;22(7):378-385.
133 LL Molinero, CY Marcos, F Mirbaha, L Fainboim, P Stastny, NW Zwirner. Codominant expression of the polymorphic MICA alloantigens encoded by genes in the HLA region. Eur J Immunogenet. 2002;29(4):315-319.
134 S Bahram. MIC genes: from genetics to biology. Adv Immunol. 2000;76:1-60.
135 V Groh, A Steinle, S Bauer, T Spies. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science. 1998;279(5357):1737-1740.
136 H Das, V Groh, C Kuijl, M Sugita, JF Bukowski. MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity. 2001;15(1):83-93.
137 V Groh, R Rhinehart, J Randolph-Habecker, et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2(3):255-255.
138 V Groh, R Rhinehart, H Secrist, S Bauer, KH Grabstein, T Spies. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Nat Acad Sci USA. 1999;96(12):6879-6884.
139 A Cerwenka, AB Bakker, T McClanahan, et al. Retinoic acid early inducible genes define a ligand family for the activating nkg2d receptor in mice. Immunity. 2000;12:721-727.
140 ND Huntington, J Cursons, J Rautela. The cancer-natural killer cell immunity cycle. Nat Rev Cancer. 2020;20(8):437-454.
141 J Seoane, HV Le, J Massague. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature. 2002;419(6908):729-734.
142 DH Raulet, S Gasser, BG Gowen, W Deng, H Jung. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413-441.
143 S Gasser, S Orsulic, EJ Brown, DH Raulet. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. 2005;436(7054):1186-1190.
144 X Wang, T Ran, X Zhang, et al. 3.9 ? structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP. Science. 2017;358(6367):1206-1209.
145 AR Mistry, CA O'Callaghan. Regulation of ligands for the activating receptor NKG2D. Immunology. 2007;121(4):439-447.
146 ML Tang, S Gasser. ATM activation mediates anticancer immunosurveillance by natural killer and T cells. Oncoimmunology. 2013;2(6):e24438.
147 Y Zhao, N Chen, Y Yu, et al. Prognostic value of MICA/B in cancers: a systematic review and meta-analysis. Oncotarget. 2017;8(56):96384-96395.
148 J Kaye, H Browne, M Stoffel, T Minson. The UL16 gene of human cytomegalovirus encodes a glycoprotein that is dispensable for growth in vitro. J Virol. 1992;66(11):6609-6615.
149 NJ Chalupny, CL Sutherland, WA Lawrence, A Rein-Weston, D Cosman. ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun. 2003;305(1):129-135.
150 L Bacon, RA Eagle, M Meyer, N Easom, NT Young, J Trowsdale. Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol. 2004;173(2):1078-1084.
151 CL Sutherland, B Rabinovich, NJ Chalupny, P Brawand, R Miller, D Cosman. ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood. 2006;108(4):1313-1319.
152 LN Carayannopoulos, OV Naidenko, DH Fremont, WM Yokoyama. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol. 2002;169(8):4079-4083.
153 A R?lle, M Mousavi-Jazi, M Eriksson, et al. Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol. 2003;171(2):902-908.
154 SA Welte, C Sinzger, SZ Lutz, et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol. 2003;33(1):194-203.
155 CL Sutherland, NJ Chalupny, D Cosman. The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. Immunol Rev. 2001;181:185-192.
156 M Kubin, L Cassiano, J Chalupny, et al. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur J Immunol. 2001;31(5):1428-1437.
157 DB Rosen, M Araki, JA Hamerman, T Chen, T Yamamura, LL Lanier. A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J Immunol. 2004;173(4):2470-2478.
158 J Wu. Dap10 and Dap12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J Exp Med. 2000;192(7):1059-1068.
159 J Wu, X Wang, NKG2D-Based Cancer Immunotherapy. Current Cancer Treatment—Novel Beyond Conventional Approaches; 2011.
160 S Gilfillan, EL Ho, M Cella, WM Yokoyama, M Colonna. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol. 2003;3(12):1150-1155.
161 A Diefenbach, E Tomasello, M Lucas, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol. 2002;3(12):1142-1149.
162 LL Lanier, BC Corliss, J Wu, C Leong, JH Phillips. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature. 1998;391(6668):703-707.
163 P Li, DL Morris, BE Willcox, A Steinle, T Spies, RK Strong. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol. 2001;2(5):443-451.
164 X Wang, AD Lundgren, P Singh, DR Goodlett, SR Plymate, JD Wu. An six-amino acid motif in the alpha3 domain of MICA is the cancer therapeutic target to inhibit shedding. Biochem Biophys Res Commun. 2009;387(3):476-481.
165 BK Kaiser, D Yim, IT Chow, et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature. 2007;447(7143):482.
166 G Liu, CL Atteridge, X Wang, AD Lundgren, JD Wu. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. J Immunol. 2010;184(7):3346.
167 I Waldhauer, D Goehlsdorf, F Gieseke, et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008;68(15):6368-6376.
168 P Tsukerman, N Stern-Ginossar, C Gur, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res. 2012;72(21):5463-5472.
169 W Wongfieng, A Jumnainsong, Y Chamgramol, B Sripa, C Leelayuwat. 5'-UTR and 3'-UTR regulation of MICB expression in human cancer cells by novel microRNAs. Genes. 2017;8(9):213.
170 Y Saito, G Liang, G Egger, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9(6):435-443.
171 H Choudhry, JW Catto. Epigenetic regulation of microRNA expression in cancer. Methods Mol Biol. 2011;676:165-184.
172 R Marín, F Ruiz-Cabello, S Pedrinaci, et al. Analysis of HLA-E expression in human tumors. Immunogenetics. 2003;54(11):767-775.
173 W Ze-Qing, Chin RKJCJoCP, Treatment. HLA-G and escape mechanism of tumor cells. 2007.
174 M Urosevic, A Trojan, R Dummer. HLA-G and its KIR ligands in cancer–another enigma yet to be solved? J Pathol. 2002;196(3):252-253.
175 A Lin, W-H Yan. Human leukocyte antigen-G (HLA-G) expression in cancers: roles in immune evasion, metastasis and target for therapy. Mol Med. 2015;21(1):782-791.
176 P Moreau, G Mouillot, P Rousseau, C Marcou, J Dausset, ED Carosella. HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA. 2003;100(3):1191-1196.
177 G Mouillot, C Marcou, P Rousseau, N Rouas-Freiss, ED Carosella, P Moreau. HLA-G gene activation in tumor cells involves cis-acting epigenetic changes. Int J Cancer. 2005;113(6):928-936.
178 M Urosevic, MO Kurrer, J Kamarashev, et al. Human leukocyte antigen G up-regulation in lung cancer associates with high-grade histology, human leukocyte antigen class I loss and interleukin-10 production. Am J Pathol. 2001;159(3):817-824.
179 S Lefebvre, P Moreau, V Guiard, et al. Molecular mechanisms controlling constitutive and IFN-gamma-inducible HLA-G expression in various cell types. J Reprod Immunol. 1999;43(2):213-224.
180 SN Wagner, V Rebmann, CP Willers, H Grosse-Wilde, M Goos. Expression analysis of classic and non-classic HLA molecules before interferon alfa-2b treatment of melanoma. Lancet (London, England). 2000;356(9225):220-221.
181 G Mouillot, C Marcou, I Zidi, et al. Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol. 2007;68(4):277-285.
182 L Yaghi, I Poras, RT Simoes, et al. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2. Oncotarget. 2016;7(39):63690-63707.
183 GL Semenza. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20(1):51-56.
184 P Tomasec, VM Braud, C Rickards, et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science. 2000;287(5455):1031.
185 T Hofer, RH Wenger, MF Kramer, GC Ferreira, M Gassmann. Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. Blood. 2003;101(1):348-350.
186 F Concha-Benavente, RM Srivastava, S Trivedi, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res. 2016;76(5):1031-1043.
187 AC Betzler, MN Theodoraki, PJ Schuler, et al. NF-κB and its role in checkpoint control. Int J Mol Sci. 2020;21(11):3949.
188 K Kataoka, Y Shiraishi, Y Takeda, et al. Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature. 2016;534(7607):402-406.
189 S Kumar, SK Sharawat. Epigenetic regulators of programmed death-ligand 1 expression in human cancers. Transl Res. 2018;202:129-145.
190 KL Dennis, NR Blatner, F Gounari, K Khazaie. Current status of interleukin-10 and regulatory T-cells in cancer. Curr Opin Oncol. 2013;25(6):637-645.
191 F Salazar-Onfray. Interleukin-10: a cytokine used by tumors to escape immunosurveillance. Med Oncol. 1999;16(2):86-94.
192 A Mantovani, A Sica. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231-237.
193 R Castriconi, C Cantoni, MD Chiesa, M Vitale, A Moretta. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA. 2003;100(7):4120-4125.
194 JC Lee, KM Lee, DW Kim, DS Heo. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol. 2004;172(12):7335-7340.
195 R Castriconi, C Cantoni, M Della Chiesa, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA. 2003;100(7):4120-4125.
196 Y Laouar, FS Sutterwala, L Gorelik, RA Flavell. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol. 2005;6(6):600-607.
197 J Yu, M Wei, B Becknell, et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity. 2006;24(5):575-590.
198 E Mamessier, A Sylvain, ML Thibult, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121(9):3609-3622.
199 M Della Chiesa, S Carlomagno, G Frumento, et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood. 2006;108(13):4118-4125.
200 G Pietra, C Manzini, S Rivara, et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 2012;72(6):1407-1415.
201 DH Munn, MD Sharma, JR Lee, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002;297(5588):1867-1870.
202 M Krockenberger, Y Dombrowski, C Weidler, et al. Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol. 2008;180(11):7338-7348.
203 T Raskovalova, A Lokshin, X Huang, EK Jackson, E Gorelik. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol Res. 2006;36(1-3):91-99.
204 T Raskovalova, X Huang, M Sitkovsky, LC Zacharia, EK Jackson, E Gorelik. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol. 2005;175(7):4383-4391.
205 P Boutet, S Agüera-González, S Atkinson, et al. Cutting edge: the metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J Immunol. 2009;182(1):49-53.
206 V Groh, J Wu, C Yee, T Spies. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419(6908):734.
207 K Ogasawara, J Benjamin, R Takaki, JH Phillips, LL Lanier. Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nat Immunol. 2005;6(9):938.
208 K Ogasawara, JA Hamerman, H Hsin, et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity. 2003;18(1):41-51.
209 DE Oppenheim, SJ Roberts, SL Clarke, et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol. 2005;6(9):928-937.
210 K Wiemann, HW Mittrucker, U Feger, et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol. 2005;175(2):720.
211 G Liu, S Lu, X Wang, et al. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest. 2013;123(10):4410-4422.
212 G Xiao, X Wang, J Sheng, S Lu, X Yu, JD Wu. Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. J Hematol Oncol. 2015;8:13.
213 Y Koguchi, H Hoen, S Bambina, et al. Serum immunoregulatory proteins as predictors of overall survival of metastatic melanoma patients treated with ipilimumab. J Immunother Cancer. 2015;3(2):1-1.
214 C Sordo-Bahamonde, S Lorenzo-Herrero, áR Payer, S Gonzalez, A López-Soto. Mechanisms of apoptosis resistance to NK cell-mediated cytotoxicity in cancer. Int J Mol Sci. 2020;21(10):3726.
215 SW Lowe, E Cepero, G Evan. Intrinsic tumour suppression. Nature. 2004;432(7015):307-315.
216 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
217 DG Stupack. Caspase-8 as a therapeutic target in cancer. Cancer Lett. 2013;332(2):133-140.
218 Y Ionov, H Yamamoto, S Krajewski, JC Reed, M Perucho. Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA. 2000;97(20):10872-10877.
219 MB Valnet-Rabier, B Challier, S Thiebault, et al. c-Flip protein expression in Burkitt's lymphomas is associated with a poor clinical outcome. Br J Haematol. 2005;128(6):767-773.
220 D McLornan, J Hay, K McLaughlin, et al. Prognostic and therapeutic relevance of c-FLIP in acute myeloid leukaemia. Br J Haematol. 2013;160(2):188-198.
221 GJ Ullenhag, A Mukherjee, NF Watson, AH Al-Attar, JH Scholefield, LG Durrant. Overexpression of FLIPL is an independent marker of poor prognosis in colorectal cancer patients. Clin Cancer Res. 2007;13(17):5070-5075.
222 MA Taylor, PM Chaudhary, J Klem, V Kumar, JD Schatzle, M Bennett. Inhibition of the death receptor pathway by cFLIP confers partial engraftment of MHC class I-deficient stem cells and reduces tumor clearance in perforin-deficient mice. J Immunol. 2001;167(8):4230-4237.
223 C Liu, S Yu, J Kappes, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109(10):4336-4342.
224 J Baginska, E Viry, G Berchem, et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci USA. 2013;110(43):17450-17455.
225 E Viry, J Baginska, G Berchem, et al. Autophagic degradation of GZMB/granzyme B: a new mechanism of hypoxic tumor cell escape from natural killer cell-mediated lysis. Autophagy. 2014;10(1):173-175.
226 JP Medema, J de Jong, LT Peltenburg, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA. 2001;98(20):11515-11520.
227 AP Gonzalez-Rodriguez, M Villa-álvarez, C Sordo-Bahamonde, S Lorenzo-Herrero, S Gonzalez. NK cells in the treatment of hematological malignancies. J Clin Med. 2019;8(10):1557.
228 C Sordo-Bahamonde, M Vitale, S Lorenzo-Herrero, A López-Soto, S Gonzalez. Mechanisms of resistance to NK cell immunotherapy. Cancers. 2020;12(4):893.
229 S Lorenzo-Herrero, C Sordo-Bahamonde, S González, A López-Soto. Immunosurveillance of cancer cell stress. Cell Stress. 2019;3(9):295-309.
230 A Sermeus, M Genin, A Maincent, et al. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. PLoS One. 2012;7(11):e47519.
231 SY Park, TR Billiar, DW Seol. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Biochem Biophys Res Commun. 2002;291(1):150-153.
232 JP Piret, E Minet, JP Cosse, et al. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Biol Chem. 2005;280(10):9336-9344.
233 E Sahai, I Astsaturov, E Cukierman, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174-186.
234 J Gao, L Shi, H Zhao, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397-404. e9.
235 JM Pitt, M Vétizou, R Daillère, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-Intrinsic and-Extrinsic Factors. Immunity. 2016;44(6):1255-1269.
236 JM Zaretsky, A Garcia-Diaz, DS Shin, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819.
237 L Ruggeri, A Mancusi, E Burchielli, et al. NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. Blood Cells Mol Dis. 2008;40(1):84-90.
238 M Felices, TR Lenvik, ZB Davis, JS Miller, DA Vallera. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol. 2016;1441:333-346.
239 MK Gleason, JA Ross, ED Warlick, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood. 2014;123(19):3016-3026.
240 S Wingert, U Reusch, S Knackmuss, et al. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. mAbs. 2021;13(1):1950264.
241 DA Vallera, M Felices, R McElmurry, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22(14):3440-3450.
242 A Raynaud, K Desrumeaux, L Vidard, et al. Anti-NKG2D single domain-based antibodies for the modulation of anti-tumor immune response. Oncoimmunology. 2020;10(1):1854529.
243 M Pan, F Wang, L Nan, et al. alphaVEGFR2-MICA fusion antibodies enhance immunotherapy effect and synergize with PD-1 blockade. Cancer Immunol Immunother. 2023;72(4):969-984.
244 W Xie, F Liu, Y Wang, et al. VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer. Oncotarget. 2016;7(13):16445-16461.
245 L Ferrari de Andrade, RE Tay, D Pan, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018;359(6383):1537-1542.
246 PH Alves da Silva, S Xing, AG Kotini, et al. MICA/B antibody induces macrophage-mediated immunity against acute myeloid leukemia. Blood. 2022;139(2):205-216.
247 S Lu, J Zhang, D Liu, et al. Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. Clin Cancer Res. 2015;21(21):4819-4830.
248 KF Tang, CX He, GL Zeng, et al. Induction of MHC class I-related chain B (MICB) by 5-aza-2'-deoxycytidine. Biochem Biophys Res Commun. 2008;370(4):578-583.
249 J Goulding, WI Yeh, B Hancock, et al. A chimeric antigen receptor uniquely recognizing MICA/B stress proteins provides an effective approach to target solid tumors. Med (New York, NY). 2023;4(7):457-477. e8.
250 F Cichocki, JS Miller. Promoting T and NK cell attack: preserving tumor MICA/B by vaccines. Cell Res. 2022;32(11):961-962.
251 N Torres, MV Regge, F Secchiari, et al. Restoration of antitumor immunity through anti-MICA antibodies elicited with a chimeric protein. Immunother Cancer. 2020;8(1):e000233.
252 F Basher, P Dhar, X Wang, et al. Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. J Hematol Oncol. 2020;13(1):74.
253 F Vivanco, E Mu?oz, L Vidarte, C Pastor. The covalent interaction of C3 with IgG immune complexes. Mol Immunol. 1999;36(13-14):843-852.
254 M Jinushi, F Hodi, G Dranoff. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc Nat Acad Sci USA. 2006;103(24):9190-9195.
255 V Groh, YQ Li, D Cioca, et al. Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. Proc Natl Acad Sci USA. 2005;102(18):6461-6466.
256 DR Leach, MF Krummel, JP Allison. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734-1736.
257 FS Hodi, SJ O'Day, DF McDermott, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-723.
258 S Armeanu. Natural killer cell–mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 2005;65(14):6321.
259 Z Cai, Y Wang, Z Zhou, Z Jian, Z Tian. Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. Cancer Immunol Immunother. 2009;58(8):1275-1285.
260 S Diermayr, H Himmelreich, B Durovic, et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood. 2008;111(3):1428-1436.
261 S Skov. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3–dependent expression of MHC class I–related chain A and B. Cancer Res. 2005;65(23):11136-11145.
262 A Hervieu, C Rébé, F Végran, et al. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. J Invest Dermatol. 2013;133(2):499-508.
263 AM Paczulla, K Rothfelder, S Raffel, M Konantz, C Lengerke. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature. 2019;572(7768):1.
264 A Soriani, A Zingoni, C Cerboni, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood. 2009;113(15):3503-3511.
265 F Romagné, P André, P Spee, et al. Preclinical characterization of 1–7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood. 2009;114(13):2667-2677.
266 DM, Benson, CE Bakan, S Zhang, et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood. 2011;118(24):6387-6391.
267 N Vey, H Dombret, N Ifrah, et al. Intergroup ALFA/GOELAMS randomized phase II trial of lirilumab anti-KIR monoclonal antibody (IPH2102/BMS986015) as maintenance treatment in elderly patients with acute myeloid leukemia (EFFIKIR trial). J Clin Oncol. 2013;31. TPS3117-TPS3117(2013).
268 P André, C Denis, C Soulas, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(7):1731-1743. e13.
269 M Melander, B Laugel. Abstract LB220: s095029: a novel clinical-stage Fc-silenced NKG2A-blocking antibody with best-in-class potential. Cancer Res. 2023;83(8):LB220-LB220.
270 S Ghaffari, JA Weidanz. Targeting the NKG2A axis with a TCR mimic antibody containing an active Fc domain promotes anti-tumor immunity. J Immunol. 2023;210(1):89.
271 PS Becker, G Suck, P Nowakowska, et al. Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother. 2016;65(4):477-484.
272 H Klingemann. Challenges of cancer therapy with natural killer cells. Cytotherapy. 2015;17(3):245-249.
273 T Sutlu, E Alici. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J Intern Med. 2009;266(2):154-181.
274 SA Rosenberg. Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am. 2000;6(1):S2-S7.
275 B Becknell, MA Caligiuri. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol. 2005;86:209-239.
276 MJ Smyth, Y Hayakawa, K Takeda, H Yagita. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2(11):850-861.
277 L Ruggeri, M Capanni, E Urbani, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097-2100.
278 HJ Pegram, JC Lee, EG Hayman, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119(18):4133-4141.
279 EG Iliopoulou, P Kountourakis, MV Karamouzis, et al. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother. 2010;59(12):1781-1789.
280 G Xie, H Dong, Y Liang, JD Ham, R Rizwan, J Chen. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975.
281 F Marofi, HS Rahman, L Thangavelu, et al. Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy. Stem Cell Res Ther. 2021;12(1):200.
282 KB Lupo, S Matosevic. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers. 2019;11(6):769.
283 E Liu, D Marin, P Banerjee, et al. Use of CAR-Transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553.
284 CK Chou, CJ Turtle. Insight into mechanisms associated with cytokine release syndrome and neurotoxicity after CD19 CAR-T cell immunotherapy. Bone Marrow Transplant. 2019;54(2):780-784.
285 L Zheng, L Ren, A Kouhi, et al. A humanized Lym-1 CAR with novel DAP10/DAP12 signaling domains demonstrates reduced tonic signaling and increased antitumor activity in B-cell lymphoma models. Clin Cancer Res. 2020;26(14):3694-3706.
286 H Kotanides, RM Sattler, MB Lebron, et al. Characterization of 7A5: a human CD137 (4-1BB) receptor binding monoclonal antibody with differential agonist properties that promotes antitumor immunity. Mol Cancer Ther. 2020;19(4):988-998.
287 C Imai, S Iwamoto, D Campana. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005;106(1):376-383.
288 A Lebrun, G Myhal, N Ceneston, J Constanzo-Yanez, YJB Grégoire. Transfusion of sickle cell anemia patients in Quebec: challenges and opportunities. Blood. 2017;130:3745-3745.
289 Z Cao, C Yang, Y Wang, et al. Allogeneic CAR-NK cell therapy targeting both BCMA and GPRC5D for the treatment of multiple myeloma. Blood. 2022;140:7378.
290 C Yang, Y Wang, T Liu, et al. Abstract 4077: dual-targeted CAR-NK cell therapy: optimized CAR design to prevent antigen escape and elicit a deep and durable response in multiple myeloma. Cancer Res. 2023;83(7):4077.
291 H Liu, B Yang, T Sun, et al. Specific growth inhibition of ErbB2?expressing human breast cancer cells by genetically modified NK?92 cells. Oncol Rep. 2015;33(1):95-102.
292 K Sch?nfeld, C Sahm, C Zhang, et al. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther. 2015;23(2):330-338.
293 C Zhang, MC Burger, L Jennewein, et al. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 2016;108(5).
294 A Kruschinski, A Moosmann, I Poschke, et al. Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc Natl Acad Sci USA. 2008;105(45):17481-17486.
295 T Zhang. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 2006;66(11):5927-5933.
296 DG Song, Q Ye, S Santoro, C Fang, A Best. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther. 2013;24(3):295-305.
297 SH Baumeister, J Murad, L Werner, et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res. 2019;7(1):100-112.
298 A Leivas, A Valeri, L Córdoba, et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 2021;11(8):146.
299 Y Zhang, DL Wallace, CM de Lara, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007;121(2):258-265.
300 AM Merino, H Kim, JS Miller, F Cichocki. Unraveling exhaustion in adaptive and conventional NK cells. J Leukocyte Biol. 2020;108(4):1361-1368.
301 I Navin, MT Lam, R Parihar. Design and implementation of NK cell-based immunotherapy to overcome the solid tumor microenvironment. Cancers. 2020;12(12):3871.
302 M Saxena, SH van der Burg, CJM Melief, N Bhardwaj. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360-378.
303 G Dranoff. Targets of protective tumor immunity. Ann NY Acad Sci. 2010;1174:74-80.
304 AM Levin, DL Bates, AM Ring, et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature. 2012;484(7395):529-533.
305 DH Charych, U Hoch, JL Langowski, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016;22(3):680-690.
306 JT Sockolosky, E Trotta, G Parisi, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359(6379):1037-1042.
307 KC Conlon, E Lugli, HC Welles, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33(1):74-82.
308 F Ghiringhelli, C Ménard, M Terme, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med. 2005;202(8):1075-1085.
309 S Viel, A Mar?ais, FS Guimaraes, et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9(415):ra19.
310 F Otegbeye, E Ojo, S Moreton, et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One. 2018;13(1):e0191358.
311 S Krieg, E Ullrich. Novel immune modulators used in hematology: impact on NK cells. Front Immunol. 2012;3:388.
312 FE Davies, N Raje, T Hideshima, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210-216.
313 PR Hagner, H Chiu, M Ortiz, et al. Activity of lenalidomide in mantle cell lymphoma can be explained by NK cell-mediated cytotoxicity. Br J Haematol. 2017;179(3):399-409.
314 X Zheng, Z Hou, Y Qian, et al. Tumors evade immune cytotoxicity by altering the surface topology of NK cells. Nat Immunol. 2023;24(5):802-813.
315 BH Goldenson, P Hor, DS Kaufman. iPSC-derived natural killer cell therapies—expansion and targeting. Front Immunol. 2022;13:841107.
316 K Rezvani, RH Rouce. The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol. 2015;6:578.
PDF

Accesses

Citations

Detail

Sections
Recommended

/