Airway epithelial-derived exosomes induce acute asthma exacerbation after respiratory syncytial virus infection

Ye Yao1,2, Yu Yang1,2, Ming Ji2, Qingwu Qin3, Kun Xu4, Zhenkun Xia5, Huijun Liu2, Lin Yuan2, Yunchang Yuan5, Ling Qin2,6, Xizi Du2, Leyuan Wang2, Kai Zhou2, Xinyu Wu2, Weijie Wang2, Bei Qing5, Yang Xiang2, Xiangping Qu2, Ming Yang7, Xiaoqun Qin2, Chi Liu1,2,6()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e621. DOI: 10.1002/mco2.621
ORIGINAL ARTICLE

Airway epithelial-derived exosomes induce acute asthma exacerbation after respiratory syncytial virus infection

  • Ye Yao1,2, Yu Yang1,2, Ming Ji2, Qingwu Qin3, Kun Xu4, Zhenkun Xia5, Huijun Liu2, Lin Yuan2, Yunchang Yuan5, Ling Qin2,6, Xizi Du2, Leyuan Wang2, Kai Zhou2, Xinyu Wu2, Weijie Wang2, Bei Qing5, Yang Xiang2, Xiangping Qu2, Ming Yang7, Xiaoqun Qin2, Chi Liu1,2,6()
Author information +
History +

Abstract

Acute asthma exacerbation refers to the progressive deterioration of asthma symptoms that is always triggered by virus infection represented by respiratory syncytial virus (RSV). After RSV infection, exaggerated Th2-mediated pulmonary inflammation is the critical pathological response of asthmatic patients with acute exacerbation. Significantly, airway epithelial cells, being the primary targets of RSV infection, play a crucial role in controlling the pulmonary inflammatory response by releasing airway epithelial cell-derived exosomes (AEC-Exos), which potentially influence the development of asthma. However, the specific role of AEC-Exos in acute asthma exacerbation after RSV infection remains obscure. The purpose of this study was to determine the distinct function of AEC-Exos in exacerbating acute asthma following RSV infection. Blockade of exosomes by GW reduce the enhanced pulmonary inflammation significantly. Specifically, the enhanced Th2 inflammation was induced by AEC-Exos thorough transportation of hsa-miR-155-5p–Sirtuin 1 (SIRT1) pathway during acute asthma exacerbation. Targeted inhibition of hsa-miR-155-5p blocks the exaggerated Th2 inflammation effectively in mice with acute asthma exacerbation. In summary, our study showed that during acute asthma exacerbation after RSV infection, AEC-Exos promote the enhanced Th2 inflammation through transportation of increased hsa-miR-155-5p, which was mediated partly through SIRT1-mediated pathway. hsa-miR-155-5p is a potential biomarker for early prediction of acute asthma exacerbation.

Keywords

acute asthma exacerbation / airway epithelial cells / exosomes / respiratory syncytial virus / Th2 inflammation

Cite this article

Download citation ▾
Ye Yao, Yu Yang, Ming Ji, Qingwu Qin, Kun Xu, Zhenkun Xia, Huijun Liu, Lin Yuan, Yunchang Yuan, Ling Qin, Xizi Du, Leyuan Wang, Kai Zhou, Xinyu Wu, Weijie Wang, Bei Qing, Yang Xiang, Xiangping Qu, Ming Yang, Xiaoqun Qin, Chi Liu. Airway epithelial-derived exosomes induce acute asthma exacerbation after respiratory syncytial virus infection. MedComm, 2024, 5(7): e621 https://doi.org/10.1002/mco2.621

References

1 N Jain, K Satish, N Abhyankar, N Velayudhan, J Gurunathan. Repeated exacerbation of asthma: an intrinsic phenotype of uncontrolled asthma. Lung India. 2019;36(2):131-138. doi:
2 A Wade, C Chang. Evaluation and treatment of critical asthma syndrome in children. Clin Rev Allergy Immunol. 2015;48(1):66-83. doi:
3 Y Mauer, RM Taliercio. Managing adult asthma: the 2019 GINA guidelines. Cleve Clin J Med. 2020;87(9):569-575. doi:
4 M Yue, S Tao, K Gaietto, W Chen. Omics approaches in asthma research: challenges and opportunities. Chin Med J Pulm Crit Care Med. 2024;2(1):1-9.
5 D Toumpanakis, OS Usmani. Small airways in asthma: pathophysiology, identification and management. Chin Med J Pulm Crit Care Med. 2023;1(3):171-180. doi:
6 M Haktanir Abul, W Phipatanakul. Severe asthma in children: evaluation and management. Allergol Int. 2019;68(2):150-157. doi:
7 I Mikhail, MH Grayson. Asthma and viral infections: an intricate relationship. Ann Allergy Asthma Immunol. 2019;123(4):352-358. doi:
8 H Hammad, M Chieppa, F Perros, MA Willart, RN Germain, BN Lambrecht. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15(4):410-416. doi:
9 K Dabbagh, ME Dahl, P Stepick-Biek, DB Lewis. Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol. 2002;168(9):4524-4530. doi:
10 NW Lukacs, J Smit, D Lindell, M Schaller. Respiratory syncytial virus-induced pulmonary disease and exacerbation of allergic asthma. Contrib Microbiol. 2007;14:68-82. doi:
11 M Vareille, E Kieninger, MR Edwards, N Regamey. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011;24(1):210-229. doi:
12 YM Hosakote, AR Brasier, A Casola, RP Garofalo, A Kurosky. Respiratory syncytial virus infection triggers epithelial HMGB1 release as a damage-associated molecular pattern promoting a monocytic inflammatory response. J Virol. 2016;90(21):9618-9631. doi:
13 X Guo, T Liu, H Shi, et al. Respiratory syncytial virus infection upregulates NLRC5 and major histocompatibility complex class I expression through RIG-I induction in airway epithelial cells. J Virol. 2015;89(15):7636-7645. doi:
14 JA Ca?as, JM Rodrigo-Mu?oz, M Gil-Martínez, B Sastre, V del Pozo. Exosomes: a key piece in asthmatic inflammation. Int J Mol Sci. 2021;22(2):963. doi:
15 C Griffiths, SJ Drews, DJ Marchant. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30(1):277-319. doi:
16 ML Garcia-Garcia, C Calvo Rey, T Del Rosal Rabes. Pediatric asthma and viral infection. Arch Bronconeumol. 2016;52(5):269-273. doi:. Asma y virus en el ni?o.
17 Y Zhao, M Jamaluddin, Y Zhang, et al. Systematic analysis of cell-type differences in the epithelial secretome reveals insights into the pathogenesis of respiratory syncytial virus-induced lower respiratory tract infections. J Immunol. 2017;198(8):3345-3364. doi:
18 JA Ca?as, B Sastre, JM Rodrigo-Mu?oz, V Del Pozo. Exosomes: a new approach to asthma pathology. Clin Chim Acta. 2019;495:139-147. doi:
19 C Pilette. Role of exosomes in allergic asthma: signaling platforms between the epithelium and type 2 immunity. J Allergy Clin Immunol. 2021;148(6):1478-1480. doi:
20 L Qiang, L Wang, N Kon, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 2012;150(3):620-632. doi:
21 L Glaser, PJ Coulter, M Shields, O Touzelet, UF Power, L Broadbent. Airway epithelial derived cytokines and chemokines and their role in the immune response to respiratory syncytial virus infection. Pathogens (Basel, Switzerland). 2019;8(3):106. doi:
22 CC Smallcombe, TJ Harford, DT Linfield, et al. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2020;319(3):L481-L496. doi:
23 EF Castillo, H Zheng, XO Yang. Orchestration of epithelial-derived cytokines and innate immune cells in allergic airway inflammation. Cytokine Growth Factor Rev. 2018;39:19-25. doi:
24 JT Mills, A Schwenzer, EK Marsh, et al. Airway epithelial cells generate pro-inflammatory tenascin-C and small extracellular vesicles in response to TLR3 stimuli and rhinovirus infection. Front Immunol. 2019;10:1987. doi:
25 T Jartti, JE Gern. Role of viral infections in the development and exacerbation of asthma in children. J Allergy Clin Immunol. 2017;140(4):895-906. doi:
26 N Ludwig, TL Whiteside, TE Reichert. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci. 2019;20(19):4684. doi:
27 A Kulshreshtha, T Ahmad, A Agrawal, B Ghosh. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013;131(4):1194-1203. e1-e14. doi:
28 K Essandoh, L Yang, X Wang, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta. 2015;1852(11):2362-2371. doi:
29 YC Xia, T Harris, AG Stewart, GA Mackay. Secreted factors from human mast cells trigger inflammatory cytokine production by human airway smooth muscle cells. Int Arch Allergy Immunol. 2013;160(1):75-85. doi:
30 Y Zhang, X Le, S Zheng, et al. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther. 2022;13(1):171. doi:
31 M Zhang, Q Yu, W Tang, et al. Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell-dominant T-cell responses in asthma. J Allergy Clin Immunol. 2021;148(6):1545-1558. doi:
32 F Huang, H Jia, Y Zou, Y Yao, Z Deng. Exosomes: an important messenger in the asthma inflammatory microenvironment. J Int Med Res. 2020;48(2):300060520903220. doi:
33 C Liu, X Qin, H Liu, Y Xiang. Downregulation of integrin β4 decreases the ability of airway epithelial cells to present antigens. PLoS One. 2012;7(4):e32060. doi:
34 LH Mo, XQ Luo, G Yang, et al. Epithelial cell-derived CD83 restores immune tolerance in the airway mucosa by inducing regulatory T-cell differentiation. Immunology. 2021;163(3):310-322. doi:
35 E Salik, M Tyorkin, S Mohan, et al. Antigen trafficking and accessory cell function in respiratory epithelial cells. Am J Respir Cell Mol Biol. 1999;21(3):365-379. doi:
36 K Nazimek, K Bryniarski, PW Askenase. Functions of exosomes and microbial extracellular vesicles in allergy and contact and delayed-type hypersensitivity. Int Arch Allergy Immunol. 2016;171(1):1-26. doi:
37 JJ Lai, ZL Chau, SY Chen, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci (Weinh). 2022;9(15):e2103222. doi:
38 S Gurung, D Perocheau, L Touramanidou, J Baruteau. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):47. doi:
39 HS Chahar, T Corsello, AS Kudlicki, N Komaravelli, A Casola. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep. 2018;8(1):387. doi:
40 LN Giassafaki, S Siqueira, E Panteris, et al. Towards analyzing the potential of exosomes to deliver microRNA therapeutics. J Cell Physiol. 2021;236(2):1529-1544. doi:
41 T Skotland, NP Hessvik, K Sandvig, A Llorente. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;60(1):9-18. doi:
42 Q Hu, J Yao, X Wu, et al. Emodin attenuates severe acute pancreatitis-associated acute lung injury by suppressing pancreatic exosome-mediated alveolar macrophage activation. Acta Pharm Sin B. 2022;12(10):3986-4003. doi:
43 J Palacionyte, A Januskevicius, E Vasyle, et al. Novel serum biomarkers for patients with allergic asthma phenotype. Biomedicines. 2024;12(1):232. doi:
44 C Malmh?ll, S Alawieh, Y Lu, et al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol. 2014;133(5):1429-1438. e1-e7. doi:
45 X Li, N Yang. Exosome miR-223-3p in the bone marrow-derived mesenchymal stem cells alleviates the inflammation and airway remodeling through NLRP3-induced ASC/Caspase-1/GSDMD signaling pathway. Int Immunopharmacol. 2023;123:110746. doi:
46 Y Xu, C Zhang, D Cai, R Zhu, Y Cao. Exosomal miR-155-5p drives widespread macrophage M1 polarization in hypervirulent Klebsiella pneumoniae-induced acute lung injury via the MSK1/p38-MAPK axis. Cell Mol Biol Lett. 2023;28(1):92. doi:
47 L Fernandez-Messina, A Rodriguez-Galan, VG de Yebenes, et al. Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep. 2020;21(4):e48925. doi:
48 X Zhang, B Sai, F Wang, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18(1):40. doi:
49 W Liu, D Jiang, F Gong, et al. miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells. Cell Death Dis. 2020;11(2):93. doi:
50 L Ma, Y Zheng, X Tang, et al. miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling. Reproduction. 2019;158(5):441-452. doi:
51 JH Choi, SE Sung, KK Kang, et al. Extracellular vesicles from human adipose tissue-derived mesenchymal stem cells suppress RANKL-induced osteoclast differentiation via miR122-5p. Biochem Genet. 2023. doi:
52 CJ Martyniuk, R Martinez, DJ Kostyniuk, JA Mennigen, J Zubcevic. Genetic ablation of bone marrow beta-adrenergic receptors in mice modulates miRNA-transcriptome networks of neuroinflammation in the paraventricular nucleus. Physiol Genomics. 2020;52(4):169-177. doi:
53 MA Mori, RG Ludwig, R Garcia-Martin, BB Brand?o, CR Kahn. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019;30(4):656-673. doi:
54 TT Yang, CG Liu, SC Gao, Y Zhang, PC Wang. The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer's disease biomarkers. Biomed Environ Sci. 2018;31(2):87-96. doi:
55 Y Yaghoubi, A Movassaghpour, M Zamani, M Talebi, A Mehdizadeh, M Yousefi. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci. 2019;233:116733. doi:
56 S Wang, Y Gao. Pancreatic cancer cell-derived microRNA-155-5p-containing extracellular vesicles promote immune evasion by triggering EHF-dependent activation of Akt/NF-κB signaling pathway. Int Immunopharmacol. 2021;100:107990. doi:
57 A Daenthanasanmak, S Iamsawat, P Chakraborty, et al. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. Blood. 2019;133(3):266-279. doi:
58 K Chen, J Fan, ZF Luo, Y Yang, WJ Xin, CC Liu. Reduction of SIRT1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. J Neuroinflammation. 2018;15(1):292. doi:
59 L Liu, X Zhu, T Zhao, Y Yu, Y Xue, H Zou. Sirt1 ameliorates monosodium urate crystal-induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology (Oxford). 2019;58(9):1674-1683. doi:
60 Q Yu, L Dong, Y Li, G Liu. SIRT1 and HIF1alpha signaling in metabolism and immune responses. Cancer Lett. 2018;418:20-26. doi:
61 M Wu, Y Yang, L Yuan, et al. DNA methylation down-regulates integrin β4 expression in asthmatic airway epithelial cells. Clin Exp Allergy. 2020;50(10):1127-1139. doi:
62 TH Nguyen, S Maltby, HL Tay, F Eyers, PS Foster, M Yang. Identification of IFN-γ and IL-27 as critical regulators of respiratory syncytial virus-induced exacerbation of allergic airways disease in a mouse model. J Immunol. 2018;200(1):237-247. doi:
63 J Chen, R Zhou, Y Liang, X Fu, D Wang, C Wang. Blockade of lncRNA-ASLNCS5088-enriched exosome generation in M2 macrophages by GW4869 dampens the effect of M2 macrophages on orchestrating fibroblast activation. FASEB J. 2019;33(11):12200-12212. doi:
64 K Zhang, Y Feng, Y Liang, et al. Epithelial miR-206 targets CD39/extracellular ATP to upregulate airway IL-25 and TSLP in type 2-high asthma. JCI Insight. 2021;6(11):e148103. doi:
65 HK Reddel, LB Bacharier, ED Bateman, et al. Global initiative for asthma strategy 2021. Executive summary and rationale for key changes. Arch Bronconeumol. 2022;58(1):35-51. doi:
66 DJ Maselli, JI Peters. Medication regimens for managing acute asthma. Respir Care. 2018;63(6):783-796. doi:
67 L Yuan, H Liu, X Du, et al. Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol. 2022. doi:
68 L Yuan, X Zhang, M Yang, et al. Airway epithelial integrin β4 suppresses allergic inflammation by decreasing CCL17 production. Clin Sci (Lond). 2020;134(13):1735-1749. doi:
69 P Rajavelu, G Chen, Y Xu, JA Kitzmiller, TR Korfhagen, JA Whitsett. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. J Clin Invest. 2015;125(5):2021-2031. doi:
70 BP Hurrell, DG Helou, P Shafiei-Jahani, et al. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J Allergy Clin Immunol. 2022;149(5):1628-1642. e10. doi:
71 L Yuan, H Liu, X Du, et al. Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol. 2023;151(2):431-446. e16. doi:
72 X Du, Y Yang, G Xiao, et al. Respiratory syncytial virus infection-induced mucus secretion by down-regulation of miR-34b/c-5p expression in airway epithelial cells. J Cell Mol Med. 2020;24(21):12694-12705. doi:
73 X Du, Y Yang, M Yang, et al. ITGB4 deficiency induces mucus hypersecretion by upregulating MUC5AC in RSV-infected airway epithelial cells. Research paper. Int J Biol Sci. 2022;18(1):349-359. doi:
74 L Bouchareychas, P Duong, S Covarrubias, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep. 2020;32(2):107881. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/