Comparison of genetic and epigenetic profiles of periodontitis according to the presence of type 2 diabetes

Junho Kang1, Hansong Lee2, Ji-Young Joo3, Jae-Min Song4, Hyun-Joo Kim5,6,7, Yun Hak Kim7,8,9(), Hae Ryoun Park6,7,10()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e620. DOI: 10.1002/mco2.620
ORIGINAL ARTICLE

Comparison of genetic and epigenetic profiles of periodontitis according to the presence of type 2 diabetes

  • Junho Kang1, Hansong Lee2, Ji-Young Joo3, Jae-Min Song4, Hyun-Joo Kim5,6,7, Yun Hak Kim7,8,9(), Hae Ryoun Park6,7,10()
Author information +
History +

Abstract

Type 2 diabetes mellitus (T2DM) and periodontitis (PD) have intricated connections as chronic inflammatory diseases. While the immune response is a key factor that accounts for their association, the underlying mechanisms remain unclear. To gain a deeper understanding of the connection, we conducted research using a multiomics approach. We generated whole genome and methylation profiling array data from the periodontium of PD patients with DM (PDDM) and without DM to confirm genetic and epigenetic changes. Independent bulk and single-cell RNA sequencing data were employed to verify the expression levels of hypo-methylated genes. We observed a gradual rise in C>T base substitutions and hypomethylation in PD and PDDM patients compared with healthy participants. Furthermore, specific genetic and epigenetic alterations were prominently associated with the Fc-gamma receptor-mediated phagocytosis pathway. The upregulation of these genes was confirmed in both the periodontal tissues of PD patients and the pancreatic tissues of T2DM patients. Through single-cell RNA analysis of peripheral blood mononuclear cells, substantial upregulation of Fc-gamma receptors and related genes was particularly identified in monocytes. Our findings suggest that targeting the Fc-gamma signaling pathway in monocytes holds promise as a potential treatment strategy for managing systemic complications associated with diabetes.

Keywords

diabetes mellitus / EPIC array / Fc-gamma receptor / periodontitis / whole genome sequencing

Cite this article

Download citation ▾
Junho Kang, Hansong Lee, Ji-Young Joo, Jae-Min Song, Hyun-Joo Kim, Yun Hak Kim, Hae Ryoun Park. Comparison of genetic and epigenetic profiles of periodontitis according to the presence of type 2 diabetes. MedComm, 2024, 5(7): e620 https://doi.org/10.1002/mco2.620

References

1 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32(Suppl 1):S62-S67. doi:
2 R Goyal, I Jialal, Diabetes Mellitus Type 2. StatPearls Publishing; 2018.
3 P Balakumar, K Maung-U, G Jagadeesh. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600-609.
4 E Kononen, M Gursoy, UK Gursoy. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 2019;8(8). doi:
5 MA Nazir. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11(2):72-80.
6 C-z Wu, Y-h Yuan, H-h Liu, et al. Epidemiologic relationship between periodontitis and type 2 diabetes mellitus. BMC Oral Health. 2020;20(1):1-15.
7 B Chee, B Park, PM Bartold. Periodontitis and type II diabetes: a two-way relationship. Int J Evid Based Healthc. 2013;11(4):317-329.
8 RJ Genco, F Graziani, H Hasturk. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontol 2000. 2020;83(1):59-65.
9 F Lakschevitz, G Aboodi, H Tenenbaum, M Glogauer. Diabetes and periodontal diseases: interplay and links. Curr Diab Rev. 2011;7(6):433-439.
10 C Liu, X Feng, Q Li, Y Wang, Q Li, M Hua. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine. 2016;86:100-109.
11 H Lee, JY Joo, JM Song, HJ Kim, YH Kim, HR Park. Immunological link between periodontitis and type 2 diabetes deciphered by single-cell RNA analysis. Clin Transl Med. 2023;13(12):e1503. doi:
12 H Lee, J-Y Joo, DH Sohn, et al. Single-cell RNA sequencing reveals rebalancing of immunological response in patients with periodontitis after non-surgical periodontal therapy. J Transl Med. 2022;20(1):504. doi:
13 M Rodrigues, VW Wong, RC Rennert, CR Davis, MT Longaker, GC Gurtner. Progenitor cell dysfunctions underlie some diabetic complications. Am J Pathol. 2015;185(10):2607-2618.
14 G Mangialardi, P Madeddu. Bone marrow-derived stem cells: a mixed blessing in the multifaceted world of diabetic complications. Curr Diab Rep. 2016;16:1-12.
15 GP Fadini, M Miorin, M Facco, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45(9):1449-1457.
16 LV Kovtonyuk, K Fritsch, X Feng, MG Manz, H Takizawa. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol. 2016;7:502. doi:
17 I Beerman. Accumulation of DNA damage in the aged hematopoietic stem cell compartment. Semin Hematol. 2017;54(1):12-18. doi:
18 SK Veysari, M Asghari, F Farshad, M Hodjat. Epigenetic changes underlie the association between diabetes mellitus and oral diseases. Mol Biol Rep. 2023;50(8):6987-6996.
19 ED Rosen, KH Kaestner, R Natarajan, et al. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67(10):1923-1931. doi:
20 C Ling. Epigenetic regulation of insulin action and secretion–role in the pathogenesis of type 2 diabetes. J Intern Med. 2020;288(2):158-167.
21 Q Ding, Z Gao, K Chen, Q Zhang, S Hu, L Zhao. Inflammation-related epigenetic modification: the bridge between immune and metabolism in type 2 diabetes. Front Immunol. 2022;13:883410. doi:
22 SP Engebretson, J Hey-Hadavi, FJ Ehrhardt, et al. Gingival crevicular fluid levels of interleukin-1beta and glycemic control in patients with chronic periodontitis and type 2 diabetes. J Periodontol. 2004;75(9):1203-1208. doi:
23 RJ Genco, WS Borgnakke. Diabetes as a potential risk for periodontitis: association studies. Periodontol 2000. 2020;83(1):40-45.
24 LB Alexandrov, J Kim, NJ Haradhvala, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94-101. doi:
25 H Ying, A Lin, J Liang, J Zhang, P Luo. Association between FSIP2 mutation and an improved efficacy of immune checkpoint inhibitors in patients with skin cutaneous melanoma. Front Mol Biosci. 2021;8:629330. doi:
26 S Erfanian, H Mir, A Abdoli, A Roustazadeh. Association of gastric inhibitory polypeptide receptor (GIPR) gene polymorphism with type 2 diabetes mellitus in iranian patients. BMC Med Genomics. 2023;16(1):44. doi:
27 DA Skuratovskaia, MA Vulf, EV Kirienkova, NI Mironyuk, PA Zatolokin, LS Litvinova. [The role of single nucleotide polymorphisms in GIPR gene in the changes of secretion in hormones and adipokines in patients with obesity with type 2 diabetes. Biomed Khim. 2018;64(2):208-216. doi:. Rol' odnonukleotidnykh polimorfizmov gena GIPR v reguliatsii sekretsii gormonov i adipokinov pri ozhirenii, oslozhnennom sakharnym diabetom 2 tipa.
28 X Huang, G Liu, J Guo, Z Su. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483.
29 RC Poulos, J Olivier, JW Wong. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res. 2017;45(13):7786-7795.
30 RC Poulos, J Olivier, JWH Wong. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res. 2017;45(13):7786-7795. doi:
31 MF Denissenko, JX Chen, MS Tang, GP Pfeifer. Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci USA. 1997;94(8):3893-3898. doi:
32 S Bournazos, TT Wang, JV Ravetch. The role and function of fcγ receptors on myeloid cells. Microbiol Spectr. 2016;4(6). doi:
33 M Guilliams, P Bruhns, Y Saeys, H Hammad, BN Lambrecht. The function of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014;14(2):94-108. doi:
34 S Villicana, JT Bell. Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol. 2021;22(1):127. doi:
35 C Br?nnmark, E Nyman, S Fagerholm, et al. Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes. J Biol Chem. 2013;288(14):9867-9880.
36 W Song, A Ergul. Type-2 diabetes-induced changes in vascular extracellular matrix gene expression: relation to vessel size. Cardiovasc Diabetol. 2006;5:3. doi:
37 X Huang, G Liu, J Guo, Z Su. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483-1496. doi:
38 X Yin, Z Xu, Z Zhang, et al. Association of PI3K/AKT/mTOR pathway genetic variants with type 2 diabetes mellitus in Chinese. Diabetes Res Clin Pract. 2017;128:127-135.
39 A Busca, M Saxena, S Iqbal, J Angel, A Kumar. PI3K/Akt regulates survival during differentiation of human macrophages by maintaining NF-κB-dependent expression of antiapoptotic Bcl-xL. J Leukoc Biol. 2014;96(6):1011-1022. doi:
40 F Junker, J Gordon, O Qureshi. Fc gamma receptors and their role in antigen uptake, presentation, and T cell activation. Front Immunol. 2020;11:1393. doi:
41 E Vergadi, E Ieronymaki, K Lyroni, K Vaporidi, C Tsatsanis. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198(3):1006-1014. doi:
42 AJ Covarrubias, HI Aksoylar, T Horng. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol. 2015;27(4):286-296. doi:
43 SK Polumuri, VY Toshchakov, SN Vogel. Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fc gamma receptor ligation in murine macrophages. J Immunol. 2007;179(1):236-246. doi:
44 S Saravani, D Yari, R Saravani, C Azadi Ahmadabadi. Association of COL4A3 (rs55703767), MMP-9 (rs17576) and TIMP-1 (rs6609533) gene polymorphisms with susceptibility to type 2 diabetes. Biomed Rep. 2017;6(3):329-334.
45 CJ Fitzer-Attas, M Lowry, MT Crowley, et al. Fcγ receptor–mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J Exp Med. 2000;191(4):669-682.
46 ZK Indik, J-G Park, S Hunter, AD Schreiber, The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood. 1995;86(12):4389-99.
47 P Gogesch, S Dudek, G van Zandbergen, Z Waibler, M Anzaghe. The role of Fc receptors on the effectiveness of therapeutic monoclonal antibodies. Int J Mol Sci. 2021;22(16):8947.
48 A Masuda, M Yoshida, H Shiomi, et al. Role of Fc receptors as a therapeutic target. Inflamm Allergy Drug Targets. 2009;8(1):80-86.
49 GG Song, YH Lee. Associations between FCGR2A rs1801274, FCGR3A rs396991, FCGR3B NA1/NA2 polymorphisms and periodontitis: a meta-analysis. Mol Biol Rep. 2013;40(8):4985-4993. doi:
50 L Chai, YQ Song, KY Zee, WK Leung. SNPs of Fc-gamma receptor genes and chronic periodontitis. J Dent Res. 2010;89(7):705-710. doi:
51 L Saremi, E Esmaeilzadeh, T Ghorashi, M Sohrabi, M Ekhlasmand Kermani, M Kadkhodazadeh. Association of Fc gamma-receptor genes polymorphisms with chronic periodontitis and peri-implantitis. J Cell Biochem. 2019;120(7):12010-12017. doi:
52 Y Zeng, S Cao, M Chen. Integrated analysis and exploration of potential shared gene signatures between carotid atherosclerosis and periodontitis. BMC Med Genomics. 2022;15(1):227. doi:
53 BI Restrepo, M Twahirwa, MH Rahbar, LS Schlesinger. Phagocytosis via complement or Fc-gamma receptors is compromised in monocytes from type 2 diabetes patients with chronic hyperglycemia. PLoS One. 2014;9(3):e92977. doi:
54 Y Inoue, T Kaifu, A Sugahara-Tobinai, A Nakamura, J Miyazaki, T Takai. Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice. J Immunol. 2007;179(2):764-774. doi:
55 V Lopez-Parra, B Mallavia, O Lopez-Franco, et al. Fcγ receptor deficiency attenuates diabetic nephropathy. J Am Soc Nephrol. 2012;23(9):1518-1527. doi:
56 J Kang, EJ Kwon, M Ha, et al. Identification of shared genes and pathways in periodontitis and type 2 diabetes by bioinformatics analysis. Front Endocrinol. 2022;12:724278.
57 AR Naqvi, JB Fordham, S Nares. MicroRNA target Fc receptors to regulate Ab-dependent Ag uptake in primary macrophages and dendritic cells. Innate Immun. 2016;22(7):510-521. doi:
58 X Li, RP Kimberly. Targeting the Fc receptor in autoimmune disease. Expert Opin Ther Targets. 2014;18(3):335-350. doi:
59 MA DePristo, E Banks, R Poplin, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491-498.
60 H Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997. 2013.
61 Y Tian, TJ Morris, AP Webster, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33(24):3982-3984.
62 GX Zheng, JM Terry, P Belgrader, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):14049.
63 H Lee, JY Joo, DH Sohn, et al. Single-cell RNA sequencing reveals rebalancing of immunological response in patients with periodontitis after non-surgical periodontal therapy. J Transl Med. 2022;20(1):504. doi:
64 H Lee, S Park, JH Yun, et al. Deciphering head and neck cancer microenvironment: single-cell and spatial transcriptomics reveals human papillomavirus-associated differences. J Med Virol. 2024;96(1):e29386. doi:
65 A Liberzon, C Birger, H Thorvaldsdóttir, M Ghandi, JP Mesirov, P Tamayo. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1(6):417-425.
PDF

Accesses

Citations

Detail

Sections
Recommended

/