5,7,4′-Trimethoxyflavone triggers cancer cell PD-L1 ubiquitin–proteasome degradation and facilitates antitumor immunity by targeting HRD1

Jianhua Xia1, Mengting Xu1, Hongmei Hu1, Qing Zhang1, Dianping Yu1, Minchen Cai1, Xiangxin Geng1, Hongwei Zhang1, Yanyan Zhang1, Mengmeng Guo1, Dong Lu1, Hanchi Xu1, Linyang Li1, Xing Zhang1, Qun Wang1(), Sanhong Liu1(), Weidong Zhang1,2,3,4()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e611. DOI: 10.1002/mco2.611
ORIGINAL ARTICLE

5,7,4′-Trimethoxyflavone triggers cancer cell PD-L1 ubiquitin–proteasome degradation and facilitates antitumor immunity by targeting HRD1

  • Jianhua Xia1, Mengting Xu1, Hongmei Hu1, Qing Zhang1, Dianping Yu1, Minchen Cai1, Xiangxin Geng1, Hongwei Zhang1, Yanyan Zhang1, Mengmeng Guo1, Dong Lu1, Hanchi Xu1, Linyang Li1, Xing Zhang1, Qun Wang1(), Sanhong Liu1(), Weidong Zhang1,2,3,4()
Author information +
History +

Abstract

Targeting the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has been identified as a successful approach for tumor immunotherapy. Here, we identified that the small molecule 5,7,4′-trimethoxyflavone (TF) from Kaempferia parviflora Wall reduces PD-L1 expression in colorectal cancer cells and enhances the killing of tumor cells by T cells. Mechanistically, TF targets and stabilizes the ubiquitin ligase HMG-CoA reductase degradation protein 1 (HRD1), thereby increasing the ubiquitination of PD-L1 and promoting its degradation through the proteasome pathway. In mouse MC38 xenograft tumors, TF can activate tumor-infiltrating T-cell immunity and reduce the immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells, thus exerting antitumor effects. Moreover, TF synergistically exerts antitumor immunity with CTLA-4 antibody. This study provides new insights into the antitumor mechanism of TF and suggests that it may be a promising small molecule immune checkpoint modulator for cancer therapy.

Keywords

5,7,4′-trimethoxyflavone / colorectal cancer / HRD1 / PD-L1

Cite this article

Download citation ▾
Jianhua Xia, Mengting Xu, Hongmei Hu, Qing Zhang, Dianping Yu, Minchen Cai, Xiangxin Geng, Hongwei Zhang, Yanyan Zhang, Mengmeng Guo, Dong Lu, Hanchi Xu, Linyang Li, Xing Zhang, Qun Wang, Sanhong Liu, Weidong Zhang. 5,7,4′-Trimethoxyflavone triggers cancer cell PD-L1 ubiquitin–proteasome degradation and facilitates antitumor immunity by targeting HRD1. MedComm, 2024, 5(7): e611 https://doi.org/10.1002/mco2.611

References

1 RL Siegel, KD Miller, HE Fuchs, A Jemal. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. doi:
2 GJ van der Bij, SJ Oosterling, RH Beelen, S Meijer, JC Coffey, M van Egmond. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg. 2009;249(5):727-734. doi:
3 T André, C Boni, M Navarro, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27(19):3109-3116. doi:
4 RM Samstein, CH Lee, AN Shoushtari, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202-206. doi:
5 D Bedognetti, M Ceccarelli, L Galluzzi, et al. Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop. J Immunother Cancer. 2019;7(1):131. doi:
6 JH Cha, LC Chan, CW Li, JL Hsu, MC Hung. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76(3):359-370. doi:
7 X Chen, X Pan, W Zhang, et al. Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses. Acta Pharm Sin B. 2020;10(5):723-733. doi:
8 SL Topalian, CG Drake, DM Pardoll. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207-212. doi:
9 A Ribas, JD Wolchok. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350-1355. doi:
10 Y Iwai, J Hamanishi, K Chamoto, T Honjo. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):26. doi:
11 T Maj, W Wang, J Crespo, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 2017;18(12):1332-1341. doi:
12 M Yarchoan, A Hopkins, EM Jaffee. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500-2501. doi:
13 Q Gou, C Dong, H Xu, et al. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020;11(11):955. doi:
14 H Yamaguchi, JM Hsu, WH Yang, MC Hung. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol. 2022;19(5):287-305. doi:
15 A Ciechanover, H Heller, S Elias, AL Haas, A Hershko. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci USA. 1980;77(3):1365-1368. doi:
16 JH Cha, WH Yang, W Xia, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018;71(4):606-620. doi:
17 J Zhang, X Bu, H Wang, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553(7686):91-95. doi:
18 Z Tang, PG Pilié, C Geng, et al. ATR inhibition induces CDK1-SPOP signaling and enhances anti-PD-L1 cytotoxicity in prostate cancer. Clin Cancer Res. 2021;27(17):4898-4909. doi:
19 J Zou, H Xia, C Zhang, et al. Casp8 acts through A20 to inhibit PD-L1 expression: the mechanism and its implication in immunotherapy. Cancer Sci. 2021;112(7):2664-2678. doi:
20 Y Wu, C Zhang, X Liu, et al. ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nat Commun. 2021;12(1):2346. doi:
21 ML Burr, CE Sparbier, YC Chan, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Research Support, Non-U S Gov't. Nature. 2017;549(7670):101-105.
22 G Qian, J Guo, KA Vallega, et al. Membrane-associated RING-CH 8 functions as a novel PD-L1 E3 ligase to mediate PD-L1 degradation induced by EGFR inhibitors. Mol Cancer Res. 2021;19(10):1622-1634. doi:
23 X Liu, M Yin, J Dong, et al. Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR. Acta Pharm Sin B. 2021;11(10):3134-3149. doi:
24 Y Wang, Q Sun, N Mu, et al. The deubiquitinase USP22 regulates PD-L1 degradation in human cancer cells. Cell Commun Signal. 2020;18(1):112. doi:
25 D Zhu, R Xu, X Huang, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ. 2021;28(6):1773-1789. doi:
26 SO Lim, CW Li, W Xia, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30(6):925-939. doi:
27 S Doroudgar, M V?lkers, DJ Thuerauf, et al. Hrd1 and ER-associated protein degradation, ERAD, are critical elements of the adaptive ER stress response in cardiac myocytes. Circ Res. 2015;117(6):536-546. doi:
28 Y Xu, D Fang. Endoplasmic reticulum-associated degradation and beyond: the multitasking roles for HRD1 in immune regulation and autoimmunity. J Autoimmun. 2020;109:102423. doi:
29 K Li, K Zhang, H Wang, et al. Hrd1-mediated ACLY ubiquitination alleviate NAFLD in db/db mice. Metabolism. 2021;114:154349. doi:
30 CJ Proctor, DA Gray. GSK3 and p53 - is there a link in Alzheimer's disease? Mol Neurodegener. 2010;5:7. doi:
31 S Yamasaki, N Yagishita, T Sasaki, et al. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. Embo J. 2007;26(1):113-122. doi:
32 S Yamasaki, N Yagishita, K Nishioka, T Nakajima. The roles of synoviolin in crosstalk between endoplasmic reticulum stress-induced apoptosis and p53 pathway. Cell Cycle. 2007;6(11):1319-1323. doi:
33 W Xie, L Shi, H Quan, et al. SYVN1 ubiquitinates FoxO1 to induce β-catenin nuclear translocation, PD-L1-mediated metastasis, and immune evasion of hepatocellular carcinoma. Cell Oncol (Dordr). 2023;46(5):1285-1299. doi:
34 C Rujjanawate, D Kanjanapothi, D Amornlerdpison, S Pojanagaroon. Anti-gastric ulcer effect of Kaempferia parviflora. J Ethnopharmacol. 2005;102(1):120-122. doi:
35 C Sae-Wong, H Matsuda, S Tewtrakul, et al. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol. 2011;136(3):488-495. doi:
36 C Sae-wong, P Tansakul, S Tewtrakul. Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol. 2009;124(3):576-580. doi:
37 Y Okabe, T Shimada, T Horikawa, et al. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora. Phytomedicine. 2014;21(6):800-806. doi:
38 L Chen. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4(5):336-347. doi:
39 Y Wang, H Wang, H Yao, C Li, JY Fang, J Xu. Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol. 2018;9:536. doi:
40 MK Callahan, MA Postow, JD Wolchok. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front Oncol. 2014;4:385. doi:
41 Y Liu, X Liu, N Zhang, et al. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B. 2020;10(12):2299-2312. doi:
42 Q Wang, J Wang, D Yu, et al. Benzosceptrin C induces lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting DHHC3. Cell Rep Med. 2024;5(2):101357. doi:
43 MG Elhennawy, HS Lin. Quantification of apigenin trimethyl ether in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study. J Pharm Biomed Anal. 2017;142:35-41. doi:
44 MG Elhennawy, HS Lin. Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether. Eur J Pharm Sci. 2018;118:96-102. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/