Integrin αM promotes macrophage alternative M2 polarization in hyperuricemia-related chronic kidney disease

Jing Liu1, Fan Guo1, Xiaoting Chen2, Ping Fu1(), Liang Ma1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e580. DOI: 10.1002/mco2.580
ORIGINAL ARTICLE

Integrin αM promotes macrophage alternative M2 polarization in hyperuricemia-related chronic kidney disease

  • Jing Liu1, Fan Guo1, Xiaoting Chen2, Ping Fu1(), Liang Ma1()
Author information +
History +

Abstract

Hyperuricemia is an essential risk factor in chronic kidney disease (CKD), while urate-lowering therapy to prevent or delay CKD is controversial. Alternatively activated macrophages in response to local microenvironment play diverse roles in kidney diseases. Here, we aim to investigate whether and how macrophage integrin αM (ITGAM) contributes to hyperuricemia-related CKD. In vivo, we explored dynamic characteristics of renal tissue in hyperuricemia-related CKD mice. By incorporating transcriptomics and phosphoproteomics data, we analyzed gene expression profile, hub genes and potential pathways. In vitro, we validated bioinformatic findings under different conditions with interventions corresponding to core nodes. We found that hyperuricemia-related CKD was characterized by elevated serum uric acid levels, impaired renal function, activation of macrophage alternative (M2) polarization, and kidney fibrosis. Integrated bioinformatic analyses revealed Itgam as the potential core gene, which was associated with focal adhesion signaling. Notably, we confirmed the upregulated expression of macrophage ITGAM, activated pathway, and macrophage M2 polarization in injured kidneys. In vitro, through silencing Itgam, inhibiting p-FAK or p-AKT1 phosphorylation, and concurrent inhibiting of p-FAK while activating p-AKT1 all contributed to the modulation of macrophage M2 polarization. Our results indicated targeting macrophage ITGAM might be a promising therapeutic approach for preventing CKD.

Keywords

chronic kidney disease / hyperuricemia / integrin αM / macrophage M2 polarization

Cite this article

Download citation ▾
Jing Liu, Fan Guo, Xiaoting Chen, Ping Fu, Liang Ma. Integrin αM promotes macrophage alternative M2 polarization in hyperuricemia-related chronic kidney disease. MedComm, 2024, 5(7): e580 https://doi.org/10.1002/mco2.580

References

1 GL Bakris, PP Doghramji, RT Keenan, SH Silber. CaseBook challenges: managing gout, hyperuricemia and comorbidities—dialogue with the experts. Am J Med. 2014;127(1):S1.
2 M Chen-Xu, C Yokose, SK Rai, MH Pillinger, HK Choi. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019;71(6):991-999.
3 Y Sato, DI Feig, AG Stack, et al. The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nat Rev Nephrol. 2019;15(12):767-775.
4 L Wen, H Yang, L Ma, P Fu. The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol Cell Biochem. 2021;476(3):1377-1386.
5 O Oluwo, JJ Scialla. Uric acid and CKD progression matures with lessons for CKD risk factor discovery. Clin J Am Soc Nephrol. 2021;16(3):476-478.
6 U Muller, D Wang, S Denda, JJ Meneses, RA Pedersen, LF Reichardt. Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 1997;88(5):603-613.
7 I Marek, G Volkert, KF Hilgers, et al. Fibrillin-1 and alpha8 integrin are co-expressed in the glomerulus and interact to convey adhesion of mesangial cells. Cell Adh Migr. 2014;8(4):389-395.
8 A Pozzi, R Zent. Integrins in kidney disease. J Am Soc Nephrol. 2013;24(7):1034-1039.
9 Y Takada, X Ye, S Simon. The integrins. Genome Biol. 2007;8(5):215.
10 JL Guan. Focal adhesion kinase in integrin signaling. Matrix Biol. 1997;16(4):195-200.
11 L Martinez, X Li, G Ramos-Echazabal, et al. A genetic model of constitutively active integrin CD11b/CD18. J Immunol. 2020;205(9):2545-2553.
12 NP Podolnikova, AV Podolnikov, TA Haas, VK Lishko, TP Ugarova. Ligand recognition specificity of leukocyte integrin alphaMbeta2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry. 2015;54(6):1408-1420.
13 B Lange-Sperandio, K Schimpgen, B Rodenbeck, et al. Distinct roles of Mac-1 and its counter-receptors in neonatal obstructive nephropathy. Kidney Int. 2006;69(1):81-88.
14 A Dehnadi, A Benedict Cosimi, R Neal Smith, et al. Prophylactic orthosteric inhibition of leukocyte integrin CD11b/CD18 prevents long-term fibrotic kidney failure in cynomolgus monkeys. Nat Commun. 2017;8:13899.
15 H Lee, MB Fessler, P Qu, J Heymann, JB Kopp. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol. 2020;21(1):270.
16 PJ Murray. Macrophage polarization. Annu Rev Physiol. 2017;79:541-566.
17 Y Feng, J Ren, Y Gui, et al. Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 2018;29(1):182-193.
18 G Berton, CA Lowell. Integrin signalling in neutrophils and macrophages. Cell Signal. 1999;11(9):621-635.
19 RJ Johnson, GL Bakris, C Borghi, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation. Am J Kidney Dis. 2018;71(6):851-865.
20 S Milanesi, D Verzola, F Cappadona, et al. Uric acid and angiotensin II additively promote inflammation and oxidative stress in human proximal tubule cells by activation of toll-like receptor 4. J Cell Physiol. 2019;234(7):10868-10876.
21 D Wolf, N Anto-Michel, H Blankenbach, et al. A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense. Nat Commun. 2018;9(1):525.
22 GD Ross, JD Lambris. Identification of a C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils, and erythrocytes. J Exp Med. 1982;155(1):96-110.
23 JL Dunne, CM Ballantyne, AL Beaudet, K Ley. Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood. 2002;99(1):336-341.
24 DC Altieri, FR Agbanyo, J Plescia, MH Ginsberg, TS Edgington, EF Plow. A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem. 1990;265(21):12119-12122.
25 SM Kanse, RL Matz, KT Preissner, K Peter. Promotion of leukocyte adhesion by a novel interaction between vitronectin and the beta2 integrin Mac-1 (alphaMbeta2, CD11b/CD18). Arterioscler Thromb Vasc Biol. 2004;24(12):2251-2256.
26 R Ehlers, V Ustinov, Z Chen, et al. Targeting platelet-leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibalpha. J Exp Med. 2003;198(7):1077-1088.
27 T Chavakis, A Bierhaus, N Al-Fakhri, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med. 2003;198(10):1507-1515.
28 Z Fan, K Ley. Leukocyte arrest: biomechanics and molecular mechanisms of beta2 integrin activation. Biorheology. 2015;52(5-6):353-377.
29 F Rosetti, TN Mayadas. The many faces of Mac-1 in autoimmune disease. Immunol Rev. 2016;269(1):175-193.
30 X Hu, C Han, J Jin, et al. Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression. Sci Rep. 2016;6:26252.
31 V Villanueva, X Li, V Jimenez, HM Faridi, V Gupta. CD11b agonists offer a novel approach for treating lupus nephritis. Transl Res. 2022;245:41-54.
32 A Zirlik, C Maier, N Gerdes, et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation. 2007;115(12):1571-1580.
33 LJ Kornberg, HS Earp, CE Turner, C Prockop, RL Juliano. Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proc Natl Acad Sci USA. 1991;88(19):8392-8396.
34 JL Guan. Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life. 2010;62(4):268-276.
35 T Yamaura, T Kasaoka, N Iijima, M Kimura, S Hatakeyama. Evaluation of therapeutic effects of FAK inhibition in murine models of atherosclerosis. BMC Res Notes. 2019;12(1):200.
36 J Lv, R Bai, L Wang, J Gao, H Zhang. Artesunate may inhibit liver fibrosis via the FAK/Akt/beta-catenin pathway in LX-2 cells. BMC Pharmacol Toxicol. 2018;19(1):64.
37 A Gimenez, P Duch, M Puig, M Gabasa, A Xaubet, J Alcaraz. Dysregulated collagen homeostasis by matrix stiffening and TGF-beta1 in fibroblasts from idiopathic pulmonary fibrosis patients: role of FAK/Akt. Int J Mol Sci. 2017;18(11):2431.
38 J Pan, M Shi, L Li, et al. Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomed Pharmacother. 2019;109:1802-1808.
39 V Bolos, JM Gasent, S Lopez-Tarruella, E Grande. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther. 2010;3:83-97.
40 TH Jang, WC Huang, SL Tung, et al. MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/beta-catenin pathway. J Biomed Sci. 2022;29(1):42.
41 Y Yang, YC Ye, Y Chen, et al. Crosstalk between hepatic tumor cells and macrophages via Wnt/beta-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018;9(8):793.
42 C Niehrs. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767-779.
43 BT MacDonald, K Tamai, X He. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9-26.
44 J Lu, X Hou, X Yuan, et al. Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders. Kidney Int. 2018;93(1):69-80.
45 H Zhao, J Lu, F He, et al. Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway via IRS2-proteasome degradation. Front Immunol. 2022;13:931087.
46 Q Ren, B Wang, F Guo, et al. Natural flavonoid pectolinarigenin alleviated hyperuricemic nephropathy via suppressing TGFbeta/SMAD3 and JAK2/STAT3 signaling pathways. Front Pharmacol. 2021;12:792139.
47 N Percie du Sert, V Hurst, A Ahluwalia, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410.
48 J Liu, R Huang, X Li, et al. Genetic inhibition of FABP4 attenuated endoplasmic reticulum stress and mitochondrial dysfunction in rhabdomyolysis-induced acute kidney injury. Life Sci. 2021;268:119023.
49 K Yoshida, A Nakashima, S Doi, et al. Serum-free medium enhances the immunosuppressive and antifibrotic abilities of mesenchymal stem cells utilized in experimental renal fibrosis. Stem Cells Transl Med. 2018;7(12):893-905.
50 M Tabatabaei Shafiei, CM Carvajal Gonczi, MS Rahman, A East, J Francois, PJ Darlington. Detecting glycogen in peripheral blood mononuclear cells with periodic acid Schiff staining. J Vis Exp. 2014(94):52199.
51 S Sethi, VD D'Agati, CC Nast, et al. A proposal for standardized grading of chronic changes in native kidney biopsy specimens. Kidney Int. 2017;91(4):787-789.
PDF

Accesses

Citations

Detail

Sections
Recommended

/