Organoids in gastrointestinal diseases: from bench to clinic

Qinying Wang1,2,3, Fanying Guo1,3, Qinyuan Zhang1,3, TingTing Hu1,3, YuTao Jin1,3, Yongzhi Yang1,3, Yanlei Ma1,3()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (7) : e574. DOI: 10.1002/mco2.574
REVIEW

Organoids in gastrointestinal diseases: from bench to clinic

  • Qinying Wang1,2,3, Fanying Guo1,3, Qinyuan Zhang1,3, TingTing Hu1,3, YuTao Jin1,3, Yongzhi Yang1,3, Yanlei Ma1,3()
Author information +
History +

Abstract

The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases—whether cancer cell lines or mouse models—exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host–microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.

Keywords

bench / clinical application / gastrointestinal diseases / organoids / scientific research

Cite this article

Download citation ▾
Qinying Wang, Fanying Guo, Qinyuan Zhang, TingTing Hu, YuTao Jin, Yongzhi Yang, Yanlei Ma. Organoids in gastrointestinal diseases: from bench to clinic. MedComm, 2024, 5(7): e574 https://doi.org/10.1002/mco2.574

References

1 W Sbeit, A Kadah, M Mahamid, A Mari, T Khoury. The interplay between gastrointestinal and cardiovascular diseases: a narrative review focusing on the clinical perspective. Eur J Gastroenterol Hepatol. 2021;32(2):132-139.
2 C Swanton, E Bernard, C Abbosh, et al. Embracing cancer complexity: hallmarks of systemic disease. Cell. 2024;187(7):1589-1616.
3 RL Wahl. The interaction of genomics, molecular imaging, and therapy in gastrointestinal tumors. Semin Nucl Med. 2020;50(5):471-483.
4 S Sunkar, D Neeharaika, J Nellore, VC Nachiyar, S Peela. Small-molecule-targeted therapies for gastrointestinal cancer: successes and failures. Crit Rev Oncog. 2020;25(4):311-333.
5 MH Frank, BJ Wilson, JS Gold, NY Frank. Clinical implications of colorectal cancer stem cells in the age of single-cell omics and targeted therapies. Gastroenterology. 2021;160(6):1947-1960.
6 L Laterza, G Rizzatti, E Gaetani, P Chiusolo, A Gasbarrini. The gut microbiota and immune system relationship in human graft-versus-host disease. Mediterr J Hematol Infect Dis. 2016;8(1):e2016025.
7 ET Hillman, H Lu, T Yao, CH Nakatsu. Microbial ecology along the gastrointestinal tract. Microbes Environ. 2017;32(4):300-313.
8 M Wolter, ET Grant, M Boudaud, et al. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol. 2021;18(12):885-902.
9 WY Cheng, CY Wu, J Yu. The role of gut microbiota in cancer treatment: friend or foe? Gut. 2020;69(10):1867-1876.
10 J Lloyd-Price, C Arze, AN Ananthakrishnan, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655-662.
11 RH Mills, PS Dulai, Y Vazquez-Baeza, et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol. 2022;7(2):262-276.
12 KA Mihindukulasuriya, RAT Mars, AJ Johnson, et al. Multi-omics analyses show disease, diet, and transcriptome interactions with the virome. Gastroenterology. 2021;161(4):1194-1207. e8.
13 S Yachida, S Mizutani, H Shiroma, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019;25(6):968-976.
14 C Kong, L Liang, G Liu, et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut. 2023;72(6):1129-1142.
15 J Yuan, X Li, S Yu. Cancer organoid co-culture model system: novel approach to guide precision medicine. Front Immunol. 2022;13:1061388.
16 G Saorin, I Caligiuri, F Rizzolio. Microfluidic organoids-on-a-chip: the future of human models. Semin Cell Dev Biol. 2023;144:41-54.
17 BL LeSavage, RA Suhar, N Broguiere, MP Lutolf, SC Heilshorn. Next-generation cancer organoids. Nat Mater. 2022;21(2):143-159.
18 MR Carvalho, LP Yan, B Li, et al. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics. Biofabrication. 2023;15(4):42004.
19 V Dao, K Yuki, YH Lo, M Nakano, CJ Kuo. Immune organoids: from tumor modeling to precision oncology. Trends Cancer. 2022;8(10):870-880.
20 C Corro, L Novellasdemunt, VSW Li. A brief history of organoids. Am J Physiol Cell Physiol. 2020;319(1):C151-C165.
21 T Sato, RG Vries, HJ Snippert, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265.
22 Z Davoudi, T Atherly, DC Borcherding, et al. Study transportation of drugs within newly established murine colon organoid systems. Adv Biol (Weinh). 2023;7(12):e2300103.
23 JR Spence, CN Mayhew, SA Rankin, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332):105-109.
24 JO Munera, N Sundaram, SA Rankin, et al. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell. 2017;21(1):51-64. e6.
25 J Beumer, H Clevers. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021;22(1):39-53.
26 M Beaumont, F Blanc, C Cherbuy, et al. Intestinal organoids in farm animals. Vet Res. 2021;52(1):33.
27 MA Duque-Correa, D Goulding, FH Rodgers, et al. Defining the early stages of intestinal colonisation by whipworms. Nat Commun. 2022;13(1):1725.
28 M Zhang, L Lv, H Cai, et al. Long-term expansion of porcine intestinal organoids serves as an in vitro model for swine enteric coronavirus infection. Front Microbiol. 2022;13:865336.
29 V Gabriel, C Zdyrski, DK Sahoo, et al. Canine intestinal organoids in a dual-chamber permeable support system. J Vis Exp. 2022;181;e63612.
30 M Qu, L Xiong, Y Lyu, et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res. 2021;31(3):259-271.
31 HHN Yan, HC Siu, SL Ho, et al. Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut. 2020;69(12):2165-2179.
32 S Senger, L Ingano, R Freire, et al. Human fetal-derived enterospheres provide insights on intestinal development and a novel model to study necrotizing enterocolitis (NEC). Cell Mol Gastroenterol Hepatol. 2018;5(4):549-568.
33 SM van Neerven, NE de Groot, LE Nijman, et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature. 2021;594(7863):436-441.
34 O Kayisoglu, F Weiss, C Niklas, et al. Location-specific cell identity rather than exposure to GI microbiota defines many innate immune signalling cascades in the gut epithelium. Gut. 2021;70(4):687-697.
35 N Barker, M Huch, P Kujala, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25-36.
36 M Huch, P Bonfanti, SF Boj, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32(20):2708-2721.
37 AD DeWard, J Cramer, E Lagasse. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep. 2014;9(2):701-711.
38 A Miyajima, M Tanaka, T Itoh. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561-574.
39 N Lugli, I Kamileri, A Keogh, et al. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep. 2016;17(5):769-779.
40 M van de Wetering, HE Francies, JM Francis, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933-945.
41 G Vlachogiannis, S Hedayat, A Vatsiou, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920-926.
42 AC Luissint, S Fan, H Nishio, et al. CXADR-like membrane protein regulates colonic epithelial cell proliferation and prevents tumor growth. Gastroenterology. 2024;166(1):103-116. e9.
43 H Takada, Y Sasagawa, M Yoshimura, et al. Single-cell transcriptomics uncovers EGFR signaling-mediated gastric progenitor cell differentiation in stomach homeostasis. Nat Commun. 2023;14(1):3750.
44 KK Dijkstra, CM Cattaneo, F Weeber, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174(6):1586-1598. e12.
45 CM Cattaneo, KK Dijkstra, LF Fanchi, et al. Tumor organoid-T-cell coculture systems. Nat Protoc. 2020;15(1):15-39.
46 JT Neal, X Li, J Zhu, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972-1988. e16.
47 EM Holloway, JH Wu, M Czerwinski, et al. Differentiation of human intestinal organoids with endogenous vascular endothelial cells. Dev Cell. 2020;54(4):516-528. e7.
48 B Palikuqi, DT Nguyen, G Li, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature. 2020;585(7825):426-432.
49 C Lei, R Sun, G Xu, et al. Enteric VIP-producing neurons maintain gut microbiota homeostasis through regulating epithelium fucosylation. Cell Host Microbe. 2022;30(10):1417-1434. e8.
50 YG Cao, S Bae, J Villarreal, et al. Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host Microbe. 2022;30(9):1295-1310. e8.
51 AL Haber, M Biton, N Rogel, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551(7680):333-339.
52 Galeano Nino JL, H Wu, KD LaCourse, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 2022;611(7937):810-817.
53 L Sun, D Rollins, Y Qi, et al. TNFalpha regulates intestinal organoids from mice with both defined and conventional microbiota. Int J Biol Macromol. 2020;164:548-556.
54 B Reding, P Carter, Y Qi, et al. Manipulate intestinal organoids with niobium carbide nanosheets. J Biomed Mater Res A. 2021;109(4):479-487.
55 T Tong, Y Qi, LD Bussiere, et al. Transport of artificial virus-like nanocarriers through intestinal monolayers via microfold cells. Nanoscale. 2020;12(30):16339-16347.
56 Y Qi, E Shi, N Peroutka-Bigus, et al. Ex vivo study of telluride nanowires in Minigut. J Biomed Nanotechnol. 2018;14(5):978-986.
57 KL Fair, J Colquhoun, NRF Hannan. Intestinal organoids for modelling intestinal development and disease. Philos Trans R Soc Lond B Biol Sci. 2018;373(1750):20170217.
58 GC Hansson. Mucins and the microbiome. Annu Rev Biochem. 2020;89:769-793.
59 P Paone, PD Cani. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232-2243.
60 LA Gonyar, RM Smith, JA Giron, NC Zachos, F Ruiz-Perez, JP Nataro. Aggregative adherence fimbriae II of enteroaggregative escherichia coli are required for adherence and barrier disruption during infection of human colonoids. Infect Immun. 2020;88(9):e00176.
61 A Sontheimer-Phelps, DB Chou, A Tovaglieri, et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell Mol Gastroenterol Hepatol. 2020;9(3):507-526.
62 DR Hill, S Huang, MS Nagy, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife. 2017;6:e29132.
63 S Min, N Than, YC Shin, et al. Live probiotic bacteria administered in a pathomimetic Leaky Gut Chip ameliorate impaired epithelial barrier and mucosal inflammation. Sci Rep. 2022;12(1):22641.
64 YS Son, SJ Ki, R Thanavel, et al. Maturation of human intestinal organoids in vitro facilitates colonization by commensal lactobacilli by reinforcing the mucus layer. FASEB J. 2020;34(8):9899-9910.
65 M Wlodarska, C Luo, R Kolde, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25-37. e6.
66 H Clevers. The intestinal crypt, a prototype stem cell compartment. Cell. 2013;154(2):274-284.
67 T Sato, H Clevers. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190-1194.
68 M Leushacke, N Barker. Ex vivo culture of the intestinal epithelium: strategies and applications. Gut. 2014;63(8):1345-1354.
69 SS Wilson, A Tocchi, MK Holly, WC Parks, JG Smith. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol. 2015;8(2):352-361.
70 HR Clark, C McKenney, NM Livingston, et al. Epigenetically regulated digital signaling defines epithelial innate immunity at the tissue level. Nat Commun. 2021;12(1):1836.
71 SJ Clasen, MEW Bell, A Borbon, et al. Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci Immunol. 2023;8(79):eabq7001.
72 Y Wang, IL Chiang, TE Ohara, et al. Long-term culture captures injury-repair cycles of colonic stem cells. Cell. 2019;179(5):1144-1159. e15.
73 S Ranganathan, EM Smith, JD Foulke-Abel, EM Barry. Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes. 2020;12(1):1795492.
74 FS Gazzaniga, DM Camacho, M Wu, et al. Harnessing colon chip technology to identify commensal bacteria that promote host tolerance to infection. Front Cell Infect Microbiol. 2021;11:638014.
75 AC Fasciano, GS Dasanayake, MK Estes, et al. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes. 2021;13(1):1988390.
76 C Zhou, Y Zhang, A Bassey, J Huang, Y Zou, K Ye. Expansion of intestinal secretory cell population induced by listeria monocytogenes infection: accompanied with the inhibition of NOTCH pathway. Front Cell Infect Microbiol. 2022;12:793335.
77 J Huang, C Zhou, G Zhou, H Li, K Ye. Effect of Listeria monocytogenes on intestinal stem cells in the co-culture model of small intestinal organoids. Microb Pathog. 2021;153:104776.
78 SJ Mileto, T Jarde, KO Childress, et al. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci USA. 2020;117(14):8064-8073.
79 MA Engevik, HA Danhof, AL Chang-Graham, et al. Human intestinal enteroids as a model of Clostridioides difficile-induced enteritis. Am J Physiol Gastrointest Liver Physiol. 2020;318(5):G870-G888.
80 V Matson, CS Chervin, TF Gajewski. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology. 2021;160(2):600-613.
81 M Levy, AA Kolodziejczyk, CA Thaiss, E Elinav. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219-232.
82 H Fang, Y Huang, Y Luo, et al. SIRT1 induces the accumulation of TAMs at colorectal cancer tumor sites via the CXCR4/CXCL12 axis. Cell Immunol. 2022;371:104458.
83 V Hentschel, T Seufferlein, M Armacki. Intestinal organoids in coculture: redefining the boundaries of gut mucosa ex vivo modeling. Am J Physiol Gastrointest Liver Physiol. 2021;321(6):G693-G704.
84 MA Engevik, W Ruan, M Esparza, et al. Immunomodulation of dendritic cells by Lactobacillus reuteri surface components and metabolites. Physiol Rep. 2021;9(2):e14719.
85 G Noel, NW Baetz, JF Staab, et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep. 2017;7:45270.
86 Y Gao, D Bi, R Xie, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct Target Ther. 2021;6(1):398.
87 CA Lindemans, M Calafiore, AM Mertelsmann, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528(7583):560-564.
88 Z Fu, JW Dean, L Xiong, et al. Mitochondrial transcription factor A in RORgammat(+) lymphocytes regulate small intestine homeostasis and metabolism. Nat Commun. 2021;12(1):4462.
89 Q Hou, L Ye, H Liu, et al. Correction: lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 2021;28(6):2025-2027.
90 P Zhu, T Lu, J Wu, et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res. 2022;32(6):555-569.
91 Y Murota, C Jobin. Bacteria break barrier to promote metastasis. Cancer Cell. 2021;39(5):598-600.
92 H Koike, K Iwasawa, R Ouchi, et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature. 2019;574(7776):112-116.
93 A Marsee, FJM Roos, MMA Verstegen, et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell. 2021;28(5):816-832.
94 M Meir, F Kannapin, M Diefenbacher, et al. Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent. Int J Mol Sci. 2021;22(4):1887.
95 N Nakamoto, N Sasaki, R Aoki, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol. 2019;4(3):492-503.
96 M Hassan, S Moghadamrad, M Sorribas, et al. Paneth cells promote angiogenesis and regulate portal hypertension in response to microbial signals. J Hepatol. 2020;73(3):628-639.
97 KS Lee, J Lee, P Lee, et al. Inhibition of O-GlcNAcylation protects from Shiga toxin-mediated cell injury and lethality in host. EMBO Mol Med. 2022;14(1):e14678.
98 X Xiong, S Tian, P Yang, et al. Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Cell. 2022;185(7):1157-1171. e22.
99 A Fazio, P Rosenstiel. Language of a long-term relationship: bacterial inositols and the intestinal epithelium. Cell Metab. 2020;32(4):509-511.
100 SE Wu, S Hashimoto-Hill, V Woo, et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature. 2020;586(7827):108-112.
101 S Lukovac, C Belzer, L Pellis, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio. 2014;5(4):e01438.
102 JA Fawad, DH Luzader, GF Hanson, et al. Histone deacetylase inhibition by gut microbe-generated short-chain fatty acids entrains intestinal epithelial circadian rhythms. Gastroenterology. 2022;163(5):1377-1390. e11.
103 F Hinrichsen, J Hamm, M Westermann, et al. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab. 2021;33(12):2355-2366. e8.
104 H Abo, B Chassaing, A Harusato, et al. Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nat Commun. 2020;11(1):513.
105 M Park, J Kwon, HJ Shin, et al. Butyrate enhances the efficacy of radiotherapy via FOXO3A in colorectal cancer patientderived organoids. Int J Oncol. 2020;57(6):1307-1318.
106 TC Liu, JT Kern, U Jain, et al. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe. 2021;29(6):988-1001. e6.
107 A Iftekhar, H Berger, N Bouznad, et al. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat Commun. 2021;12(1):1003.
108 C Pleguezuelos-Manzano, J Puschhof, A Rosendahl Huber, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature. 2020;580(7802):269-273.
109 E Kadosh, I Snir-Alkalay, A Venkatachalam, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature. 2020;586(7827):133-138.
110 R Giri, EC Hoedt, S Khushi, et al. Secreted NF-kappaB suppressive microbial metabolites modulate gut inflammation. Cell Rep. 2022;39(2):110646.
111 RK Weersma, A Zhernakova, J Fu. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510-1519.
112 E Pasolli, F Asnicar, S Manara, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176(3):649-662. e20.
113 IL Brito, T Gurry, S Zhao, et al. Transmission of human-associated microbiota along family and social networks. Nat Microbiol. 2019;4(6):964-971.
114 N Zmora, J Suez, E Elinav. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35-56.
115 I Jorgensen, M Rayamajhi, EA Miao. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17(3):151-164.
116 CJ Anderson, CB Medina, BJ Barron, et al. Microbes exploit death-induced nutrient release by gut epithelial cells. Nature. 2021;596(7871):262-267.
117 A Kurilshikov, C Medina-Gomez, R Bacigalupe, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156-165.
118 DR Jamwal, D Laubitz, CA Harrison, et al. Intestinal epithelial expression of MHCII determines severity of chemical, T-cell-induced, and infectious colitis in mice. Gastroenterology. 2020;159(4):1342-1356. e6.
119 A Sharma, SC Achi, SR Ibeawuchi, et al. The crosstalk between microbial sensors ELMO1 and NOD2 shape intestinal immune responses. Virulence. 2023;14(1):2171690.
120 N Sugimura, Q Li, ESH Chu, et al. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut. 2021;71(10):2011-2021.
121 A Banerjee, CA Herring, B Chen, et al. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology. 2020;159(6):2101-2115. e5.
122 NK Das, AJ Schwartz, G Barthel, et al. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 2020;31(1):115-130. e6.
123 MA Engevik, E Aihara, MH Montrose, GE Shull, DJ Hassett, RT Worrell. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol. 2013;305(10):G697-G711.
124 N Sasaki, K Miyamoto, KM Maslowski, H Ohno, T Kanai, T Sato. Development of a scalable coculture system for gut anaerobes and human colon epithelium. Gastroenterology. 2020;159(1):388-390. e5.
125 Al Shihabi A, A Davarifar, HTL Nguyen, et al. Personalized chordoma organoids for drug discovery studies. Sci Adv. 2022;8(7):eabl3674.
126 H Tiriac, JC Bucobo, D Tzimas, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment. Gastrointest Endosc. 2018;87(6):1474-1480.
127 O Kopper, CJ de Witte, K Lohmussaar, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25(5):838-849.
128 T Seino, S Kawasaki, M Shimokawa, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 2018;22(3):454-467. e6.
129 Z Zhao, X Chen, AM Dowbaj, et al. Organoids. Nat Rev Methods Primers. 2022;2:94.
130 AP Gobert, TM Smith, YL Latour, et al. Hypusination maintains intestinal homeostasis and prevents colitis and carcinogenesis by enhancing aldehyde detoxification. Gastroenterology. 2023;165(3):656-669. e8.
131 J Vande Voorde, RT Steven, AK Najumudeen, et al. Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target. Nat Metab. 2023;5(8):1303-1318.
132 Y An, C Wang, B Fan, et al. LSR targets YAP to modulate intestinal Paneth cell differentiation. Cell Rep. 2023;42(9):113118.
133 L Chang, NY Jung, A Atari, et al. Systematic profiling of conditional pathway activation identifies context-dependent synthetic lethalities. Nat Genet. 2023;55(10):1709-1720.
134 E Strating, MP Verhagen, E Wensink, et al. Co-cultures of colon cancer cells and cancer-associated fibroblasts recapitulate the aggressive features of mesenchymal-like colon cancer. Front Immunol. 2023;14:1053920.
135 N Li, Q Zhu, Y Tian, et al. Mapping and modeling human colorectal carcinoma interactions with the tumor microenvironment. Nat Commun. 2023;14(1):7915.
136 Y Jiang, H Zhao, S Kong, et al. Establishing mouse and human oral esophageal organoids to investigate the tumor immune response. Dis Model Mech. 2024;17(1):dmm050319.
137 KP Ko, Y Huang, S Zhang, et al. Key genetic determinants driving esophageal squamous cell carcinoma initiation and immune evasion. Gastroenterology. 2023;165(3):613-628. e20.
138 ME Baumdick, A Niehrs, F Degenhardt, et al. HLA-DP on epithelial cells enables tissue damage by NKp44(+) natural killer cells in ulcerative colitis. Gastroenterology. 2023;165(4):946-962. e13.
139 HF Farin, MH Mosa, B Ndreshkjana, et al. Colorectal cancer organoid-stroma biobank allows subtype-specific assessment of individualized therapy responses. Cancer Discov. 2023;13(10):2192-2211.
140 T Kawaguchi, K Okamoto, S Fujimoto, et al. Lansoprazole inhibits the development of sessile serrated lesions by inducing G1 arrest via Skp2/p27 signaling pathway. J Gastroenterol. 2024;59(1):11-23.
141 C Takeuchi, S Yamashita, YY Liu, et al. Precancerous nature of intestinal metaplasia with increased chance of conversion and accelerated DNA methylation. Gut. 2024;73(2):255-267.
142 K Karlsson, MJ Przybilla, E Kotler, et al. Deterministic evolution and stringent selection during preneoplasia. Nature. 2023;618(7964):383-393.
143 MR Wilson, Y Jiang, PW Villalta, et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363(6428):eaar7785.
144 LC Yu, SC Wei, YH Li, et al. Invasive pathobionts contribute to colon cancer initiation by counterbalancing epithelial antimicrobial responses. Cell Mol Gastroenterol Hepatol. 2022;13(1):57-79.
145 LE Wroblewski, RM Peek. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev. 2010;23(4):713-739.
146 J He, Z Nascakova, P Leary, et al. Inactivation of the tumor suppressor gene Apc synergizes with H. pylori to induce DNA damage in murine gastric stem and progenitor cells. Sci Adv. 2023;9(46):eadh0322.
147 TY Kim, S Kim, Y Kim, et al. A high-fat diet activates the BAs-FXR axis and triggers cancer-associated fibroblast properties in the colon. Cell Mol Gastroenterol Hepatol. 2022;13(4):1141-1159.
148 MA Engevik, HA Danhof, W Ruan, et al. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio. 2021;12(2):e02706.
149 W Ding, OM Marx, MM Mankarious, WA Koltun, GS Yochum. Disease severity impairs generation of intestinal organoid cultures from inflammatory bowel disease patients. J Surg Res. 2024;293:187-195.
150 K Arnauts, P Sudhakar, S Verstockt, et al. Microbiota, not host origin drives ex vivo intestinal epithelial responses. Gut Microbes. 2022;14(1):2089003.
151 C Iribarren, S Nordlander, J Sundin, et al. Fecal luminal factors from patients with irritable bowel syndrome induce distinct gene expression of colonoids. Neurogastroenterol Motil. 2022;34(10):e14390.
152 J Gao, T Xiong, G Grabauskas, C Owyang. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast cell-prostaglandin E2. Gastroenterology. 2022;162(7):1962-1974. e6.
153 G Grabauskas, J Gao, X Wu, SY Zhou, DK Turgeon, C Owyang. Gut microbiota alter visceral pain sensation and inflammation via modulation of synthesis of resolvin D1 in colonic tuft cells. Gastroenterology. 2022.
154 M Hosmillo, Y Chaudhry, K Nayak, et al. Norovirus replication in human intestinal epithelial cells is restricted by the interferon-induced JAK/STAT signaling pathway and RNA polymerase II-mediated transcriptional responses. mBio. 2020;11(2):e00215.
155 K Haga, K Ettayebi, VR Tenge, et al. Genetic manipulation of human intestinal enteroids demonstrates the necessity of a functional fucosyltransferase 2 gene for secretor-dependent human norovirus infection. mBio. 2020;11(2):e00251.
156 MM Lamers, J Beumer, J van der Vaart, et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020;369(6499):50-54.
157 Y Han, X Duan, L Yang, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 2021;589(7841):270-275.
158 JE Tate, AH Burton, C Boschi-Pinto, et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(2):136-141.
159 K Saxena, SE Blutt, K Ettayebi, et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol. 2016;90(1):43-56.
160 G Wilke, LJ Funkhouser-Jones, Y Wang, et al. A stem-cell-derived platform enables complete cryptosporidium development in vitro and genetic tractability. Cell Host Microbe. 2019;26(1):123-134. e8.
161 J Griger, SA Widholz, M Jesinghaus, et al. An integrated cellular and molecular model of gastric neuroendocrine cancer evolution highlights therapeutic targets. Cancer Cell. 2023;41(7):1327-1344. e10.
162 K Kawasaki, K Toshimitsu, M Matano, et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell. 2020;183(5):1420-1435. e21.
163 AK Giri, M Aavikko, L Wartiovaara, et al. Genome-Wide association study identifies 4 novel risk loci for small intestinal neuroendocrine tumors including a missense mutation in LGR5. Gastroenterology. 2023;165(4):861-873.
164 V Poplaski, C Bomidi, A Kambal, et al. Human intestinal organoids from Cronkhite-Canada syndrome patients reveal link between serotonin and proliferation. J Clin Invest. 2023;133(21):e166884.
165 F Deng, BC Zhao, X Yang, et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut Microbes. 2021;13(1):1-21.
166 AE Rosselot, M Park, M Kim, et al. Ontogeny and function of the circadian clock in intestinal organoids. EMBO J. 2022;41(2):e106973.
167 K Frazier, A Kambal, EA Zale, et al. High-fat diet disrupts REG3gamma and gut microbial rhythms promoting metabolic dysfunction. Cell Host Microbe. 2022;30(6):809-823. e6.
168 C Zhou, X Fang, J Xu, et al. Bifidobacterium longum alleviates irritable bowel syndrome-related visceral hypersensitivity and microbiota dysbiosis via Paneth cell regulation. Gut Microbes. 2020;12(1):1782156.
169 S Kim, YC Shin, TY Kim, et al. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes. 2021;13(1):1-20.
170 M Conte, F Nigro, M Porpora, et al. Gliadin peptide P31-43 induces mTOR/NFkbeta activation and reduces autophagy: the role of Lactobacillus paracasei CBA L74 Postbiotc. Int J Mol Sci. 2022;23(7):3655.
171 F Deng, JJ Hu, X Yang, et al. Gut microbial metabolite pravastatin attenuates intestinal ischemia/reperfusion injury through promoting IL-13 release from type II innate lymphoid cells via IL-33/ST2 signaling. Front Immunol. 2021;12:704836.
172 P Sittipo, HQ Pham, CE Park, et al. Irradiation-Induced intestinal damage is recovered by the indigenous gut bacteria Lactobacillus acidophilus. Front Cell Infect Microbiol. 2020;10:415.
173 H Wu, S Xie, J Miao, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes. 2020;11(4):997-1014.
174 TM Darby, CR Naudin, L Luo, RM Jones. Lactobacillus rhamnosus GG-induced expression of leptin in the intestine orchestrates epithelial cell proliferation. Cell Mol Gastroenterol Hepatol. 2020;9(4):627-639.
175 G Sorrentino, A Perino, E Yildiz, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. 2020;159(3):956-968. e8.
176 D Bajic, A Niemann, AK Hillmer, et al. Gut microbiota-derived propionate regulates the expression of Reg3 mucosal lectins and ameliorates experimental colitis in mice. J Crohns Colitis. 2020;14(10):1462-1472.
177 YS Lee, TY Kim, Y Kim, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe. 2018;24(6):833-846. e6.
178 N Phan, JJ Hong, B Tofig, et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun Biol. 2019;2:78.
179 TQ Tran, EA Hanse, AN Habowski, et al. alpha-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. Nat Cancer. 2020;1(3):345-358.
180 SA Hamed, A Mohan, S Navaneetha Krishnan, et al. Butyrate reduces adherent-invasive E. coli-evoked disruption of epithelial mitochondrial morphology and barrier function: involvement of free fatty acid receptor 3. Gut Microbes. 2023;15(2):2281011.
181 H Gou, H Su, D Liu, et al. Traditional medicine pien tze huang suppresses colorectal tumorigenesis through restoring gut microbiota and metabolites. Gastroenterology. 2023;165(6):1404-1419.
182 LC Frazer, Y Yamaguchi, CM Jania, et al. Microfluidic model of necrotizing enterocolitis incorporating human neonatal intestinal enteroids and a dysbiotic microbiome. J Vis Exp. 2023;(197).
183 E Terzo, SA Apte, S Padhye, et al. A novel class of ribosome modulating agents exploits cancer ribosome heterogeneity to selectively target the CMS2 subtype of colorectal cancer. Cancer Res Commun. 2023;3(6):969-979.
184 R Cruz-Acuna, SW Kariuki, K Sugiura, et al. Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. J Clin Invest. 2023;133(23):e168146.
185 S Hu, K Xia, X Huang, et al. Multifunctional CaCO(3)@Cur@QTX125@HA nanoparticles for effectively inhibiting growth of colorectal cancer cells. J Nanobiotechnology. 2023;21(1):353.
186 T Schmache, J Fohgrub, A Klimova, et al. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Mol Cancer. 2024;23(1):10.
187 MC Hasselluhn, D Schlosser, L Versemann, et al. An NFATc1/SMAD3/cJUN complex restricted to SMAD4-deficient pancreatic cancer guides rational therapies. Gastroenterology. 2024;166(2):298-312. e14.
188 D Wang, M Nakayama, CP Hong, H Oshima, M Oshima. Gain-of-function p53 mutation acts as a genetic switch for TGFbeta signaling-induced epithelial-to-mesenchymal transition in intestinal tumors. Cancer Res. 2024;84(1):56-68.
189 Y Tian, X Wang, Z Cramer, et al. APC and P53 mutations synergise to create a therapeutic vulnerability to NOTUM inhibition in advanced colorectal cancer. Gut. 2023;72(12):2294-2306.
190 Z Luo, B Wang, F Luo, et al. Establishment of a large-scale patient-derived high-risk colorectal adenoma organoid biobank for high-throughput and high-content drug screening. BMC Med. 2023;21(1):336.
191 Y Ohta, M Fujii, S Takahashi, et al. Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature. 2022;608(7924):784-794.
192 Q Zhong, HG Wang, JH Yang, et al. Loss of ATOH1 in pit cell drives stemness and progression of gastric adenocarcinoma by activating AKT/mTOR signaling through GAS1. Adv Sci (Weinh). 2023;10(32):e2301977.
193 H Ye, W Shi, J Yang, et al. PICH activates cyclin A1 transcription to drive S-phase progression and chemoresistance in gastric cancer. Cancer Res. 2023;83(22):3767-3782.
194 R Beekhof, A Bertotti, F Bottger, et al. Phosphoproteomics of patient-derived xenografts identifies targets and markers associated with sensitivity and resistance to EGFR blockade in colorectal cancer. Sci Transl Med. 2023;15(709):eabm3687.
195 J Qiu, M Feng, G Yang, et al. PRKRA promotes pancreatic cancer progression by upregulating MMP1 transcription via the NF-kappaB pathway. Heliyon. 2023;9(6):e17194.
196 S Shimizu, J Kondo, K Onuma, et al. Inhibition of the bone morphogenetic protein pathway suppresses tumor growth through downregulation of epidermal growth factor receptor in MEK/ERK-dependent colorectal cancer. Cancer Sci. 2023;114(9):3636-3648.
197 M Cioce, MR Fumagalli, S Donzelli, et al. Interrogating colorectal cancer metastasis to liver: a search for clinically viable compounds and mechanistic insights in colorectal cancer patient derived organoids. J Exp Clin Cancer Res. 2023;42(1):170.
198 DD Morrison, DP Thompson, DR Semeyn, JL Bennett. Acute effects of oltipraz on adult Schistosoma mansoni and its antagonism in vitro. Biochem Pharmacol. 1987;36(7):1169-1171.
199 CW Wright, N Li, L Shaffer, et al. Establishment of a 96-well transwell system using primary human gut organoids to capture multiple quantitative pathway readouts. Sci Rep. 2023;13(1):16357.
200 LH Jensen, SR Rogatto, J Lindebjerg, et al. Precision medicine applied to metastatic colorectal cancer using tumor-derived organoids and in-vitro sensitivity testing: a phase 2, single-center, open-label, and non-comparative study. J Exp Clin Cancer Res. 2023;42(1):115.
201 KK Dijkstra, JG van den Berg, F Weeber, et al. Patient-derived organoid models of human neuroendocrine carcinoma. Front Endocrinol. 2021;12:627819.
202 W Dieterich, MF Neurath, Y Zopf. Intestinal ex vivo organoid culture reveals altered programmed crypt stem cells in patients with celiac disease. Sci Rep. 2020;10(1):3535.
203 NM Meindl-Beinker, J Betge, T Gutting, et al. A multicenter open-label phase II trial to evaluate nivolumab and ipilimumab for 2nd line therapy in elderly patients with advanced esophageal squamous cell cancer (RAMONA). BMC Cancer. 2019;19(1):231.
204 J van de Haar, X Ma, SN Ooft, et al. Codon-specific KRAS mutations predict survival benefit of trifluridine/tipiracil in metastatic colorectal cancer. Nat Med. 2023;29(3):605-614.
205 J Tian, JH Chen, SX Chao, et al. Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: a phase 2 trial. Nat Med. 2023;29(2):458-466.
206 EC Smyth, G Vlachogiannis, S Hedayat, et al. EGFR amplification and outcome in a randomised phase III trial of chemotherapy alone or chemotherapy plus panitumumab for advanced gastro-oesophageal cancers. Gut. 2021;70(9):1632-1641.
207 MRKL Lie, J van der Giessen, GM Fuhler, et al. Low dose Naltrexone for induction of remission in inflammatory bowel disease patients. J Transl Med. 2018;16(1):55.
208 L Reyes-Uribe, W Wu, O Gelincik, et al. Naproxen chemoprevention promotes immune activation in Lynch syndrome colorectal mucosa. Gut. 2021;70(3):555-566.
209 L Taraborrelli, Y Senbabaoglu, L Wang, et al. Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer. Nat Commun. 2023;14(1):5945.
210 W Lin, Y Zhang, Y Yang, et al. Anti-PD-1/Her2 bispecific antibody IBI315 enhances the treatment effect of Her2-positive gastric cancer through gasdermin B-cleavage induced pyroptosis. Adv Sci (Weinh). 2023;10(30):e2303908.
211 L Yao, J Hou, X Wu, et al. Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol. 2023;67:102923.
212 A Teijeira, I Migueliz, S Garasa, et al. Three-dimensional colon cancer organoids model the response to CEA-CD3 T-cell engagers. Theranostics. 2022;12(3):1373-1387.
213 OJ Pickles, K Wanigasooriya, A Ptasinska, et al. MHC class II is induced by IFNgamma and follows three distinct patterns of expression in colorectal cancer organoids. Cancer Res Commun. 2023;3(8):1501-1513.
214 A Potenza, C Balestrieri, M Spiga, et al. Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells. Gut. 2023;72(10):1887-1903.
215 S Ding, C Hsu, Z Wang, et al. Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell. 2022;29(6):905-917. e6.
216 MA Engevik, HA Danhof, R Shrestha, et al. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes. 2020;12(1):1788898.
217 Y Shao, SS Evers, JH Shin, et al. Vertical sleeve gastrectomy increases duodenal Lactobacillus spp. richness associated with the activation of intestinal HIF2alpha signaling and metabolic benefits. Mol Metab. 2022;57:101432.
218 S Deleu, K Arnauts, L Deprez, et al. High acetate concentration protects intestinal barrier and exerts anti-inflammatory effects in organoid-derived epithelial monolayer cultures from patients with ulcerative colitis. Int J Mol Sci. 2023;24(1):768.
219 GM Mackie, A Copland, M Takahashi, et al. Bacterial cancer therapy in autochthonous colorectal cancer affects tumor growth and metabolic landscape. JCI Insight. 2021;6(23):e139900.
220 SI Green, C Gu Liu, X Yu, et al. Targeting of mammalian glycans enhances phage predation in the gastrointestinal tract. mBio. 2021;12(1):e03474.
221 A Lavelle, H Sokol. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223-237.
222 NMJ Hanssen, WM de Vos, M Nieuwdorp. Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future? Cell Metab. 2021;33(6):1098-1110.
223 Z Davoudi, N Peroutka-Bigus, B Bellaire, A Jergens, M Wannemuehler, Q Wang. Gut organoid as a new platform to study alginate and chitosan mediated PLGA nanoparticles for drug delivery. Mar Drugs. 2021;19(5):282.
224 T Cai, Y Qi, A Jergens, M Wannemuehler, TA Barrett, Q Wang. Effects of six common dietary nutrients on murine intestinal organoid growth. PLoS One. 2018;13(2):e0191517.
225 H Peng, C Wang, X Xu, C Yu, Q Wang. An intestinal Trojan horse for gene delivery. Nanoscale. 2015;7(10):4354-4360.
226 Z Davoudi, N Peroutka-Bigus, B Bellaire, et al. Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J Biomed Mater Res A. 2018;106(4):876-886.
227 T Tong, Y Qi, D Rollins, et al. Rational design of oral drugs targeting mucosa delivery with gut organoid platforms. Bioact Mater. 2023;30:116-128.
228 R Khan, N Roy, H Ali, M Naeem. Fecal microbiota transplants for inflammatory bowel disease treatment: synthetic-and engineered communities-based microbiota transplants are the future. Gastroenterol Res Pract. 2022;2022:9999925.
229 BJ Carberry, JE Hergert, FM Yavitt, et al. 3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices. Biofabrication. 2021;13(4).
230 S Kim, S Min, YS Choi, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun. 2022;13(1):1692.
231 J Chakraborty, S Chawla, S Ghosh. Developmental biology-inspired tissue engineering by combining organoids and 3D bioprinting. Curr Opin Biotechnol. 2022;78:102832.
232 YS Zhang, Q Pi, AM van Genderen. Microfluidic bioprinting for engineering vascularized tissues and organoids. J Vis Exp. 2017;(126):55957.
233 D Hendriks, H Clevers, B Artegiani. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell. 2020;27(5):705-731.
234 B Artegiani, D Hendriks, J Beumer, et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol. 2020;22(3):321-331.
235 MV Luna Velez, HK Neikes, RR Snabel, et al. ONECUT2 regulates RANKL-dependent enterocyte and microfold cell differentiation in the small intestine; a multi-omics study. Nucleic Acids Res. 2023;51(3):1277-1296.
236 RG Lindeboom, L van Voorthuijsen, KC Oost, et al. Integrative multi-omics analysis of intestinal organoid differentiation. Mol Syst Biol. 2018;14(6):e8227.
237 Y Qin, SR Palayyan, X Zheng, S Tian, RF Margolskee, SK Sukumaran. Type II taste cells participate in mucosal immune surveillance. PLoS Biol. 2023;21(1):e3001647.
238 B Schuster, M Junkin, SS Kashaf, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun. 2020;11(1):5271.
239 D Sahoo, L Swanson, IM Sayed, et al. Artificial intelligence guided discovery of a barrier-protective therapy in inflammatory bowel disease. Nat Commun. 2021;12(1):4246.
240 AK Wani, P Roy, V Kumar, TUG Mir. Metagenomics and artificial intelligence in the context of human health. Infect Genet Evol. 2022;100:105267.
241 NS Seyed Tabib, M Madgwick, P Sudhakar, B Verstockt, T Korcsmaros, S Vermeire. Big data in IBD: big progress for clinical practice. Gut. 2020;69(8):1520-1532.
PDF

Accesses

Citations

Detail

Sections
Recommended

/