miR-1246 promotes osteosarcoma cell migration via NamiRNA-enhancer network dependent on Argonaute 2

Shuai Yang1, Qingping Zou1, Ying Liang1, Dapeng Zhang2, Lina Peng1, Wei Li1, Wenxuan Li1, Mengxing Liu1, Ying Tong1, Lu Chen1, Peng Xu1, Zhicong Yang1, Kaicheng Zhou1, Jianru Xiao3, Hailin Wang2(), Wenqiang Yu1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (4) : e543. DOI: 10.1002/mco2.543
ORIGINAL ARTICLE

miR-1246 promotes osteosarcoma cell migration via NamiRNA-enhancer network dependent on Argonaute 2

  • Shuai Yang1, Qingping Zou1, Ying Liang1, Dapeng Zhang2, Lina Peng1, Wei Li1, Wenxuan Li1, Mengxing Liu1, Ying Tong1, Lu Chen1, Peng Xu1, Zhicong Yang1, Kaicheng Zhou1, Jianru Xiao3, Hailin Wang2(), Wenqiang Yu1()
Author information +
History +

Abstract

High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.

Keywords

Argonaute 2 / enhancer / metastasis / miR-1246 / nuclear activation miRNAs / osteosarcoma

Cite this article

Download citation ▾
Shuai Yang, Qingping Zou, Ying Liang, Dapeng Zhang, Lina Peng, Wei Li, Wenxuan Li, Mengxing Liu, Ying Tong, Lu Chen, Peng Xu, Zhicong Yang, Kaicheng Zhou, Jianru Xiao, Hailin Wang, Wenqiang Yu. miR-1246 promotes osteosarcoma cell migration via NamiRNA-enhancer network dependent on Argonaute 2. MedComm, 2024, 5(4): e543 https://doi.org/10.1002/mco2.543

References

1 X Du, H Wei, B Zhang, et al. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol. 2023;13:1117867.
2 N Soghli, GA Ferns, F Sadeghsoltani, D Qujeq, T Yousefi, M Vaghari-Tabari. MicroRNAs and osteosarcoma: potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol. 2022;201:115094.
3 X Zhao, Q Wu, X Gong, J Liu, Y Ma. Osteosarcoma: a review of current and future therapeutic approaches. Biomed Eng Online. 2021;20(1):24.
4 YS Lee, A Dutta. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199-227.
5 M Xiao, J Li, W Li, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017;14(10):1326-1334.
6 Y Liang, Q Lu, W Li, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572.
7 C Li, B Xu, X Miu, Z Deng, H Liao, L Hao. Inhibition of miRNA-21 attenuates the proliferation and metastasis of human osteosarcoma by upregulating PTEN. Exp Ther Med. 2018;15(1):1036-1040.
8 Q Zou, X Xiao, Y Liang, et al. miR-19a-mediated downregulation of RhoB inhibits the dephosphorylation of AKT1 and induces osteosarcoma cell metastasis. Cancer Lett. 2018;428:147-159.
9 F Perut, L Roncuzzi, N Baldini. The emerging roles of extracellular vesicles in osteosarcoma. Front Oncol. 2019;9:1342.
10 Y Araki, H Aiba, T Yoshida, et al. Osteosarcoma-derived small extracellular vesicles enhance tumor metastasis and suppress osteoclastogenesis by miR-146a-5p. Front Oncol. 2021;11:667109.
11 Y Liang, P Xu, Q Zou, H Luo, W Yu. An epigenetic perspective on tumorigenesis: loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol. 2019;57:1-9.
12 D Ju, Y Liang, G Hou, et al. FBP1 /miR-24-1/enhancer axis activation blocks renal cell carcinoma progression via Warburg effect. Front Oncol. 2022;12:928373.
13 H Li, D Da, W Yu, et al. Tumor suppressor genes are reactivated by miR-26A1 via enhancer reprogramming in NSCLC. Hum Mol Genet. 2022.
14 CX Koo, K Kobiyama, YJ Shen, et al. RNA polymerase III regulates cytosolic RNA:dNA hybrids and intracellular microRNA expression. J Biol Chem. 2015;290(12):7463-7473.
15 Y Liu, Y Zhang, J Zhang, et al. Silencing of HuR inhibits osteosarcoma cell epithelial-mesenchymal transition via AGO2 in association with long non-coding RNA XIST. Front Oncol. 2021;11:601982.
16 F Yang, H Xiong, L Duan, Q Li, X Li, Y Zhou. MiR-1246 promotes metastasis and invasion of A549 cells by targeting GSK-3beta?mediated Wnt/beta-catenin pathway. Cancer Res Treat. 2019;51(4):1420-1429.
17 Y Wang, X Li, X Wei, et al. Identification of combinatorial miRNA panels derived from extracellular vesicles as biomarkers for esophageal squamous cell carcinoma. MedComm. 2023;4(5):e377.
18 S Sakha, T Muramatsu, K Ueda, J Inazawa. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep. 2016;6:38750.
19 AB Mohseny, I Machado, Y Cai, et al. Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Lab Invest. 2011;91(8):1195-1205.
20 SU Lauvrak, E Munthe, SH Kresse, et al. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Br J Cancer. 2013;109(8):2228-2236.
21 G van Niel, G D'Angelo, G Raposo. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-228.
22 BL Deatherage, BT Cookson. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80(6):1948-1957.
23 DG Robinson, Y Ding, L Jiang, Unconventional protein secretion in plants: a critical assessment. Protoplasma. 2016;253(1):31-43.
24 A Becker, BK Thakur, JM Weiss, HS Kim, H Peinado, D Lyden. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30(6):836-848.
25 Z Chen, Q Wang, J Liu, et al. Effects of extracellular vesicle-derived noncoding RNAs on pre-metastatic niche and tumor progression. Genes Dis. 2024;11(1):176-188.
26 RC Lee, RL Feinbaum, V Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854.
27 DP Bartel. Metazoan MicroRNAs. Cell. 2018;173(1):20-51.
28 W Li, S Yang, P Xu, et al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine. 2022;76:103861.
29 AJ Gearing, P Beckett, M Christodoulou, et al. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994;370(6490):555-557.
30 R Kimura, C Ishikawa, T Rokkaku, R Janknecht, N Mori. Phosphorylated c-Jun and Fra-1 induce matrix metalloproteinase-1 and thereby regulate invasion activity of 143B osteosarcoma cells. Biochim Biophys Acta. 2011;1813(8):1543-1553.
31 W Peng, J Li, R Chen, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019;38(1):393.
32 H Akiyama, Y Iwahana, M Suda, et al. The FBI1/Akirin2 target gene, BCAM, acts as a suppressive oncogene. PLoS One. 2013;8(11):e78716.
33 Y Jia, T Li, X Huang, et al. Dysregulated DNA methyltransferase 3A upregulates IGFBP5 to suppress trophoblast cell migration and invasion in preeclampsia. Hypertension. 2017;69(2):356-366.
34 J Sikorska, D Gawel, H Domek, M Rudzinska, B Czarnocka. Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases. BMC Cancer. 2019;19(1):85.
35 J Banerji, S Rusconi, W Schaffner. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell. 1981;27(2 Pt 1):299-308.
36 A Panigrahi, BW O'Malley. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 2021;22(1):108.
37 R Raisner, S Kharbanda, L Jin, et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 2018;24(7):1722-1729.
38 KV Morris, S Santoso, AM Turner, C Pastori, PG Hawkins. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008;4(11):e1000258.
39 Y Chu, X Yue, ST Younger, BA Janowski, DR Corey. Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res. 2010;38(21):7736-7748.
40 G Meister. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447-459.
41 M Jinek, JA Doudna. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009;457(7228):405-412.
42 A Brambati, L Zardoni, E Nardini, A Pellicioli, G Liberi. The dark side of RNA:dNA hybrids. Mutat Res Rev Mutat Res. 2020;784:108300.
43 C Ohle, R Tesorero, G Schermann, N Dobrev, I Sinning, T Fischer. Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell. 2016;167(4):1001-1013. e7.
44 M Nowotny, SA Gaidamakov, RJ Crouch, W Yang. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell. 2005;121(7):1005-1016.
45 MS Isakoff, SS Bielack, P Meltzer, R Gorlick. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029-3035.
46 BA Lindsey, JE Markel, ES Kleinerman. Osteosarcoma overview. Rheumatol Ther. 2017;4(1):25-43.
47 S Liu, X He, Y Di, et al. NamiRNA-enhancer network of miR-492 activates the NR2C1-TGF-beta/Smad3 pathway to promote epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis. 2023;44(2):153-165.
48 HC Anderson, D Mulhall, R Garimella. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Invest. 2010;90(11):1549-1557.
49 Bahram Sangani N, AR Gomes, LMG Curfs, CP Reutelingsperger. The role of extracellular vesicles during CNS development. Prog Neurobiol. 2021;205:102124.
50 S Jerez, H Araya, R Thaler, et al. Proteomic analysis of exosomes and exosome-free conditioned media from human osteosarcoma cell lines reveals secretion of proteins related to tumor progression. J Cell Biochem. 2017;118(2):351-360.
51 Q Bao, L Gong, J Wang, J Wen, Y Shen, W Zhang. Extracellular vesicle RNA sequencing reveals dramatic transcriptomic alterations between metastatic and primary osteosarcoma in a liquid biopsy approach. Ann Surg Oncol. 2018;25(9):2642-2651.
52 M Sand, M Skrygan, D Sand, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013;351(1):85-98.
53 S Wang, F Ma, Y Feng, T Liu, S He. Role of exosomal miR?21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review). Int J Oncol. 2020;56(5):1055-1063.
54 K Husmann, MJ Arlt, R Muff, et al. Matrix Metalloproteinase 1 promotes tumor formation and lung metastasis in an intratibial injection osteosarcoma mouse model. Biochim Biophys Acta. 2013;1832(2):347-354.
55 S Guo, J Chen, F Chen, Q Zeng, WL Liu, G Zhang. Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut. 2020.
56 ER Abels, XO Breakefield. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36(3):301-312.
57 NE Kushlinskii, MV Fridman, EA Braga. Molecular mechanisms and microRNAs in osteosarcoma pathogenesis. Biochemistry (Mosc). 2016;81(4):315-328.
58 E Robbins, NK Gonatas. The ultrastructure of a mammalian cell during the mitotic cycle. J Cell Biol. 1964;21(3):429-463.
59 J Wu, J Yang, WC Cho, Y Zheng. Argonaute proteins: structural features, functions and emerging roles. J Adv Res. 2020;24:317-324.
60 KT Gagnon, DR Corey. Argonaute and the nuclear RNAs: new pathways for RNA-mediated control of gene expression. Nucleic Acid Ther. 2012;22(1):3-16.
61 H Zhang, Y Wang, J Dou, et al. Acetylation of AGO2 promotes cancer progression by increasing oncogenic miR-19b biogenesis. Oncogene. 2019;38(9):1410-1431.
62 MA Karpinska, AM Oudelaar. The role of loop extrusion in enhancer-mediated gene activation. Curr Opin Genet Dev. 2023;79:102022.
63 MR Green, J Sambrook. Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press; 2012.
PDF

Accesses

Citations

Detail

Sections
Recommended

/