Targeting the Cdc2-like kinase 2 for overcoming platinum resistance in ovarian cancer

Yinan Jiang1, Shuting Huang2, Lan Zhang3, Yun Zhou1, Wei Zhang4, Ting Wan1, Haifeng Gu1, Yi Ouyang5, Xiaojing Zheng1, Pingping Liu1, Baoyue Pan1, Huiling Xiang1, Mingxiu Ju1, Rongzhen Luo6, Weihua Jia7, Shenjiao Huang8(), Jundong Li1(), Min Zheng1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (4) : e537. DOI: 10.1002/mco2.537
ORIGINAL ARTICLE

Targeting the Cdc2-like kinase 2 for overcoming platinum resistance in ovarian cancer

  • Yinan Jiang1, Shuting Huang2, Lan Zhang3, Yun Zhou1, Wei Zhang4, Ting Wan1, Haifeng Gu1, Yi Ouyang5, Xiaojing Zheng1, Pingping Liu1, Baoyue Pan1, Huiling Xiang1, Mingxiu Ju1, Rongzhen Luo6, Weihua Jia7, Shenjiao Huang8(), Jundong Li1(), Min Zheng1()
Author information +
History +

Abstract

Platinum resistance represents a major barrier to the survival of patients with ovarian cancer (OC). Cdc2-like kinase 2 (CLK2) is a major protein kinase associated with oncogenic phenotype and development in some solid tumors. However, the exact role and underlying mechanism of CLK2 in the progression of OC is currently unknown. Using microarray gene expression profiling and immunostaining on OC tissues, we found that CLK2 was upregulated in OC tissues and was associated with a short platinum-free interval in patients. Functional assays showed that CLK2 protected OC cells from platinum-induced apoptosis and allowed tumor xenografts to be more resistant to platinum. Mechanistically, CLK2 phosphorylated breast cancer gene 1 (BRCA1) at serine 1423 (Ser1423) to enhance DNA damage repair, resulting in platinum resistance in OC cells. Meanwhile, in OC cells treated with platinum, p38 stabilized CLK2 protein through phosphorylating at threonine 343 of CLK2. Consequently, the combination of CLK2 and poly ADP-ribose polymerase inhibitors achieved synergistic lethal effect to overcome platinum resistance in patient-derived xenografts, especially those with wild-type BRCA1. These findings provide evidence for a potential strategy to overcome platinum resistance in OC patients by targeting CLK2.

Keywords

Cdc2-like kinase 2 / DNA damage repair / ovarian cancer / platinum resistance / synergistic lethal

Cite this article

Download citation ▾
Yinan Jiang, Shuting Huang, Lan Zhang, Yun Zhou, Wei Zhang, Ting Wan, Haifeng Gu, Yi Ouyang, Xiaojing Zheng, Pingping Liu, Baoyue Pan, Huiling Xiang, Mingxiu Ju, Rongzhen Luo, Weihua Jia, Shenjiao Huang, Jundong Li, Min Zheng. Targeting the Cdc2-like kinase 2 for overcoming platinum resistance in ovarian cancer. MedComm, 2024, 5(4): e537 https://doi.org/10.1002/mco2.537

References

1 RL Siegel, KD Miller, A Jemal. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30.
2 CJ Cabasag, PJ Fagan, J Ferlay, et al. Ovarian cancer today and tomorrow: a global assessment by world region and Human Development Index using GLOBOCAN 2020. Int J Cancer. 2022;151(9):1535-1541.
3 GC Jayson, EC Kohn, HC Kitchener, JA Ledermann. Ovarian cancer. Lancet. 2014;384(9951):1376-1388.
4 LA Torre, B Trabert, CE DeSantis, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284-296.
5 S Lheureux, M Braunstein, AM Oza. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280-304.
6 RL Coleman, NM Spirtos, D Enserro, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med. 2019;381(20):1929-1939.
7 RD Cress, YS Chen, CR Morris, M Petersen, GS Leiserowitz. Characteristics of long-term survivors of epithelial ovarian cancer. Obstet Gynecol. 2015;126(3):491-497.
8 SI Labidi-Galy, T Olivier, M Rodrigues, et al. Location of mutation in BRCA2 gene and survival in patients with ovarian cancer. Clin Cancer Res. 2018;24(2):326-333.
9 M Zhang, G Liu, F Xue, et al. Copy number deletion of RAD50 as predictive marker of BRCAness and PARP inhibitor response in BRCA wild type ovarian cancer. Gynecol Oncol. 2016;141(1):57-64.
10 P DiSilvestro, S Banerjee, N Colombo, et al. SOLO1 investigators. Overall survival with maintenance olaparib at a 7-year follow-up in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation: the SOLO1/GOG 3004 trial. J Clin Oncol. 2023;41(3):609-617.
11 L Gilbert, A Oaknin, UA Matulonis, et al. Safety and efficacy of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2023;170:241-247.
12 H Kim, H Xu, E George, et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun. 2020;11(1):3726.
13 CJ Miller, BE Turk. Homing in: mechanisms of substrate targeting by protein kinases. Trends Biochem Sci. 2018;43(5):380-394.
14 J Beenstock, N Mooshayef, D Engelberg. How do protein kinases take a selfie (Autophosphorylate)? Trends Biochem Sci. 2016;41(11):938-953.
15 TM Van, A Polykratis, BK Straub, V Kondylis, N Papadopoulou, M Pasparakis. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest. 2017;127(7):2662-2677.
16 AB Bukhari, CW Lewis, JJ Pearce, D Luong, GK Chan, AM Gamper. Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis. J Clin Invest. 2019;129(3):1329-1344.
17 A Di Tullio, K Rouault-Pierre, A Abarrategi, et al. The combination of CHK1 inhibitor with G-CSF overrides cytarabine resistance in human acute myeloid leukemia. Nat Commun. 2017;8(1):1679.
18 PL Bedard, DM Hyman, MS Davids, LL Siu. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet. 2020;395(10229):1078-1088.
19 A Leonetti, S Sharma, R Minari, P Perego, E Giovannetti, M Tiseo. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121(9):725-737.
20 P Martín Moyano, V Němec, MP Paruch KMartin. Cdc-like kinases (CLKs): biology, chemical probes, and therapeutic potential. Int J Mol Sci. 2020;21(20):7549.
21 Z Qin, L Qin, X Feng, Z Li, J Bian. Development of Cdc2-like kinase 2 inhibitors: achievements and future directions. J Med Chem. 2021;64(18):13191-13211.
22 BY Tam, K Chiu, H Chung, et al. The CLK inhibitor SM08502 induces anti-tumor activity and reduces Wnt pathway gene expression in gastrointestinal cancer models. Cancer Lett. 2020;473:186-197.
23 T Yoshida, JH Kim, K Carver, et al. CLK2 is an oncogenic kinase and splicing regulator in breast cancer. Cancer Res. 2015;75(7):1516-1526.
24 B Liu, X Kong, R Wang, C Xin. CLK2 promotes occurrence and development of non-small cell lung cancer. J BUON. 2021;26(1):58-64.
25 WQ Li, N Hu, PL Hyland, et al. Genetic variants in DNA repair pathway genes and risk of esophageal squamous cell carcinoma and gastric adenocarcinoma in a Chinese population. Carcinogenesis. 2013;34(7):1536-1542.
26 J Lin, G Lin, B Chen, J Yuan, Y Zhuang. CLK2 expression is associated with the progression of colorectal cancer and is a prognostic biomarker. Biomed Res Int. 2022;2022:7250127.
27 K Iwai, M Yaguchi, K Nishimura, et al. Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. EMBO Mol Med. 2018;10(6):e8289.
28 L Galluzzi, L Senovilla, I Vitale, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869-1883.
29 S O'Grady, SP Finn, S Cuffe, DJ Richard, KJ O'Byrne, MP Barr. The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer Treat Rev. 2014;40(10):1161-1170.
30 A Ray Chaudhuri, E Callen, X Ding, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535(7612):382-387.
31 AR Venkitaraman. Cancer susceptibility and the functions of BRCA1 and BRCA. Cell. 2002;108(2):171-182.
32 B Parameswaran, HC Chiang, Y Lu, et al. Damage-induced BRCA1 phosphorylation by Chk2 contributes to the timing of end resection. Cell Cycle. 2015;14(3):437-448.
33 M Draga, EB Madgett, CJ Vandenberg, et al. BRCA1 is required for maintenance of phospho-Chk1 and G2/M arrest during DNA cross-link repair in DT40 cells. Mol Cell Biol. 2015;35(22):3829-3840.
34 RS Tibbetts, D Cortez, KM Brumbaugh, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 2000;14(23):2989-3002.
35 SY Lin, K Li, GS Stewart, SJ Elledge. Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci U S A. 2004;101(17):6484-6489.
36 ZH Siddik. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265-7279.
37 P Dent, S Grant. Pharmacologic interruption of the mitogen-activated extracellular-regulated kinase/mitogen-activated protein kinase signal transduction pathway: potential role in promoting cytotoxic drug action. Clin Cancer Res. 2001;7(4):775-783.
38 X Wang, JL Martindale, NJ Holbrook. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem. 2000;275(50):39435-39443.
39 JT Rodgers, W Haas, SP Gygi, P Puigserver. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab. 2010;11(1):23-34.
40 B Nolen, S Taylor, G Ghosh. Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell. 2004;15(5):661-675.
41 R Farkas, M Kovacikova, D Liszekova, et al. Exploring some of the physico-chemical properties of the LAMMER protein kinase DOA of Drosophila. Fly (Austin). 2009;3(2):130-142.
42 O Nayler, F Schnorrer, S Stamm, A Ullrich. The cellular localization of the murine serine/arginine-rich protein kinase CLK2 is regulated by serine 141 autophosphorylation. J Biol Chem. 1998;273(51):34341-34348.
43 P Neri, L Ren, K Gratton, et al. Bortezomib-induced “BRCAness” sensitizes multiple myeloma cells to PARP inhibitors. Blood. 2011;118(24):6368-6379.
44 L Liu, W Zhou, CT Cheng, et al. TGFβ induces “BRCAness” and sensitivity to PARP inhibition in breast cancer by regulating DNA-repair genes. Mol Cancer Res. 2014;12(11):1597-1609.
45 CJ Lord, AN Tutt, A Ashworth. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med. 2015;66:455-470.
46 S Beneke, A Burkle. Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Res. 2007;35(22):7456-7465.
47 PA Jeggo, LH Pearl, AM Carr. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16(1):35-42.
48 CL Scott, EM Swisher, SH Kaufmann. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol. 2015;33(12):1397-1406.
49 A Poveda, A Floquet, JA Ledermann, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22(5):620-631.
50 EL Christie, S Fereday, K Doig, S Pattnaik, SJ Dawson, DDL Bowtell. Reversion of BRCA1/2 germline mutations detected in circulating tumor DNA from patients with high-grade serous ovarian cancer. J Clin Oncol. 2017;35(12):1274-1280.
51 B Norquist, KA Wurz, CC Pennil, et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 2011;29(22):3008-3015.
52 B Weigelt, I Comino-Méndez, I de Bruijn, et al. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin Cancer Res. 2017;23(21):6708-6720.
53 SY Nam, HH Seo, HS Park, et al. Phosphorylation of CLK2 at serine 34 and threonine 127 by AKT controls cell survival after ionizing radiation. J Biol Chem. 2010;285(41):31157-31163.
54 A Cuadrado, AR Nebreda. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429(3):403-417.
55 I Vergote, F Heitz, P Buderath, et al. A randomized, double-blind, placebo-controlled phase 1b/2 study of ralimetinib, a p38 MAPK inhibitor, plus gemcitabine and carboplatin versus gemcitabine and carboplatin for women with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol. 2020;156(1):23-31.
56 A Pranteda, V Piastra, L Stramucci, D Fratantonio, G Bossi. The p38 MAPK signaling activation in colorectal cancer upon therapeutic treatments. Int J Mol Sci. 2020;21(8):2773.
57 AP Wiegmans, M Miranda, SW Wen, F Al-Ejeh, A Moller. RAD51 inhibition in triple negative breast cancer cells is challenged by compensatory survival signaling and requires rational combination therapy. Oncotarget. 2016;7(37):60087-60100.
58 M Bidinosti, P Botta, S Kruttner, et al. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science. 2016;351(6278):1199-1203.
59 S Uzor, SR Porazinski, L Li, et al. CDC2-like (CLK) protein kinase inhibition as a novel targeted therapeutic strategy in prostate cancer. Sci Rep. 2021;11(1):7963.
PDF

Accesses

Citations

Detail

Sections
Recommended

/