Single-cell RNA sequencing reveals inflammatory retinal microglia in experimental autoimmune uveitis

Jiangyi Liu1, Xingyun Liao1,2, Na Li3, Zongren Xu1, Wang Yang4, Hongxiu Zhou1, Yusen Liu1, Zhi Zhang1, Guoqing Wang1, Shengping Hou1,5()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (4) : e534. DOI: 10.1002/mco2.534
ORIGINAL ARTICLE

Single-cell RNA sequencing reveals inflammatory retinal microglia in experimental autoimmune uveitis

  • Jiangyi Liu1, Xingyun Liao1,2, Na Li3, Zongren Xu1, Wang Yang4, Hongxiu Zhou1, Yusen Liu1, Zhi Zhang1, Guoqing Wang1, Shengping Hou1,5()
Author information +
History +

Abstract

Autoimmune uveitis (AU) is a kind of immune-mediated disease resulting in irreversible ocular damage and even permanent vision loss. However, the precise mechanism underlying dynamic immune changes contributing to disease initiation and progression of AU remains unclear. Here, we induced an experimental AU (EAU) model with IRBP651-670 and found that day[D]14 was the inflammatory summit with remarking clinical and histopathological manifestations and the activation of retinal microglia exhibited a time-dependent pattern in the EAU course. We conducted single-cell RNA sequencing of retinal immune cells in EAU mice at four time points and found microglia constituting the largest proportion, especially on D14. A novel inflammatory subtype (Cd74high Ccl5high) of retinal microglia was identified at the disease peak that was closely associated with modulating immune responses. In vitro experiments indicated that inflammatory stimuli induced proinflammatory microglia with the upregulation of CD74 and CCL5, and CD74 overexpression in microglia elicited their proinflammatory phenotype via nuclear factor-kappa B signaling that could be attenuated by the treatment of neutralizing CCL5 antibody to a certain extent. In-vivo blockade of Cd74 and Ccl5 effectively alleviated retinal microglial activation and disease phenotype of EAU. Therefore, we propose targeting CD74 and CCL5 of retinal microglia as promising strategies for AU treatment.

Keywords

autoimmune uveitis / Ccl5 / Cd74 / microglia / single-cell RNA sequencing

Cite this article

Download citation ▾
Jiangyi Liu, Xingyun Liao, Na Li, Zongren Xu, Wang Yang, Hongxiu Zhou, Yusen Liu, Zhi Zhang, Guoqing Wang, Shengping Hou. Single-cell RNA sequencing reveals inflammatory retinal microglia in experimental autoimmune uveitis. MedComm, 2024, 5(4): e534 https://doi.org/10.1002/mco2.534

References

1 F Alibaz-Oner, H Direskeneli. Advances in the treatment of Behcet's disease. Curr Rheumatol Rep. 2021;23(6):47.
2 A Greco, M Fusconi, A Gallo, et al. Vogt-Koyanagi-Harada syndrome. Autoimmun Rev. 2013;12(11):1033-1038.
3 L Du, A Kijlstra, P Yang. Vogt-Koyanagi-Harada disease: novel insights into pathophysiology, diagnosis and treatment. Prog Retin Eye Res. 2016;52:84-111.
4 B Tong, X Liu, J Xiao, G Su. Immunopathogenesis of Behcet's Disease. Front Immunol. 2019;10:665.
5 JS Heng, SF Hackett, GL Stein-O'Brien, et al. Comprehensive analysis of a mouse model of spontaneous uveoretinitis using single-cell RNA sequencing. Proc Natl Acad Sci U S A. 2019;116(52):26734-26744.
6 H Li, L Xie, L Zhu, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun. 2022;13(1):5866.
7 Y Zhang, Y Deng, S Jing, et al. Proteomic profiling of aqueous humor-derived exosomes in Vogt-Koyanagi-Harada disease and Behcet's uveitis. Clin Immunol. 2024;259:109895.
8 GX Zheng, JM Terry, P Belgrader, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.
9 X Qiu, Q Mao, Y Tang, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979-982.
10 T Stuart, A Butler, P Hoffman, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902. e1821.
11 AP Voigt, K Mulfaul, NK Mullin, et al. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Natl Acad Sci U S A. 2019;116(48):24100-24107.
12 M Kuchroo, M DiStasio, E Song, et al. Single-cell analysis reveals inflammatory interactions driving macular degeneration. Nat Commun. 2023;14(1):2589.
13 H Li, L Zhu, R Wang, et al. Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein Cell. 2022;13(6):422-445.
14 W Zheng, X Wang, J Liu, et al. Single-cell analyses highlight the proinflammatory contribution of C1q-high monocytes to Behcet's disease. Proc Natl Acad Sci U S A. 2022;119(26):e2204289119.
15 DA Carter, B Balasubramaniam, AD Dick. Functional analysis of retinal microglia and their effects on progenitors. Methods Mol Biol. 2013;935:271-283.
16 R Li, J Liu, P Yi, et al. Integrative single-cell transcriptomics and epigenomics mapping of the fetal retina developmental dynamics. Adv Sci. 2023;10(16):e2206623.
17 H Keren-Shaul, A Spinrad, A Weiner, et al. A unique microglia type associated with restricting development of Alzheimer's disease. Cell. 2017;169(7):1276-1290. e1217.
18 Y Okunuki, R Mukai, EA Pearsall, et al. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proc Natl Acad Sci U S A. 2018;115(27):E6264-E6273.
19 X Wang, W Fan, N Li, et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 2023;24(1):87.
20 W Fan, W Huang, J Chen, N Li, L Mao, S Hou. Retinal microglia: functions and diseases. Immunology. 2022;166(3):268-286.
21 Y Okunuki, R Mukai, T Nakao, et al. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proc Natl Acad Sci U S A. 2019;116(20):9989-9998.
22 AP Fournier, O Tastet, M Charabati, et al. Single-cell transcriptomics identifies brain endothelium inflammatory networks in experimental autoimmune encephalomyelitis. Neurol Neuroimmunol Neuroinflamm. 2023;10(1):e200046.
23 O Kann, F Almouhanna, B Chausse. Interferon gamma: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci. 2022;45(12):913-927.
24 H Zhang, C Liu, S Cheng, et al. Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2 (PCV-2) infection. Arch Virol. 2013;158(11):2285-2295.
25 Y Zhou, W Guo, Z Zhu, et al. Macrophage migration inhibitory factor facilitates production of CCL5 in astrocytes following rat spinal cord injury. J Neuroinflammation. 2018;15(1):253.
26 Z Zhong, G Su, P Yang. Risk factors, clinical features and treatment of Behcet's disease uveitis. Prog Retin Eye Res. 2023;97:101216.
27 Z Zhong, G Su, A Kijlstra, P Yang. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res. 2021;80:100866.
28 A Amadi-Obi, CR Yu, X Liu, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med. 2007;13(6):711-718.
29 X Peng, H Li, L Zhu, et al. Single-cell sequencing of the retina shows that LDHA regulates pathogenesis of autoimmune uveitis. J Autoimmun. 2023;143:103160.
30 N Shu, Z Zhang, X Wang, et al. Apigenin alleviates autoimmune uveitis by inhibiting microglia M1 pro-inflammatory polarization. Invest Ophthalmol Vis Sci. 2023;64(5):21.
31 J Meng, N Li, X Liu, et al. NLRP3 attenuates intraocular inflammation by inhibiting AIM2-Mediated pyroptosis through the phosphorylated salt-inducible kinase 1/sterol regulatory element binding transcription factor 1 pathway. Arthritis Rheumatol. 2023;75(5):842-855.
32 LB Ivashkiv. IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18(9):545-558.
33 B Chausse, PA Kakimoto, O Kann. Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol. 2021;112:137-144.
34 M Li, X Sun, J Zhao, et al. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell Mol Immunol. 2020;17(7):753-764.
35 PS Zeiner, C Preusse, AE Blank, et al. MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol. 2015;25(4):491-504.
36 RE Marques, R Guabiraba, RC Russo, MM Teixeira. Targeting CCL5 in inflammation. Expert Opin Ther Targets. 2013;17(12):1439-1460.
37 A Jucaite, P Svenningsson, JO Rinne, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson's disease. Brain. 2015;138(9):2687-2700.
38 L Zhang, H Zheng, R Wu, TR Kosten, XY Zhang, J Zhao. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia. Schizophr Res. 2019;212:92-98.
39 G Scott, H Zetterberg, A Jolly, et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain. 2018;141(2):459-471.
40 RK Agarwal, PB Silver, RR Caspi. Rodent models of experimental autoimmune uveitis. Methods Mol Biol. 2012;900:443-469.
41 L Tian, P Yang, B Lei, et al. AAV2-mediated subretinal gene transfer of hIFN-alpha attenuates experimental autoimmune uveoretinitis in mice. PLoS One. 2011;6(5):e19542.
42 O Butovsky, MP Jedrychowski, CS Moore, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131-143.
43 X Qiu, A Hill, J Packer, D Lin, YA Ma, C Trapnell. Single-cell mRNA quantification and differential analysis with census. Nat Methods. 2017;14(3):309-315.
44 G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-287.
PDF

Accesses

Citations

Detail

Sections
Recommended

/