Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions

Lu Zhao1, Haoran Hu1, Lin Zhang1, Zheting Liu1, Yunchao Huang1, Qian Liu2, Liang Jin1,3, Meifei Zhu4(), Ling Zhang1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (4) : e516. DOI: 10.1002/mco2.516
REVIEW

Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions

  • Lu Zhao1, Haoran Hu1, Lin Zhang1, Zheting Liu1, Yunchao Huang1, Qian Liu2, Liang Jin1,3, Meifei Zhu4(), Ling Zhang1()
Author information +
History +

Abstract

At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.

Keywords

diabetes complications / inflammation / molecular mechanisms / therapeutic interventions

Cite this article

Download citation ▾
Lu Zhao, Haoran Hu, Lin Zhang, Zheting Liu, Yunchao Huang, Qian Liu, Liang Jin, Meifei Zhu, Ling Zhang. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm, 2024, 5(4): e516 https://doi.org/10.1002/mco2.516

References

1 H Sun, P Saeedi, S Karuranga, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
2 LA DiMeglio, C Evans-Molina, RA Oram. Type 1 diabetes. Lancet. 2018;391(10138):2449-2462.
3 U Galicia-Garcia, A Benito-Vicente, S Jebari, et al. Pathophysiology of Type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275.
4 M Lotfy, J Adeghate, H Kalasz, J Singh, E Adeghate. Chronic complications of diabetes mellitus: a mini review. Curr Diabetes Rev. 2017;13(1):3-10.
5 R Pop-Busui, L Ang, C Holmes, K Gallagher, EL Feldman. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep. 2016;16(3):29.
6 Q Guo, Q Zhu, T Zhang, et al. Integrated bioinformatic analysis reveals immune molecular markers and potential drugs for diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:933635.
7 X Mou, DY Zhou, DY Zhou, et al. Serum TGF-β1 as a biomarker for type 2 diabetic nephropathy: a meta-analysis of randomized controlled trials. PLoS One. 2016;11(2):e0149513.
8 P Khaloo, R Qahremani, S Rabizadeh, et al. Nitric oxide and TNF-α are correlates of diabetic retinopathy independent of hs-CRP and HbA1c. Endocrine. 2020;69(3):536-541.
9 G Hussain, SA Rizvi, S Singhal, M Zubair, J Ahmad. Serum levels of TGF-β1 in patients of diabetic peripheral neuropathy and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes Metab Syndr. 2016;10(1 Suppl 1):S135-S139.
10 V Bonfiglio, CBM Platania, F Lazzara, et al. TGF-β serum levels in diabetic retinopathy patients and the role of anti-VEGF therapy. Int J Mol Sci. 2020;21(24):9558.
11 DI Kim, SH Park. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest. Biochem Biophys Res Commun. 2013;435(4):702-707.
12 A Blum, N Pastukh, D Socea, H Jabaly. Levels of adhesion molecules in peripheral blood correlat with stages of diabetic retinopathy and may serve as bio markers for microvascular complications. Cytokine. 2018;106:76-79.
13 Y Xu, H Hou, L Zhao. The role of VCAM-1 in diabetic retinopathy: a systematic review and meta-analysis. J Diabetes Complications. 2023;37(1):108380.
14 Z Meng, Y Chen, W Wu, et al. Exploring the immune infiltration landscape and M2 macrophage-related biomarkers of proliferative diabetic retinopathy. Front Endocrinol (Lausanne). 2022;13:841813.
15 N Lampiasi, R Russo, F Zito. The alternative faces of macrophage generate osteoclasts. Biomed Res Int. 2016;2016:9089610.
16 A Sica, A Mantovani. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787-795.
17 GJ Randolph. Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res. 2014;114(11):1757-1771.
18 I Elmadbouh, DK Singla. BMP-7 attenuates inflammation-induced pyroptosis and improves cardiac repair in diabetic cardiomyopathy. Cells. 2021;10(10):2640.
19 H Bugger, ED Abel. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57(4):660-671.
20 NC Bene, P Alcaide, HH Wortis, IZ Jaffe. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease. Steroids. 2014;91:38-45.
21 A Widiapradja, AO Kasparian, SL McCaffrey, et al. Replacement of lost substance P reduces fibrosis in the diabetic heart by preventing adverse fibroblast and macrophage phenotype changes. Cells. 2021;10(10):2659.
22 L Ji, Y Chen, H Wang, et al. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int J Oncol. 2019;55(1):103-115.
23 H You, T Gao, TK Cooper, W Brian Reeves, AS Awad. Macrophages directly mediate diabetic renal injury. Am J Physiol Renal Physiol. 2013;305(12):F1719-F1727.
24 J Liu, Y Zhang, H Sheng, et al. Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus. Front Immunol. 2021;12:733808.
25 M Fang, W Wan, Q Li, et al. Asiatic acid attenuates diabetic retinopathy through TLR4/MyD88/NF-κB p65 mediated modulation of microglia polarization. Life Sci. 2021;277:119567.
26 Y Wen, X Chen, H Feng, et al. Kdm6a deficiency in microglia/macrophages epigenetically silences Lcn2 expression and reduces photoreceptor dysfunction in diabetic retinopathy. Metabolism. 2022;136:155293.
27 B Fan, C Li, A Szalad, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia. 2020;63(2):431-443.
28 H Yang, T Xie, D Li, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Mol Metab. 2019;23:24-36.
29 G van Loo, MJM Bertrand. Death by TNF: a road to inflammation. Nat Rev Immunol. 2023;23(5):289-303.
30 R Saklani, SK Gupta, IR Mohanty, B Kumar, S Srivastava, R Mathur. Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem. 2016;420(1-2):65-72.
31 A Nelson, C Cunha, MI Nishimura, M Iwashima. Activated human Foxp3(+) regulatory T cells produce membrane-bound TNF. Cytokine. 2018;111:454-459.
32 GC Costa, TL Montagnoli, JS Da Silva, et al. New benzofuran N-acylhydrazone reduces cardiovascular dysfunction in obese rats by blocking TNF-alpha synthesis. Drug Des Devel Ther. 2020;14:3337-3350.
33 CH Lu, HC Ou, CH Day, et al. Deep sea minerals ameliorate diabetic-induced inflammation via inhibition of TNFα signaling pathways. Environ Toxicol. 2020;35(4):468-477.
34 B Yang, P Yan, H Gong, et al. TWEAK protects cardiomyocyte against apoptosis in a PI3K/AKT pathway dependent manner. Am J Transl Res. 2016;8(9):3848-3860.
35 IT Lampropoulou, M Stangou, A Papagianni, T Didangelos, F Iliadis, G Efstratiadis. TNF-α and microalbuminuria in patients with type 2 diabetes mellitus. J Diabetes Res. 2014;2014:394206.
36 AS Awad, H You, T Gao, et al. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney Int. 2015;88(4):722-733.
37 LE Nee, T McMorrow, E Campbell, C Slattery, MP Ryan. TNF-alpha and IL-1beta-mediated regulation of MMP-9 and TIMP-1 in renal proximal tubular cells. Kidney Int. 2004;66(4):1376-1386.
38 Y Liu, L Li, N Pan, et al. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy. Biochem Biophys Res Commun. 2021;561:143-150.
39 GN Costa, J Vindeirinho, C Cavadas, AF Ambrósio, PF Santos. Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Mol Cell Neurosci. 2012;50(1):113-123.
40 JA Portillo, JA Greene, G Okenka, et al. CD40 promotes the development of early diabetic retinopathy in mice. Diabetologia. 2014;57(10):2222-2231.
41 H Xu, Q Wang, Q Wang, et al. Clinical significance of apelin in the treatment of type 2 diabetic peripheral neuropathy. Medicine (Baltimore). 2021;100(17):e25710.
42 D Ristikj-Stomnaroska, V Risteska-Nejashmikj, M Papazova. Role of inflammation in the pathogenesis of diabetic peripheral neuropathy. Open Access Maced J Med Sci. 2019;7(14):2267-2270.
43 G Hussain, SA Rizvi, S Singhal, M Zubair, J Ahmad. Serum levels of TNF-α in peripheral neuropathy patients and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes Metab Syndr. 2013;7(4):238-242.
44 X Shi, Y Chen, L Nadeem, G Xu. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation. 2013;10:69.
45 Y Li, Y Zhang, DB Liu, HY Liu, WG Hou, YS Dong. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. Int J Med Sci. 2013;10(4):377-381.
46 F Magrinelli, C Briani, M Romano, et al. The association between serum cytokines and damage to large and small nerve fibers in diabetic peripheral neuropathy. J Diabetes Res. 2015;2015:547834.
47 A Roca-Rivada, S Marín-Ca?as, ML Colli, et al. Inhibition of the type 1 diabetes candidate gene PTPN2 aggravates TNF-α-induced human beta cell dysfunction and death. Diabetologia. 2023;66(8):1544-1556.
48 Y Zhang, JH Wang, YY Zhang, et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways. Sci Rep. 2016;6:23010.
49 CJ Chiang, YP Chao, A Ali, et al. Probiotic Escherichia coli Nissle inhibits IL-6 and MAPK-mediated cardiac hypertrophy during STZ-induced diabetes in rats. Benef Microbes. 2021;12(3):283-293.
50 LL Lehrskov, RH Christensen. The role of interleukin-6 in glucose homeostasis and lipid metabolism. Semin Immunopathol. 2019;41(4):491-499.
51 C Jia, H Chen, J Zhang, et al. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol. 2019;67:311-318.
52 C Peiró, ó Lorenzo, R Carraro, CF Sánchez-Ferrer. IL-1β inhibition in cardiovascular complications associated to diabetes mellitus. Front Pharmacol. 2017;8:363.
53 LC O'Brien, E Mezzaroma, BW Van Tassell, et al. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol Med. 2014;20(1):221-229.
54 AI Elneam, NM Mansour, NA Zaki, MA Taher. Serum interleukin-18 and its gene haplotypes profile as predictors in patients with diabetic nephropathy. Open Access Maced J Med Sci. 2016;4(3):324-328.
55 Y Yuan, L Li, X Wang, P Zhang, J Wang, Y Xiao. Correlation between plasma NLRP3, IL-1β, and IL-18 and diabetic nephropathy in patients with type 2 diabetes. Altern Ther Health Med. 2023;29(4):52-56.
56 T Fujita, N Ogihara, Y Kamura, et al. Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol. 2012;49(2):111-117.
57 H Yaribeygi, SL Atkin, A Sahebkar. Interleukin-18 and diabetic nephropathy: a review. J Cell Physiol. 2019;234(5):5674-5682.
58 HA Jo, JY Kim, SH Yang, et al. The role of local IL6/JAK2/STAT3 signaling in high glucose-induced podocyte hypertrophy. Kidney Res Clin Pract. 2016;35(4):212-218.
59 HL Kuo, CC Huang, TY Lin, CY Lin. IL-17 and CD40 ligand synergistically stimulate the chronicity of diabetic nephropathy. Nephrol Dial Transplant. 2018;33(2):248-256.
60 KH Kim, GL Hong, DY Jung, S Karunasagara, WI Jeong, JY Jung. IL-17 deficiency aggravates the streptozotocin-induced diabetic nephropathy through the reduction of autophagosome formation in mice. Mol Med. 2021;27(1):25.
61 DH Jo, JH Yun, CS Cho, JH Kim, JH Kim, CH Cho. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia. 2019;67(2):321-331.
62 AW Qiu, Z Bian, PA Mao, QH Liu. IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling. Exp Mol Med. 2016;48(12):e280.
63 AW Qiu, DR Huang, B Li, Y Fang, WW Zhang, QH Liu. IL-17A injury to retinal ganglion cells is mediated by retinal Müller cells in diabetic retinopathy. Cell Death Dis. 2021;12(11):1057.
64 SI Lindstrom, S Sigurdardottir, TE Zapadka, et al. Diabetes induces IL-17A-Act1-FADD-dependent retinal endothelial cell death and capillary degeneration. J Diabetes Complications. 2019;33(9):668-674.
65 Q Shi, Q Wang, Z Wang, J Lu, R Wang. Systemic inflammatory regulators and proliferative diabetic retinopathy: a bidirectional Mendelian randomization study. Front Immunol. 2023;14:1088778.
66 YL Shi, MY Shi, LZ Yin, JM Shang, JY Zhuang. IL-10 gene polymorphism in diabetic retinopathy. Eur Rev Med Pharmacol Sci. 2019;23(12):5059-5064.
67 JH Yun. Interleukin-1β induces pericyte apoptosis via the NF-κB pathway in diabetic retinopathy. Biochem Biophys Res Commun. 2021;546:46-53.
68 Z Song, M Sun, F Zhou, F Huang, J Qu, D Chen. Increased intravitreous interleukin-18 correlated to vascular endothelial growth factor in patients with active proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2014;252(8):1229-1234.
69 MA Cotter, TM Gibson, MR Nangle, NE Cameron. Effects of interleukin-6 treatment on neurovascular function, nerve perfusion and vascular endothelium in diabetic rats. Diabetes Obes Metab. 2010;12(8):689-699.
70 P Yang, Y Qin, C Bian, Y Zhao, W Zhang. Intrathecal delivery of IL-6 reactivates the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex after spinal cord injury. PLoS One. 2015;10(5):e0127772.
71 DS Skundric, R Dai, P Mataverde. IL-6 modulates hyperglycemia-induced changes of Na+ channel Beta-3 subunit expression by Schwann cells. Ann N Y Acad Sci. 2003;1005:233-236.
72 HC Lehmann, A H?ke. Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets. 2010;9(6):801-806.
73 Z Hangping, H Ling, J Lijin, et al. The preventive effect of IL-1beta antagonist on diabetic peripheral neuropathy. Endocr Metab Immune Disord Drug Targets. 2020;20(5):753-759.
74 J Diao, X Chen, L Jiang, P Mou, R Wei. Transforming growth factor-β1 suppress pentraxin-3 in human orbital fibroblasts. Endocrine. 2020;70(1):78-84.
75 S Meng, F Yang, Y Wang, et al. Silymarin ameliorates diabetic cardiomyopathy via inhibiting TGF-β1/Smad signaling. Cell Biol Int. 2019;43(1):65-72.
76 XR Huang, AC Chung, L Zhou, XJ Wang, HY Lan. Latent TGF-beta1 protects against crescentic glomerulonephritis. J Am Soc Nephrol. 2008;19(2):233-242.
77 GJ Dugbartey, QL Wonje, KK Alornyo, et al. Combination therapy of alpha-lipoic acid, gliclazide and ramipril protects against development of diabetic cardiomyopathy via inhibition of TGF-β/Smad pathway. Front Pharmacol. 2022;13:850542.
78 L Dong, JC Li, ZJ Hu, et al. Deletion of Smad3 protects against diabetic myocardiopathy in db/db mice. J Cell Mol Med. 2021;25(10):4860-4869.
79 M Ruiz-Ortega, S Rayego-Mateos, S Lamas, A Ortiz, RR Rodrigues-Diez. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16(5):269-288.
80 XM Meng, DJ Nikolic-Paterson, HY Lan. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325-338.
81 L Chen, T Yang, DW Lu, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother. 2018;101:670-681.
82 R Nadarajah, R Milagres, M Dilauro, et al. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int. 2012;82(3):292-303.
83 SC Shih, M Ju, N Liu, JR Mo, JJ Ney, LE Smith. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc Natl Acad Sci USA. 2003;100(26):15859-15864.
84 M Fràter-Schr?der, G Müller, W Birchmeier, P B?hlen. Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun. 1986;137(1):295-302.
85 S Serratì, F Margheri, M Pucci, et al. TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem Pharmacol. 2009;77(5):813-825.
86 J Fan, W Shen, SR Lee, et al. Targeting the Notch and TGF-β signaling pathways to prevent retinal fibrosis in vitro and in vivo. Theranostics. 2020;10(18):7956-7973.
87 RK Patel, N Prasad, R Kuwar, D Haldar, PM Abdul-Muneer. Transforming growth factor-beta 1 signaling regulates neuroinflammation and apoptosis in mild traumatic brain injury. Brain Behav Immun. 2017;64:244-258.
88 SV Suryavanshi, K Barve, V Addepalli, SV Utpat, YA Kulkarni. Triphala Churna—a traditional formulation in ayurveda mitigates diabetic neuropathy in rats. Front Pharmacol. 2021;12:662000.
89 MS Yin, YC Zhang, SH Xu, et al. Puerarin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of inflammation. J Asian Nat Prod Res. 2019;21(5):476-493.
90 H Haller, A Bertram, F Nadrowitz, J Menne. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens. 2016;25(1):42-49.
91 SV Suryavanshi, YA Kulkarni. Abrogation of cardiomyopathy in diabetic rats by escin - possible role of NF-κβ and MCP-1. Arch Physiol Biochem. 2024;130(1):49-55.
92 H Miao, X Li, C Zhou, Y Liang, D Li, Q Ji. NR4A2 alleviates cardiomyocyte loss and myocardial injury in rats by transcriptionally suppressing CCR5 and inducing M2 polarization of macrophages. Microvasc Res. 2022;140:104279.
93 PY Chu, K Walder, D Horlock, et al. CXCR4 antagonism attenuates the development of diabetic cardiac fibrosis. PLoS One. 2015;10(7):e0133616.
94 X Tan, L Hu, Z Shu, et al. Role of CCR2 in the development of streptozotocin-treated diabetic cardiomyopathy. Diabetes. 2019;68(11):2063-2073.
95 TA Alghamdi, SN Batchu, MJ Hadden, et al. Histone H3 serine 10 phosphorylation facilitates endothelial activation in diabetic kidney disease. Diabetes. 2018;67(12):2668-2681.
96 J Yu, H Wu, ZY Liu, Q Zhu, C Shan, KQ Zhang. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med. 2017;40(4):1185-1193.
97 FS Siddiqi, LH Chen, SL Advani, et al. CXCR4 promotes renal tubular cell survival in male diabetic rats: implications for ligand inactivation in the human kidney. Endocrinology. 2015;156(3):1121-1132.
98 Y Zhang, K Thai, DM Kepecs, D Winer, RE Gilbert. Reversing CXCL10 deficiency ameliorates kidney disease in diabetic mice. Am J Pathol. 2018;188(12):2763-2773.
99 Y Liu, Z Yang, P Lai, et al. Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy. Theranostics. 2020;10(9):4250-4264.
100 F Monickaraj, G Acosta, AP Cabrera, A Das. Transcriptomic profiling reveals chemokine CXCL1 as a mediator for neutrophil recruitment associated with blood-retinal barrier alteration in diabetic retinopathy. Diabetes. 2023;72(6):781-794.
101 F Monickaraj, SR Oruganti, P McGuire, A Das. A potential novel therapeutic target in diabetic retinopathy: a chemokine receptor (CCR2/CCR5) inhibitor reduces retinal vascular leakage in an animal model. Graefes Arch Clin Exp Ophthalmol. 2021;259(1):93-100.
102 N Dong, L Chang, B Wang, L Chu. Retinal neuronal MCP-1 induced by AGEs stimulates TNF-α expression in rat microglia via p38, ERK, and NF-κB pathways. Mol Vis. 2014;20:616-628.
103 Y Zhang, C Li, Z Wang, T Wang, Y Zhou, L Zheng. Blocking CXC motif chemokine ligand 2 ameliorates diabetic peripheral neuropathy via inhibiting apoptosis and NLRP3 inflammasome activation. Biol Pharm Bull. 2023;46(5):672-683.
104 DM Menichella, B Abdelhak, D Ren, A Shum, C Frietag, RJ Miller. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy. Mol Pain. 2014;10:42.
105 ZH Song, XJ Song, CL Yang, et al. Up-regulation of microglial chemokine CXCL12 in anterior cingulate cortex mediates neuropathic pain in diabetic mice. Acta Pharmacol Sin. 2023;44(7):1337-1349.
106 J Bogacka, K Ciapa?a, K Pawlik, J Dobrogowski, A Przeklasa-Muszynska, J Mika. Blockade of CCR4 diminishes hypersensitivity and enhances opioid analgesia - evidence from a mouse model of diabetic neuropathy. Neuroscience. 2020;441:77-92.
107 W Tang, Q Lv, XF Chen, JJ Zou, ZM Liu, YQ Shi. CD8(+) T cell-mediated cytotoxicity toward Schwann cells promotes diabetic peripheral neuropathy. Cell Physiol Biochem. 2013;32(4):827-837.
108 M Zychowska, E Rojewska, D Pilat, J Mika. The role of some chemokines from the CXC subfamily in a mouse model of diabetic neuropathy. J Diabetes Res. 2015;2015:750182.
109 HE Lebovitz. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S135-S148.
110 N Matulewicz, M Karczewska-Kupczewska. Insulin resistance and chronic inflammation. Postepy Hig Med Dosw (Online). 2016;70(0):1245-1258.
111 C Wang, Z Chen, S Li, et al. Hepatic overexpression of ATP synthase β subunit activates PI3K/Akt pathway to ameliorate hyperglycemia of diabetic mice. Diabetes. 2014;63(3):947-959.
112 Y Zhao, Z Tang, X Zhu, et al. TAB3 involves in hepatic insulin resistance through activation of MAPK pathway. Gen Comp Endocrinol. 2015;224:228-234.
113 B Sun, J Zhou, Y Gao, et al. Fas-associated factor 1 promotes hepatic insulin resistance via JNK signaling pathway. Oxid Med Cell Longev. 2021;2021:3756925.
114 YJ Heo, SE Choi, JY Jeon, et al. Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes. J Diabetes Res. 2019;2019:4021623.
115 A Li, C Lin, F Xie, M Jin, F Lin. Berberine ameliorates insulin resistance by inhibiting IKK/NF-κB, JNK, and IRS-1/AKT signaling pathway in liver of gestational diabetes mellitus rats. Metab Syndr Relat Disord. 2022;20(8):480-488.
116 P Li, DY Oh, G Bandyopadhyay, et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med. 2015;21(3):239-247.
117 HY Bako, MA Ibrahim, MS Isah, S Ibrahim. Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes. Life Sci. 2019;239:117045.
118 C Luo, H Yang, C Tang, et al. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol. 2015;28(1):744-750.
119 R Song, X Zhao, R Cao, Y Liang, DQ Zhang, R Wang. Irisin improves insulin resistance by inhibiting autophagy through the PI3K/Akt pathway in H9c2 cells. Gene. 2021;769:145209.
120 Z Gao, Y Ti, B Lu, et al. STAMP2 attenuates cardiac dysfunction and insulin resistance in diabetic cardiomyopathy via NMRAL1-mediated NF-κB inhibition in Type 2 diabetic rats. Diabetes Metab Syndr Obes. 2022;15:3219-3229.
121 N Hu, M Dong, J Ren. Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance: role of mitochondrial injury and apoptosis. Am J Physiol Regul Integr Comp Physiol. 2014;306(10):R761-R771.
122 Q Wang, J Ren. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1. Pharmacol Res. 2016;111:357-373.
123 Y Wang, DW Cao, YG Wan, et al. Effects and mechanisms of total flavones of Abelmoschus manihot in improving insulin resistance and podocyte epithelial-mesenchymal transition in diabetic kidney disease based on IRS1/PI3K/Akt pathway. Zhongguo Zhong Yao Za Zhi. 2023;48(10):2646-2656.
124 G Canaud, F Bienaimé, A Viau, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med. 2013;19(10):1288-1296.
125 J Lu, PP Chen, JX Zhang, et al. GPR43 deficiency protects against podocyte insulin resistance in diabetic nephropathy through the restoration of AMPKα activity. Theranostics. 2021;11(10):4728-4742.
126 OV Leontieva, ZN Demidenko, MV Blagosklonny. Rapamycin reverses insulin resistance (IR) in high-glucose medium without causing IR in normoglycemic medium. Cell Death Dis. 2014;5(5):e1214.
127 WP Miller, S Ravi, TD Martin, SR Kimball, MD Dennis. Activation of the stress response kinase JNK (c-Jun N-terminal Kinase) attenuates insulin action in retina through a p70S6K1-dependent mechanism. J Biol Chem. 2017;292(5):1591-1602.
128 YN Cho, KO Lee, J Jeong, et al. The role of insulin resistance in diabetic neuropathy in Koreans with type 2 diabetes mellitus: a 6-year follow-up study. Yonsei Med J. 2014;55(3):700-708.
129 YC Cheng, YM Chiu, ZK Dai, BN Wu. Loganin ameliorates painful diabetic neuropathy by modulating oxidative stress, inflammation and insulin sensitivity in streptozotocin-nicotinamide-induced diabetic rats. Cells. 2021;10(10):2688.
130 CW Grote, JK Morris, JM Ryals, PC Geiger, DE Wright. Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. Exp Diabetes Res. 2011;2011:212571.
131 MSH Akash, K Rehman, A Liaqat. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105-110.
132 S Fernández-Veledo, R Vila-Bedmar, I Nieto-Vazquez, M Lorenzo. c-Jun N-terminal kinase 1/2 activation by tumor necrosis factor-alpha induces insulin resistance in human visceral but not subcutaneous adipocytes: reversal by liver X receptor agonists. J Clin Endocrinol Metab. 2009;94(9):3583-3593.
133 RW Grant, VD Dixit. Mechanisms of disease: inflammasome activation and the development of type 2 diabetes. Front Immunol. 2013;4:50.
134 YH Youm, A Adijiang, B Vandanmagsar, D Burk, A Ravussin, VD Dixit. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology. 2011;152(11):4039-4045.
135 FT Moshapa, K Riches-Suman, TM Palmer. Therapeutic targeting of the proinflammatory IL-6-JAK/STAT signalling pathways responsible for vascular restenosis in type 2 diabetes mellitus. Cardiol Res Pract. 2019;2019:9846312.
136 WT Peppler, LK Townsend, GM Meers, et al. Acute administration of IL-6 improves indices of hepatic glucose and insulin homeostasis in lean and obese mice. Am J Physiol Gastrointest Liver Physiol. 2019;316(1):G166-G178.
137 LA Zú?iga, WJ Shen, B Joyce-Shaikh, et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol. 2010;185(11):6947-6959.
138 E Dalmas, FM Lehmann, E Dror, et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity. 2017;47(5):928-942.e7.
139 CP Yang, MY Shiau, YR Lai, et al. Interleukin-4 boosts insulin-induced energy deposits by enhancing glucose uptake and lipogenesis in hepatocytes. Oxid Med Cell Longev. 2018;2018:6923187.
140 HJ Hwang, TW Jung, BH Kim, et al. A dipeptidyl peptidase-IV inhibitor improves hepatic steatosis and insulin resistance by AMPK-dependent and JNK-dependent inhibition of LECT2 expression. Biochem Pharmacol. 2015;98(1):157-166.
141 H Kanda, S Tateya, Y Tamori, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494-1505.
142 B Luo, B Li, W Wang, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 2014;9(8):e104771.
143 M Yang, S Qiu, Y He, et al. Genetic ablation of C-reactive protein gene confers resistance to obesity and insulin resistance in rats. Diabetologia. 2021;64(5):1169-1183.
144 J Liu, D Ibi, K Taniguchi, et al. Inflammation improves glucose homeostasis through IKKβ-XBP1s interaction. Cell. 2016;167(4):1052-1066.e18.
145 Y Lu, W Wang, J Liu, M Xie, Q Liu, S Li. Vascular complications of diabetes: a narrative review. Medicine (Baltimore). 2023;102(40):e35285.
146 RMM Khan, ZJY Chua, JC Tan, Y Yang, Z Liao, Y Zhao. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina (Kaunas). 2019;55(9):546.
147 E Lontchi-Yimagou, E Sobngwi, TE Matsha, AP Kengne. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435-444.
148 V Mollace, M Gliozzi, V Musolino, et al. Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression. Int J Cardiol. 2015;184:152-158.
149 A Migdalski, A Jawien. New insight into biology, molecular diagnostics and treatment options of unstable carotid atherosclerotic plaque: a narrative review. Ann Transl Med. 2021;9(14):1207.
150 X Gao, J Song, H Watase, et al. Differences in carotid plaques between symptomatic patients with and without diabetes mellitus. Arterioscler Thromb Vasc Biol. 2019;39(6):1234-1239.
151 K Karstoft, BK Pedersen. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol. 2016;94(2):146-150.
152 JJ Park. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes. Diabetes Metab J. 2021;45(2):146-157.
153 L Zhang, C Ai, M Bai, J Niu, Z Zhang. NLRP3 inflammasome/pyroptosis: a key driving force in diabetic cardiomyopathy. Int J Mol Sci. 2022;23(18):10632.
154 S Lim, ME Lee, J Jeong, et al. sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation. Inflamm Res. 2018;67(8):691-701.
155 X Zhang, Y Fu, H Li, et al. H3 relaxin inhibits the collagen synthesis via ROS- and P2×7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose. J Cell Mol Med. 2018;22(3):1816-1825.
156 QY Lin, PP Lang, YL Zhang, et al. Pharmacological blockage of ICAM-1 improves angiotensin II-induced cardiac remodeling by inhibiting adhesion of LFA-1(+) monocytes. Am J Physiol Heart Circ Physiol. 2019;317(6):H1301-H1311.
157 Y Wang, Y Cui, F Cao, Y Qin, W Li, J Zhang. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4. Int Immunopharmacol. 2015;28(1):136-145.
158 TM Ali, OM Abo-Salem, BH El Esawy, A El Askary. The potential protective effects of diosmin on streptozotocin-induced diabetic cardiomyopathy in rats. Am J Med Sci. 2020;359(1):32-41.
159 J Li, C Xie, J Zhuang, et al. Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: role of the TLR4/NF-κB signaling pathway. Mol Med Rep. 2015;11(2):1120-1126.
160 Y Zhang, Y Li, X Huang, et al. Systemic delivery of siRNA specific for silencing TLR4 gene expression reduces diabetic cardiomyopathy in a mouse model of streptozotocin-induced type 1 diabetes. Diabetes Ther. 2020;11(5):1161-1173.
161 Y Zhang, Y Zhang. Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway. Biochem Biophys Res Commun. 2016;473(2):388-395.
162 L Li, W Luo, Y Qian, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine. 2019;59:152774.
163 H Yu, J Zhen, Y Yang, J Gu, S Wu, Q Liu. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J Cell Mol Med. 2016;20(4):623-631.
164 H Song, M Wohltmann, M Tan, S Bao, JH Ladenson, J Turk. Group VIA PLA2 (iPLA2β) is activated upstream of p38 mitogen-activated protein kinase (MAPK) in pancreatic islet β-cell signaling. J Biol Chem. 2012;287(8):5528-5541.
165 Y Pan, Y Wang, Y Zhao, et al. Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes. 2014;63(10):3497-3511.
166 J Zhuang, Y Song, Y Ye, et al. PYCR1 interference inhibits cell growth and survival via c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathway in hepatocellular cancer. J Transl Med. 2019;17(1):343.
167 L Gui, F Wang, X Hu, et al. Epigallocatechin gallate protects diabetes mellitus rats complicated with cardiomyopathy through TGF-β1/JNK signaling pathway. Curr Pharm Des. 2022;28(33):2758-2770.
168 H Hara, K Tsuchiya, I Kawamura, et al. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol. 2013;14(12):1247-1255.
169 BK Kim, HY Tran, EJ Shin, et al. IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell Signal. 2013;25(6):1348-1360.
170 EM Abdelsamia, SA Khaleel, A Balah, NA Abdel Baky. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed Pharmacother. 2019;109:2136-2144.
171 L Wang, J Li, D Li. Losartan reduces myocardial interstitial fibrosis in diabetic cardiomyopathy rats by inhibiting JAK/STAT signaling pathway. Int J Clin Exp Pathol. 2015;8(1):466-473.
172 Y Luan, C Sun, J Wang, et al. Baicalin attenuates myocardial ischemia-reperfusion injury through Akt/NF-κB pathway. J Cell Biochem. 2019;120(3):3212-3219.
173 NM Selby, MW Taal. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(Suppl 1):3-15.
174 RZ Alicic, MT Rooney, KR Tuttle. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032-2045.
175 DP Basile, JA Collett, MC Yoder. Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf). 2018;222(2).
176 X Li, Y Zhang, X Xing, et al. Podocyte injury of diabetic nephropathy: novel mechanism discovery and therapeutic prospects. Biomed Pharmacother. 2023;168:115670.
177 M Wu, W Han, S Song, et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol. 2018;478:115-125.
178 Y Hou, S Lin, J Qiu, et al. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun. 2020;521(3):791-798.
179 X An, Y Zhang, Y Cao, J Chen, H Qin, L Yang. Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients. 2020;12(5):1516.
180 H Xiao, X Sun, R Liu, et al. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res. 2020;151:104559.
181 F Li, Y Chen, Y Li, M Huang, W Zhao. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur J Pharmacol. 2020;886:173449.
182 I Jialal, AM Major, S Devaraj. Global Toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis and podocytopathy. J Diabetes Complications. 2014;28(6):755-761.
183 J Ma, SJ Chadban, CY Zhao, et al. TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLoS One. 2014;9(5):e97985.
184 Y Pan, X Zhang, Y Wang, et al. Targeting JNK by a new curcumin analog to inhibit NF-kB-mediated expression of cell adhesion molecules attenuates renal macrophage infiltration and injury in diabetic mice. PLoS One. 2013;8(11):e79084.
185 H Lian, Y Cheng, X Wu. TMEM16A exacerbates renal injury by activating P38/JNK signaling pathway to promote podocyte apoptosis in diabetic nephropathy mice. Biochem Biophys Res Commun. 2017;487(2):201-208.
186 MY Sun, SJ Wang, XQ Li, et al. CXCL6 promotes renal interstitial fibrosis in diabetic nephropathy by activating JAK/STAT3 signaling pathway. Front Pharmacol. 2019;10:224.
187 L Lei, J Zhao, XQ Liu, et al. Wogonin alleviates kidney tubular epithelial injury in diabetic nephropathy by inhibiting PI3K/Akt/NF-κB signaling pathways. Drug Des Devel Ther. 2021;15:3131-3150.
188 K Taniguchi, L Xia, HJ Goldberg, et al. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes. 2013;62(11):3874-3886.
189 Y Liu. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684-696.
190 H Fu, S Liu, SI Bastacky, X Wang, XJ Tian, D Zhou. Diabetic kidney diseases revisited: a new perspective for a new era. Mol Metab. 2019;30:250-263.
191 X Qian, L He, M Hao, et al. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol. 2021;58(1):47-62.
192 EJ Seo, JA Choi, JY Koh, YH Yoon. Aflibercept ameliorates retinal pericyte loss and restores perfusion in streptozotocin-induced diabetic mice. BMJ Open Diabetes Res Care. 2020;8(1):e001278.
193 T Omae, T Nagaoka, A Yoshida. Relationship between retinal blood flow and serum adiponectin concentrations in patients with type 2 diabetes mellitus. Invest Ophthalmol Vis Sci. 2015;56(6):4143-4149.
194 A Kanda, Y Dong, K Noda, W Saito, S Ishida. Advanced glycation endproducts link inflammatory cues to upregulation of galectin-1 in diabetic retinopathy. Sci Rep. 2017;7(1):16168.
195 KS Kim, JM Park, T Kong, et al. Retinal angiogenesis effects of TGF-β1 and paracrine factors secreted from human placental stem cells in response to a pathological environment. Cell Transplant. 2016;25(6):1145-1157.
196 SJ Hwang, BJ Ahn, MW Shin, et al. miR-125a-5p attenuates macrophage-mediated vascular dysfunction by targeting Ninjurin1. Cell Death Differ. 2022;29(6):1199-1210.
197 SS Chaurasia, RR Lim, BH Parikh, et al. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Sci Rep. 2018;8(1):2847.
198 J Gan, M Huang, G Lan, L Liu, F Xu. High glucose induces the loss of retinal pericytes partly via NLRP3-caspase-1-GSDMD-mediated pyroptosis. Biomed Res Int. 2020;2020:4510628.
199 J Li, S Yu, X Lu, et al. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res. 2021;70(2):183-192.
200 YN Zhu, GJ Zuo, Q Wang, XM Chen, JK Cheng, S Zhang. The involvement of the mGluR5-mediated JNK signaling pathway in rats with diabetic retinopathy. Int Ophthalmol. 2019;39(10):2223-2235.
201 L Tang, C Zhang, L Lu, et al. Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 2022;13:831660.
202 K Bora, N Kushwah, M Maurya, MC Pavlovich, Z Wang, J Chen. Assessment of inner blood-retinal barrier: animal models and methods. Cells. 2023;12(20):2443.
203 SJ Kim, WS Yoo, M Choi, I Chung, JM Yoo, WS Choi. Increased O-GlcNAcylation of NF-κB enhances retinal ganglion cell death in streptozotocin-induced diabetic retinopathy. Curr Eye Res. 2016;41(2):249-257.
204 M Guma, J Rius, KX Duong-Polk, GG Haddad, JD Lindsey, M Karin. Genetic and pharmacological inhibition of JNK ameliorates hypoxia-induced retinopathy through interference with VEGF expression. Proc Natl Acad Sci USA. 2009;106(21):8760-8765.
205 Y Fang, K Shi, H Lu, L Lu, B Qiu. Mingmu xiaomeng tablets restore autophagy and alleviate diabetic retinopathy by inhibiting PI3K/Akt/mTOR signaling. Front Pharmacol. 2021;12:632040.
206 Y He, Y Dan, X Gao, L Huang, H Lv, J Chen. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am J Physiol Endocrinol Metab. 2021;320(3):E598-E608.
207 YC Cheng, LW Chu, JY Chen, et al. Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation. Cells. 2020;9(9):1948.
208 Y Kanazawa, J Takahashi-Fujigasaki, S Ishizawa, et al. The Rho-kinase inhibitor fasudil restores normal motor nerve conduction velocity in diabetic rats by assuring the proper localization of adhesion-related molecules in myelinating Schwann cells. Exp Neurol. 2013;247:438-446.
209 XS Liu, B Fan, A Szalad, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in Type 2 diabetic mice. Diabetes. 2017;66(12):3111-3121.
210 A Saleh, SK Roy Chowdhury, DR Smith, et al. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology. 2013;65:65-73.
211 S Elzinga, BJ Murdock, K Guo, et al. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol. 2019;320:112967.
212 MR Dasu, S Ramirez, RR Isseroff. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci (Lond). 2012;122(5):203-214.
213 L Jia, L Wang, M Chopp, Y Zhang, A Szalad, ZG Zhang. MicroRNA 146a locally mediates distal axonal growth of dorsal root ganglia neurons under high glucose and sildenafil conditions. Neuroscience. 2016;329:43-53.
214 B Zhao, Q Zhang, X Liang, J Xie, Q Sun. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway. Eur J Pharmacol. 2021;912:174607.
215 QQ Wang, C Zhai, A Wahafu, YT Zhu, YH Liu, LQ Sun. Salvianolic acid B inhibits the development of diabetic peripheral neuropathy by suppressing autophagy and apoptosis. J Pharm Pharmacol. 2019;71(3):417-428.
216 R Li, Y Li, Y Wu, et al. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats. Biomaterials. 2018;168:24-37.
217 X Zhang, Z Liang, Y Zhou, et al. Artesunate inhibits apoptosis and promotes survival in schwann cells via the PI3K/AKT/mTOR axis in diabetic peripheral neuropathy. Biol Pharm Bull. 2023;46(6):764-772.
218 GC Zhu, YW Chen, KL Tsai, JJ Wang, CH Hung, AB Schmid. Effects of neural mobilization on sensory dysfunction and peripheral nerve degeneration in rats with painful diabetic neuropathy. Phys Ther. 2022;102(10):pzac104.
219 G Orlando, S Balducci, AJM Boulton, H Degens, ND Reeves. Neuromuscular dysfunction and exercise training in people with diabetic peripheral neuropathy: A narrative review. Diabetes Res Clin Pract. 2022;183:109183.
220 W Chen, X Wang, Q Sun, et al. The upregulation of NLRP3 inflammasome in dorsal root ganglion by ten-eleven translocation methylcytosine dioxygenase 2 (TET2) contributed to diabetic neuropathic pain in mice. J Neuroinflammation. 2022;19(1):302.
221 Q Sun, C Wang, B Yan, et al. Jinmaitong ameliorates diabetic peripheral neuropathy through suppressing TXNIP/NLRP3 inflammasome activation in the streptozotocin-induced diabetic rat model. Diabetes Metab Syndr Obes. 2019;12:2145-2155.
222 L Chen, H Wang, J Xing, et al. Silencing P2×7R alleviates diabetic neuropathic pain involving TRPV1 via PKCε/P38MAPK/NF-κB signaling pathway in rats. Int J Mol Sci. 2022;23(22):14141.
223 B Wang, J Yao, X Yao, et al. Swertiamarin alleviates diabetic peripheral neuropathy in rats by suppressing NOXS/ROS/NLRP3 signal pathway. Nan Fang Yi Ke Da Xue Xue Bao. 2021;41(6):937-941.
224 Y Wu, Y Gu, B Shi. miR-590-3p Alleviates diabetic peripheral neuropathic pain by targeting RAP1A and suppressing infiltration by the T cells. Acta Biochim Pol. 2020;67(4):587-593.
225 A Fleischman, SE Shoelson, R Bernier, AB Goldfine. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31(2):289-294.
226 L Bowman, M Mafham, K Wallendszus, et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018;379(16):1529-1539.
227 D Tripathy, P Mohanty, S Dhindsa, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52(12):2882-2887.
228 AB Goldfine, V Fonseca, KA Jablonski, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159(1):1-12.
229 AM Pereira Arias, PH Bisschop, MT Ackermans, E Endert, JA Romijn, HP Sauerwein. Indomethacin does not affect endogenous glucose production in type 2 diabetes mellitus. Horm Metab Res. 2001;33(11):659-663.
230 S Rudberg, G S?tterstr?m, R Dahlqvist, G Dahlquist. Indomethacin but not metoprolol reduces exercise-induced albumin excretion rate in type 1 diabetic patients with microalbuminuria. Diabet Med. 1993;10(5):460-464.
231 V Vuletic, I Drenjancevic, D Rahelic, V Demarin. Effect of indomethacin on cerebrovascular reactivity in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2013;101(1):81-87.
232 EY Chew, J Kim, HR Coleman, et al. Preliminary assessment of celecoxib and microdiode pulse laser treatment of diabetic macular edema. Retina. 2010;30(3):459-467.
233 K Yasuda, R Motohashi, O Kotake, H Nakagawa, H Noma, M Shimura. Comparative effects of topical diclofenac and betamethasone on inflammation after vitrectomy and cataract surgery in various vitreoretinal diseases. J Ocul Pharmacol Ther. 2016;32(10):677-684.
234 PA Zakrzewski, HL O'Donnell, WC Lam. Oral versus topical diclofenac for pain prevention during panretinal photocoagulation. Ophthalmology. 2009;116(6):1168-1174.
235 M Shimura, T Nakazawa, K Yasuda, K Nishida. Diclofenac prevents an early event of macular thickening after cataract surgery in patients with diabetes. J Ocul Pharmacol Ther. 2007;23(3):284-291.
236 M Adibian, H Hodaei, O Nikpayam, G Sohrab, A Hekmatdoost, M Hedayati. The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Phytother Res. 2019;33(5):1374-1383.
237 S Chuengsamarn, S Rattanamongkolgul, R Luechapudiporn, C Phisalaphong, S Jirawatnotai. Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 2012;35(11):2121-2127.
238 B Keymeulen, A van Maurik, D Inman, et al. A randomised, single-blind, placebo-controlled, dose-finding safety and tolerability study of the anti-CD3 monoclonal antibody otelixizumab in new-onset type 1 diabetes. Diabetologia. 2021;64(2):313-324.
239 G Hale, P Rebello, I Al Bakir, et al. Pharmacokinetics and antibody responses to the CD3 antibody otelixizumab used in the treatment of type 1 diabetes. J Clin Pharmacol. 2010;50(11):1238-1248.
240 X Wang, H Huang, C Su, Q Zhong, G Wu. Cilostazol ameliorates high free fatty acid (FFA)-induced activation of NLRP3 inflammasome in human vascular endothelial cells. Artif Cells Nanomed Biotechnol. 2019;47(1):3704-3710.
241 PS Linsley, CJ Greenbaum, M Rosasco, S Presnell, KC Herold, MJ Dufort. Elevated T cell levels in peripheral blood predict poor clinical response following rituximab treatment in new-onset type 1 diabetes. Genes Immun. 2019;20(4):293-307.
242 JL Kroll, C Beam, S Li, et al. Reactivation of latent viruses in individuals receiving rituximab for new onset type 1 diabetes. J Clin Virol. 2013;57(2):115-119.
243 KH Kim, YT Jeong, H Oh, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2013;19(1):83-92.
244 F Ebrahimi, SA Urwyler, MJ Betz, et al. Effects of interleukin-1 antagonism and corticosteroids on fibroblast growth factor-21 in patients with metabolic syndrome. Sci Rep. 2021;11(1):7911.
245 RB Cunha, RC Siqueira, A Messias, et al. Safety and feasibility of a novel 25-gauge biodegradable implant of dexamethasone for treatment of macular edema associated with retinal vein occlusion: a phase i clinical trial. Retin Cases Brief Rep. 2018;12(1):50-58.
246 JA Polderman, V Farhang-Razi, S Van Dieren, et al. Adverse side effects of dexamethasone in surgical patients. Cochrane Database Syst Rev. 2018;11(11):Cd011940.
247 L Gether, H Storgaard, S Kezic, et al. Effects of topical corticosteroid versus tacrolimus on insulin sensitivity and bone homeostasis in adults with atopic dermatitis-A randomized controlled study. Allergy. 2023;78(7):1964-1979.
248 J Silverstein, N Maclaren, W Riley, R Spillar, D Radjenovic, S Johnson. Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med. 1988;319(10):599-604.
249 MT Falta, MA Atkinson, M Allegretta, PM Vacek, RJ Albertini. Azathioprine associated T-cell mutations in insulin-dependent diabetes mellitus. Scand J Immunol. 2000;51(6):626-633.
250 WE Russell, BN Bundy, MS Anderson, et al. Abatacept for delay of type 1 diabetes progression in stage 1 relatives at risk: a randomized, double-masked, controlled trial. Diabetes Care. 2023;46(5):1005-1013.
251 T Orban, CA Beam, P Xu, et al. Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline. Diabetes. 2014;63(10):3449-3457.
252 JE Tooley, N Vudattu, J Choi, et al. Changes in T-cell subsets identify responders to FcR-nonbinding anti-CD3 mAb (teplizumab) in patients with type 1 diabetes. Eur J Immunol. 2016;46(1):230-241.
253 SA Long, J Thorpe, KC Herold, et al. Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes. Cell Immunol. 2017;319:3-9.
254 EL Ramos, CM Dayan, L Chatenoud, et al. Teplizumab and β-cell function in newly diagnosed type 1 diabetes. N Engl J Med. 2023;389(23):2151-2161.
255 S Shahidi, E Kabiri Naeini, S Mazaheri-Tehrani. Cilostazol-induced acute kidney injury in a patient with diabetic foot ulcer: a case report and review of literature. Iran J Kidney Dis. 2022;16(5):311-314.
256 P Monti, M Scirpoli, P Maffi, et al. Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+FOXP3+ regulatory T-cells. Diabetes. 2008;57(9):2341-2347.
257 SA Long, M Rieck, S Sanda, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes. 2012;61(9):2340-2348.
258 RC Sagar, KM Naseem, RA Ajjan. Antiplatelet therapies in diabetes. Diabet Med. 2020;37(5):726-734.
259 DS Bell. Aspirin in the prevention of cardiovascular events in patients with diabetes. Postgrad Med. 2016;128(2):180-190.
260 LR Lopez, KE Guyer, IG Torre, KR Pitts, E Matsuura, PR Ames. Platelet thromboxane (11-dehydro-Thromboxane B2) and aspirin response in patients with diabetes and coronary artery disease. World J Diabetes. 2014;5(2):115-127.
261 M Wronka, J Krzemińska, E M?ynarska, J Rysz, B Franczyk. The influence of lifestyle and treatment on oxidative stress and inflammation in diabetes. Int J Mol Sci. 2022;23(24):15743.
262 5. Lifestyle management: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S46-S60.
263 NP Kadoglou, F Iliadis, N Angelopoulou, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil. 2007;14(6):837-843.
264 S Hu, Y Hu, P Long, P Li, P Chen, X Wang. The effect of tai chi intervention on NLRP3 and its related antiviral inflammatory factors in the serum of patients with pre-diabetes. Front Immunol. 2022;13:1026509.
265 T Zhang, J Tian, J Fan, X Liu, R Wang. Exercise training-attenuated insulin resistance and liver injury in elderly pre-diabetic patients correlates with NLRP3 inflammasome. Front Immunol. 2023;14:1082050.
266 C Durrer, M Francois, H Neudorf, JP Little. Acute high-intensity interval exercise reduces human monocyte Toll-like receptor 2 expression in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):R529-R538.
267 JP Magalh?es, DA Santos, IR Correia, et al. Impact of combined training with different exercise intensities on inflammatory and lipid markers in type 2 diabetes: a secondary analysis from a 1-year randomized controlled trial. Cardiovasc Diabetol. 2020;19(1):169.
268 A Habibi, A Taheri, S Habibi. Attenuation of some inflammatory markers by endurance training in the spinal cord of rats with diabetic neuropathic pain. Contrast Media Mol Imaging. 2022;2022:6551358.
269 M O'Hearn, L Lara-Castor, F Cudhea, et al. Incident type 2 diabetes attributable to suboptimal diet in 184 countries. Nat Med. 2023;29(4):982-995.
270 SA Mason, MA Keske, GD Wadley. Effects of vitamin C supplementation on glycemic control and cardiovascular risk factors in people with type 2 diabetes: a GRADE-assessed systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2021;44(2):618-630.
271 F Dashti, SM Mousavi, B Larijani, A Esmaillzadeh. The effects of vitamin D supplementation on inflammatory biomarkers in patients with abnormal glucose homeostasis: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2021;170:105727.
272 VD de Mello, U Schwab, M Kolehmainen, et al. A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: the Sysdimet study. Diabetologia. 2011;54(11):2755-2767.
273 L Jonasson, H Guldbrand, AK Lundberg, FH Nystrom. Advice to follow a low-carbohydrate diet has a favourable impact on low-grade inflammation in type 2 diabetes compared with advice to follow a low-fat diet. Ann Med. 2014;46(3):182-187.
274 HM Roager, JK Vogt, M Kristensen, et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut. 2019;68(1):83-93.
275 JF Liu, YH Liu, CM Chen, WH Chang, CY Chen. The effect of almonds on inflammation and oxidative stress in Chinese patients with type 2 diabetes mellitus: a randomized crossover controlled feeding trial. Eur J Nutr. 2013;52(3):927-935.
276 M Mazidi, H Vatanparast, N Katsiki, M Banach. The impact of nuts consumption on glucose/insulin homeostasis and inflammation markers mediated by adiposity factors among American adults. Oncotarget. 2018;9(58):31173-31186.
277 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13-S28.
278 DL Eizirik, L Pasquali, M Cnop. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16(7):349-362.
279 R Ruze, T Liu, X Zou, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne). 2023;14:1161521.
280 X Wen, B Zhang, B Wu, et al. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):298.
PDF

Accesses

Citations

Detail

Sections
Recommended

/