Hypoxia-activated ADCC-enhanced humanized anti-CD147 antibody for liver cancer imaging and targeted therapy with improved selectivity

Fang-Zheng Qi1, Hui-Shan Su1, Bo Wang1, Luo-Meng Qian1, Yang Wang1, Chen-Hui Wang1, Ya-Xin Hou1, Ping Chen2, Qing Zhang2, Dong-Mei Li3, Hao Tang4, Jian-Li Jiang4, Hui-Jie Bian4, Zhi-Nan Chen4, Si-He Zhang1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (3) : e512. DOI: 10.1002/mco2.512
ORIGINAL ARTICLE

Hypoxia-activated ADCC-enhanced humanized anti-CD147 antibody for liver cancer imaging and targeted therapy with improved selectivity

  • Fang-Zheng Qi1, Hui-Shan Su1, Bo Wang1, Luo-Meng Qian1, Yang Wang1, Chen-Hui Wang1, Ya-Xin Hou1, Ping Chen2, Qing Zhang2, Dong-Mei Li3, Hao Tang4, Jian-Li Jiang4, Hui-Jie Bian4, Zhi-Nan Chen4, Si-He Zhang1()
Author information +
History +

Abstract

Therapeutic antibodies (Abs) improve the clinical outcome of cancer patients. However, on-target off-tumor toxicity limits Ab-based therapeutics. Cluster of differentiation 147 (CD147) is a tumor-associated membrane antigen overexpressed in cancer cells. Ab-based drugs targeting CD147 have achieved inadequate clinical benefits for liver cancer due to side effects. Here, by using glycoengineering and hypoxia-activation strategies, we developed a conditional Ab-dependent cellular cytotoxicity (ADCC)-enhanced humanized anti-CD147 Ab, HcHAb18-azo-PEG5000 (HAP18). Afucosylated ADCC-enhanced HcHAb18 Ab was produced by a fed-batch cell culture system. Azobenzene (Azo)-linked PEG5000 conjugation endowed HAP18 Ab with features of hypoxia-responsive delivery and selective targeting. HAP18 Ab potently inhibits the migration, invasion, and matrix metalloproteinase secretion, triggers the cytotoxicity and apoptosis of cancer cells, and induces ADCC, complement-dependent cytotoxicity, and Ab-dependent cellular phagocytosis under hypoxia. In xenograft mouse models, HAP18 Ab selectively targets hypoxic liver cancer tissues but not normal organs or tissues, and has potent tumor-inhibiting effects. HAP18 Ab caused negligible side effects and exhibited superior pharmacokinetics compared to those of parent HcHAb18 Ab. The hypoxia-activated ADCC-enhanced humanized HAP18 Ab safely confers therapeutic efficacy against liver cancer with improved selectivity. This study highlights that hypoxia activation is a promising strategy for improving the tumor targeting potential of anti-CD147 Ab drugs.

Keywords

cluster of differentiation 147 / hypoxia activation / liver cancer / on-target off-tumor toxicity / therapeutic antibody

Cite this article

Download citation ▾
Fang-Zheng Qi, Hui-Shan Su, Bo Wang, Luo-Meng Qian, Yang Wang, Chen-Hui Wang, Ya-Xin Hou, Ping Chen, Qing Zhang, Dong-Mei Li, Hao Tang, Jian-Li Jiang, Hui-Jie Bian, Zhi-Nan Chen, Si-He Zhang. Hypoxia-activated ADCC-enhanced humanized anti-CD147 antibody for liver cancer imaging and targeted therapy with improved selectivity. MedComm, 2024, 5(3): e512 https://doi.org/10.1002/mco2.512

References

1 A Beck, L Goetsch, C Dumontet, N Corva?a. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315-337. doi:
2 D Huang, D Rao, Q Jin, et al. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol. 2023;14:1149931. doi:
3 MA Rahat. Mini-review: can the metastatic cascade be inhibited by targeting CD147/EMMPRIN to prevent tumor recurrence? Front Immunol. 2022;13:855978. doi:
4 H Bian, JS Zheng, G Nan, et al. Randomized trial of [131I] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation. J Natl Cancer Inst. 2014;106(9):dju239. doi:
5 J Xu, ZY Shen, XG Chen, et al. A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology. 2007;45(2):269-276. doi:
6 F Feng, B Wang, X Sun, et al. Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma. Cancer Biol Ther. 2017;18(1):51-62. doi:
7 Z Zhang, Y Zhang, Q Sun, et al. Preclinical pharmacokinetics, tolerability, and pharmacodynamics of metuzumab, a novel CD147 human-mouse chimeric and glycoengineered antibody. Mol Cancer Ther. 2015;14(1):162-173. doi:
8 M Wang, S Zhang, Q Sun, et al. Dual effects of an anti-CD147 antibody for Esophageal cancer therapy. Cancer Biol Ther. 2019;20(12):1443-1452. doi:
9 X Dong, L-L Mu, X-L Liu, et al. Biomimetic, hypoxia-responsive nanoparticles overcome residual chemoresistant leukemic cells with co-targeting of therapy-induced bone marrow niches. Adv Funct Mater. 2020;30(12):2000309. doi:
10 Y Li, T Zhang, Y Pang, L Li, ZN Chen, W Sun. 3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of Metuzumab. Biofabrication. 2019;11(3):034102. doi:
11 Y Wang, L Yuan, XM Yang, et al. A chimeric antibody targeting CD147 inhibits hepatocellular carcinoma cell motility via FAK–PI3K–Akt–Girdin signaling pathway. Clin Exp Metastasis. 2015;32(1):39-53. doi:
12 J Li, J Xing, Y Yang, et al. Adjuvant (131)I-metuximab for hepatocellular carcinoma after liver resection: a randomised, controlled, multicentre, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2020;5(6):548-560. doi:
13 Y Chen, J Xu, X Wu, et al. CD147 regulates antitumor CD8(+) T-cell responses to facilitate tumor-immune escape. Cell Mol Immunol. 2021;18(8):1995-2009. doi:
14 R Asgari, A Vaisi-Raygani, MSE Aleagha, P Mohammadi, M Bakhtiari, N Arghiani. CD147 and MMPs as key factors in physiological and pathological processes. Biomed Pharmacother. 2023;157:113983. doi:
15 S Im, J Lee, D Park, A Park, YM Kim, WJ Kim. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano. 2019;13(1):476-488. doi:
16 F Perche, S Biswas, T Wang, L Zhu, VP Torchilin. Hypoxia-targeted siRNA delivery. Angew Chem Int Ed Engl. 2014;53(13):3362-3366. doi:
17 Y Ye, Q Hu, H Chen, et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nat Metab. 2019;1(4):431-444. doi:
18 Y Zhuang, K Liu, Q He, X Gu, C Jiang, J Wu. Hypoxia signaling in cancer: implications for therapeutic interventions. MedComm. 2023;4(1):e203. doi:
19 SH Lee, E Moroz, B Castagner, JC Leroux. Activatable cell penetrating peptide–peptide nucleic acid conjugate via reduction of azobenzene PEG chains. J Am Chem Soc. 2014;136(37):12868-12871. doi:
20 W Piao, S Tsuda, Y Tanaka, et al. Development of azo-based fluorescent probes to detect different levels of hypoxia. Angew Chem Int Ed Engl. 2013;52(49):13028-13032. doi:
21 K Kiyose, K Hanaoka, D Oushiki, et al. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc. 2010;132(45):15846-15848. doi:
22 Y Takakura, Y Takahashi. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation. J Control Release. 2022;350:486-493. doi:
23 HJ van der Horst, IS Nijhof, T Mutis, MED Chamuleau. Fc-engineered antibodies with enhanced Fc-effector function for the treatment of B-cell malignancies. Cancers (Basel). 2020;12(10):3041. doi:
24 F Zhou, T Fu, Q Huang, et al. Hypoxia-activated PEGylated conditional aptamer/antibody for cancer imaging with improved specificity. J Am Chem Soc. 2019;141(46):18421-18427. doi:
25 D Hao, Q Meng, B Jiang, et al. Hypoxia-activated PEGylated paclitaxel prodrug nanoparticles for potentiated chemotherapy. ACS Nano. 2022;16(9):14693-14702. doi:
26 S Qi, L Su, J Li, et al. Arf6-driven endocytic recycling of CD147 determines HCC malignant phenotypes. J Exp Clin Cancer Res. 2019;38(1):471. doi:
27 S Qi, L Su, J Li, et al. YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis. 2019;10(6):462. doi:
28 P Zhao, W Zhang, SJ Wang, et al. HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology. 2011;54(6):2012-2024. doi:
29 YH Kuang, X Chen, J Su, et al. RNA interference targeting the CD147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion. Cancer Lett. 2009;276(2):189-195. doi:
30 NA Pereira, KF Chan, PC Lin, Z Song. The “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs. 2018;10(5):693-711. doi:
31 CC Wong, AK Kai, IO Ng. The impact of hypoxia in hepatocellular carcinoma metastasis. Front Med. 2014;8(1):33-41. doi:
32 J Liu, Q Zhang, H Chen, et al. Phage display library selection of a hypoxia-binding scFv antibody for liver cancer metabolic marker discovery. Oncotarget. 2016;7(25):38105-38121. doi:
33 A Sharma, JF Arambula, S Koo, et al. Hypoxia-targeted drug delivery. Chem Soc Rev. 2019;48(3):771-813. doi:
34 Z Sun, J Huang, L Su, et al. Arf6-mediated macropinocytosis-enhanced suicide gene therapy of C16TAB-condensed Tat/pDNA nanoparticles in ovarian cancer. Nanoscale. 2021;13(34):14538-14551. doi:
35 X Ke, F Fei, Y Chen, et al. Hypoxia upregulates CD147 through a combined effect of HIF-1α and Sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis. 2012;33(8):1598-1607. doi:
36 WC Ross, GP Warwick. Reduction of cytotoxic azo compounds by hydrazine and by the xanthine oxidase–xanthine system. Nature. 1955;176(4476):298-299. doi:
37 X Niu, L Su, S Qi, Z Gao, Q Zhang, S Zhang. GRP75 modulates oncogenic Dbl-driven endocytosis derailed via the CHIP-mediated ubiquitin degradation pathway. Cell Death Dis. 2018;9(10):971. doi:
38 W Piao, K Hanaoka, T Fujisawa, et al. Development of an azo-based photosensitizer activated under mild hypoxia for photodynamic therapy. J Am Chem Soc. 2017;139(39):13713-13719. doi:
39 P Verwilst, J Han, J Lee, S Mun, HG Kang, JS Kim. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: a theranostic case study. Biomaterials. 2017;115:104-114. doi:
40 Y Zhang, W Zhao, Y Chen, et al. Rational construction of a reversible arylazo-based NIR probe for cycling hypoxia imaging in vivo. Nat Commun. 2021;12(1):2772. doi:
41 M Hu, C Yang, Y Luo, et al. A hypoxia-specific and mitochondria-targeted anticancer theranostic agent with high selectivity for cancer cells. J Mater Chem B. 2018;6(16):2413-2416. doi:
42 F Perche, S Biswas, NR Patel, VP Torchilin. Hypoxia-responsive copolymer for siRNA delivery. Methods Mol Biol. 2016;1372:139-162. doi:
43 S Peng, B Ouyang, Y Xin, et al. Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharm Sin B. 2021;11(2):560-571. doi:
44 R Zhu, RP Baumann, PG Penketh, K Shyam, AC Sartorelli. Hypoxia-selective O6-alkylguanine-DNA alkyltransferase inhibitors: design, synthesis, and evaluation of 6-(benzyloxy)-2-(aryldiazenyl)-9H-purines as prodrugs of O6-benzylguanine. J Med Chem. 2013;56(3):1355-1359. doi:
45 R van Brakel, RC Vulders, RJ Bokdam, H Grüll, MS Robillard. A doxorubicin prodrug activated by the Staudinger reaction. Bioconjug Chem. 2008;19(3):714-718. doi:
46 S Li, X Jiang, R Zheng, et al. An azobenzene-based heteromeric prodrug for hypoxia-activated chemotherapy by regulating subcellular localization. Chem Commun (Camb). 2018;54(57):7983-7986. doi:
47 Y Wang, D Xiao, J Li, et al. From prodrug to pro-prodrug: hypoxia-sensitive antibody–drug conjugates. Signal Transduct Target Ther. 2022;7(1):20. doi:
48 Q Li, JB White, NC Peterson, et al. Tumor uptake of pegylated diabodies: balancing systemic clearance and vascular transport. J Controlled Release. 2018;279:126-135. doi:
49 M Yamamoto, T Kurino, R Matsuda, et al. Delivery of aPD-L1 antibody to i.p. tumors via direct penetration by i.p. route: beyond EPR effect. J Controlled Release. 2022;352:328-337. doi:
50 DK Klassen. Evidence for both oxygen and non-oxygen dependent mechanisms of antibody sensitized target cell lysis by human monocytes. Blood. 1980;56(6):985-992.
51 M Balsamo, C Manzini, G Pietra, et al. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol. 2013;43(10):2756-2764. doi:
52 M Zatovicova, I Kajanova, M Barathova, et al. Novel humanized monoclonal antibodies for targeting hypoxic human tumors via two distinct extracellular domains of carbonic anhydrase IX. Cancer Metab. 2022;10(1):3. doi:
53 DK Chang, RJ Moniz, Z Xu, et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer. 2015;14:119. doi:
54 H Baysal, I De Pauw, H Zaryouh, et al. Cetuximab-induced natural killer cell cytotoxicity in head and neck squamous cell carcinoma cell lines: investigation of the role of cetuximab sensitivity and HPV status. Br J Cancer. 2020;123(5):752-761. doi:
55 K Solocinski, MR Padget, KP Fabian, et al. Overcoming hypoxia-induced functional suppression of NK cells. J Immunother Cancer. 2020;8(1):e000246. doi:
56 T Colombani, ZJ Rogers, K Bhatt, et al. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. Bioactive Mater. 2023;29:279-295. doi:
57 PM Cardarelli, C Rao-Naik, S Chen, et al. A nonfucosylated human antibody to CD19 with potent B-cell depletive activity for therapy of B-cell malignancies. Cancer Immunol Immunother. 2010;59(2):257-265. doi:
58 S Zhang, J Xing, Q Zhang, et al. Optimal design of Ig 5' primers for construction of diverse phage antibody library established to select anti-HAb18GEF and anti-DOTA-Y Fabs for hepatoma pretargeting RIT. Front Biosci. 2006;11:1733-1749. doi:
59 P Marcatili, A Rosi, A Tramontano. PIGS: automatic prediction of antibody structures. Bioinformatics. 2008;24(17):1953-1954. doi:
60 LS Lee, C Conover, C Shi, M Whitlow, D Filpula. Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: a comparison of conjugation chemistries and compounds. Bioconjug Chem. 1999;10(6):973-981. doi:
61 ML Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983;221(4612):709-713. doi:
62 Y Liang, X Li, F Peng, et al. Self-assembly of X-shaped antibody to combine the activity of IgG and IgA for enhanced tumor killing. Theranostics. 2022;12(18):7729-7744. doi:
63 LC Tsao, EJ Crosby, TN Trotter, et al. Trastuzumab/pertuzumab combination therapy stimulates antitumor responses through complement-dependent cytotoxicity and phagocytosis. JCI Insight. 2022;7(6):e155636. doi:
64 L Su, Z Sun, F Qi, et al. GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca(2+) nanoparticles underlies distinct gene therapy effect in ovarian cancer. J Nanobiotechnol. 2022;20(1):340. doi:
65 J Li, F Qi, H Su, et al. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 2022;18(7):2914-2931. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/